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Noise versus chaