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The suitability of degenerate four-wave mixing (DFWM) as a source of squeezed-state (two-

photon coherent state) light is investigated, both theoretically and experimentally. In previous semi-

classical theory, which neglected pump quantization and loss in the nonlinear medium, Yuen and

Shapiro [Opt. Lett. 4, 334 (1979)] showed that such states would be generated by 50%-50% com-

bination of the transmitted probe (TP) and the phase-conjugate (PC) output beams of DFWM. Here
the effects of quantum fluctuations in the amplitudes and phases of the pump beams are calculated
in a traveling-wave finite-interaction-length DFWM configuration. It is shown that in the limit of
strong pump beams and weak nonlinear coupling, the classical-pumps assumption of Yuen and

Shapiro is valid. With use of this assumption, loss in the nonlinear medium is incorporated into the
model by coupling the interacting modes to a set of reservoir modes. It is shown that loss presents

an absolute limit on the degree of squeezing that can be achieved with DFWM. Also, for compar-
ison with experimental work, the photoelectron statistics of the TP, PC, and 50%-50% combination

modes are calculated for lossy DFWM; significant deviations are found from the predictions for
lossless operation. Quantum-noise measurements on the PC and TP beams generated in sodium-

vapor DFWM are described. The mixer is pumped and probed by the nearly transform-limited

pulses produced by a continuous-wave-oscillator —pulse-amplifier chain dye laser at 589 nm wave-

length. The normalized second-factorial moment g2 of the PC and TP beams is determined from
photoelectron-counting measurements. Inability to simultaneously achieve high DFWM reflectivity
and acceptably low scattered-plus-fluorescent background, coupled with low photomultiplier quan-

tum efficiency, restrict the experiment to a DFWM regime wherein theory predicts Poisson statis-

tics. Experimental g2 values corroborate this prediction, indicating that systematic and excess
noises have been eliminated. No attempt was made to measure the quantum statistics of the 50%-
50% combination mode.

INTRODUCTION

Recent work has highlighted the potential applications
of two-photon coherent states (TCS), also known as
squeezed states, in optical communications and precision
measurements. These states have nonclassical noise
statistics and their predicted generation schemes include
the degenerate parametric amplifier (DPA), degenerate
four-wave mixing (DFWM), resonance fluorescence, the
free-electron laser, and two-photon and multiphoton opti-
cal bistability. The preceding generation schemes have
been analyzed to varying degrees of approximation, but no
experimental observation of squeezed states has been re-
ported as of yet. In this paper we present results of our
theoretical and experimental investigation of the quantum
statistics of light that has undergone DFWM.

Squeezed states manifest themselves in two ways that
have no classical analogs. In a photon-counting measure-
ment these states can exhibit sub-Poissonian statistics, i.e.,
their photon-counting variance can be smaller than their
photon-counting mean. Classical light sources, on the
other hand, always have count variances that equal or

exceed their mean values; equality occurs for coherent-
state (CS) light, which can be generated by a laser running
far above threshold. For a single-mode field, such as a
transform-limited pulse, sub-Poissonian statistics are
equivalent to photon antibunching, i.e., the value of g2,
the normalized second-factorial moment of the modal
photon-number operator, " being less than unity. Squeezed
states can be antibunched, whereas classical states yield

gz ) 1, with equality occurring for CS light.
The second nonclassical phenomenon exhibited by these

states, which can be observed via optical homodyne detec-
tion, is that of quadrature-noise squeezing, hence the
name squeezed state. A state is squeezed when its mean-
square field fluctuation in one quadrature is less than that
for a coherent state. TCS are basically minimum uncer-
tainty squeezed states whose quadrature fluctuation prod-
uct equals the limit set by the uncertainty principle, with
unequal noise division between the quadratures. (In a
coherent state, the uncertainty-product limit is achieved,
but with equal mean-square field fluctuations in the two
quadratures. ) Let a be the photon annihilation operator
of a fixed radiation mode of frequency co obeying the
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canonical commutation relation [a,a ]= 1 and
a =ai+ia2, [ ai, a2]=i /2 for self-adjoint ai and a2. In
a coherent state

~
a), the mean-square field fluctuations

are ( b a i ) = ( b,a z ) = —„', corresponding to a noise power
spectral density fuu/4 for the field quadratures a i and a2.
For a squeezed state

~
)„either ( b,a i ) & —,', or

(b,az) & —,
'

prevails. For a TCS' ~P;p, v) with p and v
real valued and obeying p —v = 1, we have
(baf) =(p —v) /4 and (baz) =(p+v) /4, so that
(b,aj)(b,a)) = —,', . If pv&0, then ai is squeezed, and if
pv&0, then a2 is squeezed.

The possibility of using DFWM as a source of
squeezed-state light was suggested by Yuen and Shapiro.
They showed that TCS should result from 50%-50%
combination of the phase-conjugate (PC) reflected beam
and the transmitted-probe (TP) beam. Their model, al-
though quantum-mechanically consistent, was a simple
extension of the classical description of DFWM given by
Yariv and Pepper. Only the PC and TP beams were
treated quantum mechanically; classical descriptions of
the pump beams and the medium were retained. Further-
more, other real effects that sometimes hamper DFWM
experiments, such as loss and self-focusing, were ignored.
Because squeezing, the key nonclassical characteristic of
TCS light, is destroyed by excessive loss and fluctuations,
it is desirable to include these effects in analyzing a
DFWM-TCS-generation experiment. In Sec. II we extend
the model of Yuen and Shapiro to include the effects of
pump quantum noise and loss in the four-wave mixer.
The two problems will be treated separately. It will be
shown that pump quantum noise places no fundamental
limits on DFWM-TCS generation, but such limits do arise
from loss effects.

In Sec. III we describe an experiment we have per-
formed to measure the quantum statistics of the PC and
TP beams generated via DFWM in sodium vapor. Be-
cause DFWM occurs through the third-order nonlinearity
of the mixing medium, high reflectivities require pump
beams with high peak powers. Therefore, we employ a
pulsed optical system and exploit the resonant enhance-
ment of this nonlinearity. Furthermore, because a pulsed
experiment does not easily lend itself to homodyne detec-
tion, we use photoelectron counting to investigate the
quantum statistics, in particular the g2 values, of the PC
and TP beams. This approach has the additional benefit
that g2 values are not affected by transmission losses and
low detector quantum efficiency, whereas such effects
drastically curtail observations of squeezing. However,
photon antibunching can easily be masked (as can squeez-
ing) by classically random excess fluctuations in the laser
source or the mixing process. Accordingly, generation
and detection of TCS via DFWM and photon counting re-
quires a careful choice of operating conditions because of
a variety of conflicting requirements. Indeed, our experi-
ment was forced to operate in a DFWM regime wherein
Poisson statistics (g2 ——1) were expected theoretically.
Our noise measurements corroborate this prediction, indi-
cating that systematic and excess noises have been elim-
inated. We conclude in Sec. IV with a summary of our
prognosis for TCS generation via DFWM in atomic va-
pors.

II. THEORY

A. Semiclassical model

The essence of generating squeezed states may be stated
simply as follows. For a single-mode field with annihila-
tion operator a, mix a part of this field with its phase-
conjugate field represented by the creation operator a to
create a new mode represented by the operator c such that

dAi =i K*A 2, (2a)

di2 = —LK
dz

(2b)

where a'=2 'cd' 'Bi82/cn gives the complex coupling

c

BS

DL

2

Op DFWM 0(

z=O z=L
FIG. 1. Schematic for generation of TCS light via DFWM.

I=isolator, DL =delay line, BS=50%-50% beam splitter,
M =mirror.

c =pa+va
where

~ p ~

—
~

v
~

= 1 ensures that c is an annihilation
operator. Then, if the mode a is in a CS, the mode c will
be in a TCS.' Thus, a physical process that generates a
phase-conjugate field for some input field is a possible
candidate for generating squeezed-state light. DFWM is
such a process and was suggested by Yuen and Shapiro
as a possible source of squeezed states. In this section we
first briefly review the theoretical model of Yuen and
Shapiro to establish notation, and then extend it to include
the quantum nature of the pump beams and loss incurred
in the four-wave mixing medium.

We shall study the standard DFWM geometry shown
in Fig. 1. Two counterpropagating pump waves intersect
the object (probe) wave at a small angle in a nonlinear
medium possessing a third-order (X' ') nonlinearity. All
three waves are at the same frequency. A phase-matched
interaction in the nonlinear medium generates a PC image
wave which propagates in the opposite direction to the ob-
ject wave. The outputs of the four-wave mixer are
separated by means of isolators (I), and combined through
an optical delay line (DL) with the proper phase relation-
ships on a 50%-50% beam splitter (BS). As shown in
Ref. 8, from a classical analysis the complex field ampli-
tudes A i and Aq of the image and object waves obey the
coupled-mode equations
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constant in terms of the nondepleted pump waves of com-

plex field amplitudes Bi and 82. Yuen and Shapiro gave
a quantum version of the above treatment assuming that
the pump fields Bi and Bz are strong and can remain
classical along with the medium described by the third-
order nonlinear susceptibility X' '. They quantized the ob-

ject and the image modes replacing AJ. and A&* with the
photon annihilation and creation operators aj and aj-,
respectively, for j= 1,2. Equation (2) then becomes

dQ1
=lK Q2 (3a)

dQ2 =—EK Q1 (3b)

with the following solutions:

ai(0)=pai(L) —ivan(0),

a2(L) =pai(0) iva i(—L),
(4a)

(4b)

ai(L) and aq(0) are the input fields to the four-wave
mixer at z =I. and z =0, respectively.

As shown in Fig. 1, the outputs of the four-wave mixer
are then combined through 50%-50% beam splitter to
generate two new modes,

c =[a i(0)—ia2(L)]/2'

d = [ai(0)+ia2(L)]/2'~

in terms of which the solutions become

(5b)

c =Vein +cin ~

d =pd;„+vd;„,

c;„=[a i(L) —ia2(0)]/2'~

d;„=[a i(L)+ ia2(0)]/2'~

(7a)

HI =flU(Kaiap+K a 2a i ),

where u is the speed of light in the medium. Temporal
differential equations obtained from (8) in the interaction
picture using

are linear combinations of the input modes to the four-
wave mixer. Equation (6) is of the same form as (1) and

l p l

—
l
v

l
=1, so that the modes c and d are in TCS if

ai(L) and a2(0) are in CS.
The above analysis indicates that DFWM is a source of

pure TCS. Depending upon the phase and magnitude of
v, arbitrary squeezing is predicted to be obtained in one of
the quadratures of modes c or d. In a real experiment
this is not quite so because of the assumptions made in ar-
riving at (3). In particular, the pump modes Bi and 82
cannot be considered classical, and the effects of their
quantum amplitude and phase fluctuations on modes c
and d should be calculated. Before proceeding to do that,
we note that the coupled-mode equations (3) can be de-
rived from the following effective interaction Hamiltoni-
an:

B. Effect of quantized pumps

In this section we estimate the reduction of obtainable
squeezing imposed by the quantum nature of the pump
modes. Specifically, we will obtain conditions under

which the pump fields may be treated as classical quanti-
ties. Our approach to this problem is somewhat different
from those of recent studies. Unlike Milburn and Walls, '0

and Lugiato and Strini, " we do not calculate a temporal
steady state for the system, because such an approach
seems inappropriate for the traveling-wave finite-
interaction-length geometry employed in DF%'M. ' Nei-

ther do we follow the route of Neuman and Haug, ' and
Mandel'" to a power-series solution of the nonlinear
coupled-mode equations in the limit of small parametric
gain, because we are interested in operation at high gain
(high conjugate reflectivity).

The complex pump field amphtudes 8, and 82 of Eq.
(2) now become annihilation operators bi and bz The ai.
probe wave is taken to be in a CS lai) on the z=L
plane, and the az image wave is taken to be in a CS

l
aq )

on the z =0 plane. We again assume nondepleting pump
modes b;, which remain in the coherent states lP;)
throughout the medium, with

l P; l
»1+

l ai l
for

i,j =1,2.
Again assuming the fields to be phase-matched plane

waves, the effective interaction Hamiltonian for the
modes of interest can be generalized to (classical medium
described by a real third-order susceptibility)

Hi AU
l

K——
l

(bibiaiaz+bib2aia2)+ gb; b a; a;
i=1
22

+2 ' g(a; a;+b; b;)
i=1

+2 gb;ba;a; (10)

Starting from the general expression for the third-order
polarization density for an isotropic medium'

P=A(E E')E+2 '8(E E)E'

with
l

K
l

o:A and
l P l

ccB, the above interaction Hamil-
tonian can be derived from the interaction energy

(2eo) ' P EdV for the lossless classical medium by re-
V

placing the relevant field amplitudes with the correspond-
ing operators. Equation (10) represents the general Ham-
iltonian obtained for typical experimental situations. In a
DFWM experiment ~here the probe and the image waves
counterpropagate, it is most convenient to exploit the po-
larization properties of DFWM to separate the two

dQJ

d~
——[a HI]

are converted into spatial differential equations by the
change of variables z = —Ut for the a1 mode and z =Ut
for the a2 mode.
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da)
ck

=i
I

&
I
bib2a2

a2 = —i I~Ib, b2a, .
dz

(13a)

(13b)

These equations can be solved with the given boundary
conditions to yield, writing

I

K
I

=k for convenience,

ai(0) =Pa i(L) i exp(i—g)vaz(0),

a2(L) =Pa2(0) —ivexp(iP)a i(L) .

(14a)

(14b)

In Eqs. (14a) and (14b). u =sec[xL (N i N2 )
' ],

v=tan[KL(NiN2)' ], exp(ip) =exp(i/i)exp(iiI)2), and

exp(ip) =exp(i/i)exp(iiI)2), where NJ =bjbj, exp(ipj )

=b&NJ ', and exp(igj)=NJ '
bj, forj =1,2.

It can be clearly seen from Eqs. (14a) and (14b) that
a, (0) and a2(L) depend on both the pump amplitudes
and phases. In order to assess the effects of pump quan-
tum fluctuations and to obtain consistent expressions for
a, (0) and a2(L), we use the strength of the pumps to jus-
tify replacing the operators p, v, exp(ip), and exp(ip)
with appropriately chosen classical random quantities p. ,
v, P, and ~I). The results are P =sec[i~L (n in2)' ],
v=tan[R L(n ni)'2], and iIi=p=iIii+42, where ni and
n2 are statistically independent Poisson random variables
with mean values (n~ &

=
I p~ I, and 4, and 42 are sta-

tistically independent Gaussian random variables with
mean values' ( Cij. & =arg(PJ ) =OJ and variances
(44&J &= —,

I pj I
. Using these classical random vari-

ables in (14a) and (14b), we obtain for (6a) and (6b) with

pump fluctuations included,

beams. ' Our choice of polarizations makes the counter-
propagating pump beams orthogonally polarized so that
the probe and the image beams are also orthogonally po-
larized, with the probe polarization being parallel to one
of the pump polarizations. Similar Hamiltonians have
been obtained with a different choice of beam polariza-
tions by Marburger and Lam' for use in a classical
analysis of DFWM with pump depletion. Terms propor-
tional to

I
i7

I
are important near a one-photon transition,

which is the case we will consider, and those proportional
to

I
1i I

are significant only near a two-photon transition.
The first two terms in (10) lead to phase conjugation,
whereas the next two are responsible for phase modulation
of the beams. Since we are interested only in the phase-
conjugation process, we will retain only the first two
terms in the interaction Hamiltonian for our analysis of
the effects of pump field quantization on quantum
DFWM. Recently, the pump quantization effects due to
the phase-modulation terms have been reported by Mil-
burn, Walls, and Levenson. ' They implicitly assumed
the polarization geometry of Marburger and Lam in
which it is difficult experimentally to separate the counter
propagating probe and image beams. For our application
the interaction Hamiltonian (10) reduces to

HI=«(
I

rc
I
aia2b ib2+ I

rc
I
bib2a ia2), (12)

which results in the following coupled-mode equations:

ip—
C =PCin e VCin ~

d =Pdl~+e Vdj~

(15a)

(15b)

where the modes associated with the annihilation opera-
tors c;„=[a i(L) —ia2(0)]/2' and d;„=[a,(L)
+ ia 2(0)]/2' ~ are in the coherent states
(ai —ia2)/2' & and

I
(ai+ia2)/2' &, respectively.

We are now in a position to investigate the effects of
amplitude and phase fluctuations on the squeezing of the
TCS output modes. For simplicity, we shall examine am-
plitude and phase effects separately, ' and we shall limit
our presentation to the noise squeezing on the
c i

——(c +c ) /2 quadrature.
In the absence of pump phase fluctuations, with the

mixer arranged to give &i+6)2——0 and
I pi I

=
I p2 I

=p,
the variance of a c i measurement is given by

&~ '&=&(p —)'&/4+(~(p —)'&&;. &', (16)

where we have used the coherent-state property
(hc;„i &= —, for c;„i——(c;„+c;„)/2. The P and v mo-

ments needed to evaluate («i & from (16) are developed
in the Appendix; with said results we obtain

(«i &=(p v) l4+(«p) (2p —pv)(p —v) l8-
+(~Lpga)'(p, v)'(c;„, &—'l2, (17)

C. Effect of loss

Most DFWM experiments to date, and the ones report-
ed in this paper, which achieve high PC reflectivities, ex-

where @=sec(iLp ) and v=tan(x'Lp ). The first term on
the right corresponds to the classical-pump analysis of
Yuen and Shapiro. Equation (17) clearly shows that hav-
ing intense pump beams is not sufficient to ensure they
may be treated classically. Rather, in order to achieve
( b c i & = (p —v) /4 at interesting squeezing levels, we
must have intense pump beams (p ~00) and weak cou-
pling (RL ~0) at constant gain (kL p ).

To evaluate the effect of phase fluctuations on the c &-

quadrature-noise squeezing we again assume 0&+02 ——0
and

I
pi I

=
I
p2 ——p . This time we suppress the am-

plitude fluctuations and use standard Gaussian-
distribution results to obtain

(bc i & = (p v) /4+ @v/8P—+v (c;„2& /2P

+v'(&c,„,&' —2(c,„,&')/8P', (18)

where c;„2——(c;„—c;„)l2i As in the .amplitude fluctua-
tion analysis, the first term on the right is that predicted
by Yuen and Shapiro, and having intense pump beams
does not guarantee that the extra terms may be neglected.
However, (b,c i & =(p —v) /4 at interesting squeezing lev-

els prevails with intense pump beams (p ~ oo ) and weak
coupling (iiL ~0) at constant gain (irL p ).

Thus, pump quantum noise does not place fundamental
limits on the achievable quadrature-noise squeezing in
DFWM TCS-generation experiments; our analysis demon-
strates that the classical-pumps assumption is only valid
when pump power becomes infinite, nonlinear coupling
approaches zero, with their product remaining finite.
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ploit resonant enhancement of the X' ' nonlinearity.
Operation near a resonance has the disadvantage of in-

creasing the loss seen by the probe waves as they propa-
gate through the medium. In this section we investigate
the effect of loss on the squeezing and the photon-
counting statistics of the DFWM setup shown in Fig. 1.
We will assume that the pumps are noiseless classical
quantities. In order to account for loss quantum mechan-
ically we adjoin the system of Eq. (8) to two reservoirs of
loss oscillators. The reservoir of modes [bi'J traveling
in the —z direction couples to the input probe wave, and
the reservoir [bt J traveling in the + z direction couples to
the PC mode. The total Hamiltonian can therefore be
written as

2 ) 2 00

H = g ficoa, a, +fi g g

cubi

b(' bl'

These noise operators, under the Wigner-Weisskopf ap-

proximation, obey the commutation rules

[Gi(z),G, (z')] =2y5(z —z'), (22a)

and

[G2(z) Gi(z )]— 2y'ti(z z ) (22b)

(23a)ai(0) =
Ta i(L) iR—a2(0)+ I i,

ai(L) =Ta2(0) iRa—i (L)+ I 2,
LI,= —T dz[G, (z)F (L —z)+G (z)F, (z L)],—

0

(23b)

(24a)

The set of equations (20) can be integrated subject to the
appropriate boundary conditions, with the result

s=1 s =11=1

+priv[~*(t)a ia i+~(t)a2a i ]
I = dzG, z F*, L —z+iRF L —z

2 QO

+&y a, g~*,b,'+a, g~, b,
'

s=1 l=1 l=1 where
19

+J dz G2(z)[Fi(z L)+iR—F, (z —L)], (24b)

da1
=ya i+is*a2+Gi(z),

dz

a2 = —y a+2i s&a+ G (zi),
dz

(20a)

(20b)

where y is the loss per unit length and Gi(z) and G2(z)
are Langevin noise operators obeying

z

ya, (z) =v g ~

xt
~ J dz'a, (z')exp[i(cot —co)(z' —z)/v],

r

s = 1,2 (2la)

Gi(z) =(i /v) g ~ibi'(L)e
l=1

(21b)

—i {,co—a)I )z/u
Gi(z) =(i/v) g iri bi (0)e

1=1
(21c)

The first two terms are the free Hamiltonians for the sig-
nal and the reservoir modes. The fourth term describes
the linear coupling to the loss oscillators. From Eq. (19)
we obtain two coupled spatial differential equations for
the slowly varying operators a1 and a2,

Fi (z) =i icw 'sin( wz),

Fi(z) =-cos(wz)+yw 'sin(wz),

( ~~~2 y2)1/2

T=F2 '(L),
R =iF*, (L)/F2(L) .

(25)

The constants T and R coincide with the transmission
and reflection coefficients found by Abrams and Lind in
their analysis of the DFWM process in an absorbing
medium. Indeed, our operator equations (23) reduce to
their classical equations when expectation values are tak-
en, because the noise-operator expectations ( I; ) are zero.
The noise operators do contribute fluctuations, which are
needed to preserve the uncertainty principle. The output
modes ai(0) and ai(L) satisfy the canonical commuta-
tion relations [a i (0),a i (0)]= [a2(L),a 2(L)]= 1 and
[ai(0),a2(L)]=0, as can be verified by straightforward
but tedious calculations.

We are now in a position to analyze the effects of loss
on squeezing. As an example, we will evaluate (b,ci }
when

~

~
~

=~. After substituting Eqs. (23a) and (23b)
into Eq. (5a) and evaluating the appropriate moments, we

get

(~ 2 T R q (T R) y(2N+1) —
2 y sin(2wL) . z iryKL— —y sin wL — sin wL

2[w cos(wL) —y sin(wL)] w

+xL[ycos(wL)+w sin(wL)] (26)

where N measures the initial excitation of the reservoir modes, i.e., N = (bi' (0)bi'(0) },and is assumed to be the same for
all the modes.

Figure 2 shows a plot of the variance (Ac i ) from Eq. (26) as a function of the nonlinear coupling xL for various loss
levels yL. The loss oscillators are assumed to be zero temperature with zero initial excitations. It can be seen that even a
modest amount of loss, yL =0.5, seriously reduces the amount of squeezing that is obtainable, and any initial excitation
of the reservoir modes (N&0) reduces the squeezing even further, as shown in Fig. 3.
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In the limit ILL » yL, Eq. (26) reduces to

(hc i ) (p —v) [ I +2yL (2N + 1)sec (a'L )[ I + sin(ILL )]] /4=yL (2N + I ) /4 . (27)

So yI. must be absolutely small, rather than relatively small, in order to have significant squeezing. This should be com-
pared to the case for DPA, in which arbitrary squeezing is obtainable for any yL and N so long as aL can be made arbi-
trarily large compared to yL. Physically, the difference seems to be because of the two counterpropagating reservoir
mode ensembles, one set of modes becomes squeezed while the other becomes "expanded. " In DPA there is only one
reservoir ensemble, which gets squeezed the same way as the signal.

We now evaluate the effect of loss on the photon-counting statistics. In the lossless case, modes c and d of (6) are in
TCS. The photon-counting distribution for a TCS is a Hermite Gaussian and has already been given by Yuen. For
comparison with the lossy case, we have evaluated the normalized second-factorial moment g2 without loss for various
parameter values, with the results shown in Fig. 4. The photon-counting distribution with loss becomes very complicat-
ed so we will only concentrate on gz. Equations (23) and (5), together with the normally ordered characteristic func-
tion, can be used to evaluate the following expression for gz (mode c):

gz L
——(( ia/2—';T R

I
c c

I

ia/—2';T R )+([9'z,Sz]+[+i,+s])
x t4 IR I

'+2([&z, &z]+[K,&s])+2
I

T~"+R'~
I
'))/( IR

I

'+2 '
I

T~*+R'~
I

'+[»', &z]+[&s,&sl)',
(28)

where
I

—t'a/2'~; T,R ) is the TCS obtained in the loss-
less case

and

L
uz= Tf—Gz(z)Ft(z L)dz, — (29)

0 4

93——f dz Gi(z)[Ft (L z)+iRFz—(L —z)]. (30)

The rest of the functions are as defined in Eqs. (21) and
(25). We have also assumed mode az(0) in a CS

I
a) and

ai(L) in
I
0). Notice that gz I is independent of the

quantum efficiency of the detecting apparatus.
It can be seen from Fig. 4 (lossless case) that gz could

be made much less than 1 at low levels of
I

a I, i.e., the
photon statistics could be made significantly sub-
Poissonian. In Fig. 5, g2 for a DFWM experiment with
loss is plotted. As will be seen in the Sec. III, typical
values for

I
R

I
and T in our experiment are 0.01 and

0.05, respectively, implying ~I- (0.1 and yL &1.5. For
these values of IrL and yL, gz is plotted for various values
of Ia I, the mean photon number of the input probe
field. It is clear from the figure that if the region with

I
a

I
& 10 could be experimentally accessed, one could see

a distribution which is significantly sub-Poissonian, even
in the presence of moderate amounts of loss.

We therefore conclude that although pump quantum
fluctuations have a negligible effect on the quantum
statistics of light produced by DFWM, the presence of
loss could be detrimental to the squeezing obtainable via
such a process. Although the presence of loss affects the
photon-counting statistics, the generation of a nonclassical
state via this process could be demonstrated by measuring

gz for the 50%-50% combination mode in a photon-
counting experiment, if a suitable region of operation with

Ia
I

&10 could be experimentally accessed. The results
of our experimental work are presented in Sec. III.

III. EXPERIMENT

It is clear from Eqs. (6a) and (6b) that TCS should re-
sult from the 50%-50% combination of the PC beam and
the TP beam. In Sec. IIC the photon-counting distribu-
tion (gz values in particular) for the TCS modes were
presented both with and without loss in the nonlinear
medium. Owing to the difficulty of making quantum-
noise measurements on the output of a nonlinear optical
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a
0.4

O. I 0.2
N= 0

FIG. 2. Plots of the quadrature variance (hc f ) vs nonlinear

coupling ~L for various degrees of loss yL.

«L

FIG. 3. Plots of the quadrature variance (b,c, ) vs nonlinear

coupling ~L for various degrees of initial excitation N of the
loss oscillator modes yL =1.5 is assumed.
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X' '=vrN, p /I (II co)— (42)

where N, is the atomic-number density, 0 is the transi-
tion frequency, and p is the dipole matrix element of the
transition. The PC signal shows two peaks on either side
of the D2 line as the laser frequency is varied. In our ex-
periment the higher-frequency peak was employed be-
cause the resulting spatial quality of the PC beam at our
pump intensities was much better than that for the
lower-frequency peak. This beam-quality difference can
be ascribed to the difference in self-focusing of the signals
on the two sides of the resonance line.

[Sz,Ã2] in Eq. (39) approaches zero, and g2L is the
same as for the lossless case.

Figure 6 shows the experimental setup. An externally
stabilized cw ring dye laser (sub-MHz linewidth and less
than 50-MHz/h drift) is amplified through a chain of
pulsed dye-laser amplifiers pumped by the smoothed out-
put of a Nd: YAG (yttrium aluminum garnet) laser. The
output pulses are 4 ns in duration with typically
(10—20)% energy fluctuations and a total linewidth ap-
proximately twice the transform limit. The excess
linewidth is partially correlated with the pulse-energy
fluctuations due to incomplete saturation in the dye-laser
amplifier chain. This is confirmed by our analysis of the
fluctuations on the PC signal. The choice of such a sys-
tem, as opposed to a pulsed dye-laser —oscillator-amplifier
system, was dictated by the observation of strong classi-
cally random fluctuations on the PC signal at constant in-
put pulse energy when a pulsed oscillator was employed.
We will come back to the origin of these fluctuations after
describing the DFWM process.

DFWM is performed in sodium vapor generated in a
heat pipe oven. One to two Torr of helium is used as the
buffer gas, and the inside oven temperature is maintained
at 290 C implying a sodium-vapor density of 2&(10'
atoms/cm . The dye laser is tuned close to the
D2( S)g2 P3/2) re—sonance transition of sodium. Under
these conditions, DFWM with greater than unity reflec-
tivity can be performed. The resonantly enhanced elec-
tronic Kerr effect acts as the DFWM nonlinearity. For
near-resonant excitation and short pulses the adiabatic fol-
lowing model gives the following expression for X' ':

The output of the dye-laser amplifier is attenuated and
split in two by a 50%-50% beam splitter for use as coun-
terpropagating pump beams of nominal intensity 1 —2
kW/cm . A small portion of the amplifier output is fur-
ther split into three parts and directed to three photo-
detectors. The first detector has a slow response so its
output measures the energy of the dye-laser pulses for use
as pulse tag s during the photon-counting runs. The
second detector has a fast response (50 ps risetime) and is
used in conjunction with a 1-6Hz-bandwidth oscilloscope
to monitor the temporal quality of the pulses generated by
the dye-laser system. The third detector also has a fast
response; it is used in the saturation mode to trigger the
photon-counting electronics. The typical triggering jitter
is less than 1 ns.

A weak probe beam is derived from one of the pumps
by reflection off a piece of glass. It intersects the pump
beams inside the oven at a small angle, typically 1'. The
mirror spacings are adjusted so that all the beams arrive
in time coincidence at the center of the heat pipe oven.
Polarization selection is employed to separate all of the
PC beam from the counterpropagating probe beam. '

As mentioned earlier, there is classical randomness on
the PC signal. To analyze these fluctuations several histo-
grams such as those shown in Fig. 7 were collected. The
PC signal energy and the input-probe-beam pulse energy
are detected simultaneously and fed into the computer
through two independent analog-to-digital convertors.
After collecting 10240 pulses, histograms are generated
by defining two arrays of 2048 bins each in the computer
memory and distributing the PC pulses according to their
energy values in one array and the input-probe-beam
pulses in the other. The histograms thus generated are

YAG

BS BS
M

DYE

AMP L I FI E R

TO COUNTING

ELECTRONICS PULSE ENERGY PULSE ENERGY

M
.Wll

HWP

HWe

BS)

MT

//pi TO COUNTING

ELECTRONICS
l

M
M

Na M

FIG. 6. Schematic of the experimental setup. RDL=ring
dye laser, YAG=Nd:YAG laser with a second-harmonic gen-

erator, BS=beam splitter, M =mirror, DET =detector,
PMT= photomultiplier tube, MT= mirror on a translation

stage, HWP =half-wave plate, PBS=polarizing beam splitter,
Na=sodium in a heat pipe oven.

FIG. 7. Normalized pulse-energy fluctuation histograms.
Horizontal scale, which is linearly proportional to the pulse en-

ergy, is the same for all the plots. The vertical scales, which are
linearly proportional to the number of pulses, have been chosen
to achieve common peak values. In a, for the PC beam, relative
fluctuation level (RFL), defined as the standard deviation divid-
ed by the mean, is 0.28. In e, for the output of the dye-
laser —oscillator-amplifier chain, RFL is 0.19. In b, for the PC
beam when only those pulses whose input-probe-beam pulse en-
ergy falls within +10%%uo of the mean value are selected, RFL
drops to 0.09. In c, same as b when +5% selection is employed,
RFL drops to 0.06. In d, RFL attains a minimum value of
0.04, even with +1% selection.
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shown in Figs. 7(a) and 7(e), respectively. Because the two

pump beams are also derived from the same output of the
dye-laser —oscillator-amplifier system, the width of the
PC histogram is expected to be three times that of the
input-pulse-energy histogram. Such is not the case be-

cause of the saturation of the 7' ' nonlinearity; three
times as wide histograms are observed when the pump
pulse energy is reduced to avoid saturation of the non-

linearity at the expense of reduced DFWM reflectivity.
When new PC-energy histograms are generated by

selecting pulses falling within a specified window around
the mean input-probe pulse energy, the widths of the PC
histograms reduce as shown in Figs. 7(b)—7(d) indicating
that most of the excess PC signal fluctuation is due to the
input-pulse-energy fluctuation. In Fig. 7(d), PC pulses
with input-probe pulse energies falling within 1% of the
mean are selected and 4% spread of the PC energy is ob-

served. Part of the spread (about 3%) is due to the electri-
cal noise present in the two detectors monitoring the pulse
energies.

Such a close tracking of the PC signal energy with the
input pulse energy was not obtained with a pulsed
oscillator-amplifier system due to fluctuations of the car-
rier frequency of the pulses generated by the Littman-

type pulsed dye laser originally used in the setup. The
PC signal is sensitive to such fluctuations via the resonant
denominator of Eq. (42). A detailed analysis of these
fluctuations will be presented elsewhere.

The presence of these classically random fluctuations
increases the g2 value in a photon-counting experiment.
If the relative energy fluctuation level is x, then the g2
value is increased by a factor of 1+x . With 4% PC-
energy fluctuations, the g2 value should be measurable
with better than 0.2% accuracy. Thus pulse selection ac-
cording to the input-probe pulse energy is done when the
photon-counting runs are made.

To monitor these fluctuations during the course of the
photon-counting runs a second probe beam is injected into
the cell at the same angle to the pump beams as the first
probe beam, but in a plane perpendicular to that contain-
ing the first probe beam and the pumps. The intensity of
the resulting conjugate beam, called the tagging conjugate
(TC), is kept high enough for the quantum fluctuations to
be small, but low enough to avoid pump depletion. The
TC beam is monitored by a photomultiplier tube (PMT)
whose output is fed to the computer to keep track of the
classical fluctuations. Several diagnostic runs were made
to understand these fluctuations. The two conjugates
track each other to within the noise level of the associated
electronics. As with the PC beam, the TC beam also
tracks the input pulse energy as monitored by the slow
detector.

The photon-counting system is based on a narrow gain
distribution PMT coupled to a gated (boxcar) integrator.
The details and diagnostic tests of the photon-counting
scheme have been described previously. The beam on
which photon counting is to be performed is directed into
the PMT using 99.9% reflecting mirrors. All the optical
components in the DFWM setup that are used in the path
of the PC and TP beams are antireflection coated to mini-
mize the reflection losses. The temporal mode is defined
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FIG. 8. Measured photon-counting distributions. The quan-

tiy n!P(n) is plotted vs n on a semi-log scale. In b, for the PC
beam, the truncated mean, variance, and g2 of the distribution

are 0.520, 0.521, and 1.00+0.03, respectively. The DFWM re-

flectivity is 1%. In a, for the TP beam, the values of the trun-

cated mean, variance, and g2 are 0.281, 0.282, and 1.02+0.05,
respectively. The DFWM reflectivity is the same as in b. The
error bars on the probabilities correspond to the sampling errors
in each case (Ref. 29).

by the pulse duration. Pulses of a fixed energy are select-
ed using the slow-detector tags to obtain a single mode for
DFWM measurements. The systematic and random er-

rors present in the photon-counting scheme limit the
mean detected counting rate to lie between 0.2 and 0.8
counts per pulse, corresponding to 10—40 photons per
pulse for our net quantum efficiency of 2% (including
losses at various surfaces). Because of scattering at the
windows of the heat pipe oven and fluorescence due to
proximity to the D2 resonance line of sodium, some back-
ground light is seen by the PMT. Although spatial filter-
ing and time gating are used to minimize the background,
this unwanted light ultimately dictates the operating point
of the DFWM —photon-counting setup. The scattered
light can be reduced below the level of the time-gated
PMT dark noise by decreasing the pump intensities and
increasing the angle between the probe and pump direc-
tions. However, the fluorescent emission that is spatially
coherent with the PC beam persists and leads to about 0.7
counts per pulse at 1% DFWM reflectivity. The photon-
counting distribution for this background is measured to
be Poissonian. When the laser is tuned away from reso-
nance by about 5 GHz, the net background is reduced to
below the gated dark noise of the PMT.

The preceding considerations have forced us to perform
photon counting on the PC and TP beams in the regime
e

I

v
I
« 1,

I
a

I
~&1. Under these conditions all the

photon-counting distributions of interest [see Eqs. (40)
and (41)] reduce to the familiar Poisson distribution for
which g2 ——1. Figure 8 shows the measured photon-
counting distribution of the PC beam when the reflectivi-

ty is about 1% and a 10-dB neutral-density filter is used
in front of the PMT to suppress background. (Similar
data results with no attenuation at 0.1% reflectivity. ) The
quantity n!P( n) is plotted versus n on a semi-log scale.
The truncated mean and variance of this distribution are
0.520 and 0.521, respectively, giving g2

——1.00+0.03. The
expected truncated g2 for a Poisson distribution of the
same truncated mean is 0.99; this Poisson distribution is
shown by the straight line in Fig. 8. A mean background
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count of 0.065 was present in the above run. A similar
distribution is obtained for the TP beam and is also shown
in Fig. 8. Thus, in accordance with the theory, no depar-
ture from the Poisson photon-counting statistics is ob-
served. No attempt was made to measure the photon
statistics of the TCS mode in light of the above experi-
mental constraints.

IV. CONCLUSIONS

We have investigated the quantum statistics of light
generated by DFWM. The quantum-mechanical fluctua-
tions of the pump fields place no fundamental limit on
obtainable squeezing, but the presence of loss in the non-
linear medium of a realistic experiment will significantly
reduce the amount of squeezing available. Loss does not
preclude the possibility of observing sub-Poissonian pho-
ton statistics in such a process. However, observation of
such a nonclassical regime is severely limited by the prac-
tical constraints such as low quantum efficiency of the
photomultiplier and high background scattering level in
an atomic-vapor system, Indeed, the reason our PC and
TP observations are Poissonian is our inability to simul-
taneously obtain high DFWM reflectivity and acceptably
low background. On the basis of these results no devia-
tion from Poisson statistics is expected in our operating
regime for the 50%-50% combination mode. Moreover,
to make photoelectron-counting measurements on the
combination mode, interferometric stability must be
maintained throughout the experimental setup over the
observation interval; such stability is not critical for PC-
and TP-beam measurements. Thus, no attempt was made
to measure the quantum statistics of the 50%-50% com-
bination mode. Note that it is the fluorescent background
that hinders the experiment, as the scattered background
can be eliminated by judicious design of the sodium cell.
The fluorescent background should be studied in a fully
quantum-mechanical treatment of DFWM- TCS genera-
tion, i.e., in an analysis in which the medium is also quan-
tized.
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APPENDIX

To obtain Eq. (17) we must evaluate the expectations

(sec[PL(nin~)' ]),
(tan[rcL(ning)' ']),
(sec [~L (n, n~)' ]),

etc., where n
&

and n 2 are independent Poisson random
variables with mean values (n; ) =

I p; I, for i =1,2.
Here we will outline the method for evaluating
(sec[KL(nin2)' ] ).

We begin with the Taylor series expansion

=lp;I +m(m —1)lp;I ' "/2, (A2)

where IS(m, l)I are the Stirling numbers of the second
kind, and the approximate equality results when

I p; I
&&1. Substituting (A2) into (Al) we find that

(sec[xL(nin2)'~ ])
=sec+L

I pill» I
)+2 '(

I pi I

'+
I » I

')

d2X,sec(rcLx '~')
dx x= I~, I'IP, I'

=&[1+(«)'(
I
Pi I'+ I» I')(v'+~)«], «3)

where @=sec(~L
I pi I I» I

) and v= tan(rcL
I pi I p2 I

).
The evaluation of expectations such as
(tan[~L(nin2)' ]), (sec [KL(nin2)' ]), etc. , may be
carried out in a similar manner.

(sec[PL(nin2)' ])= g E~(FL) (n' )(n2 )l(2m)!,
m =0

(Al)

I E j are the Euler numbers. We have that the
Poisson random variable moments obey

m

(n; )=yS(m, l)lp;I
1=0
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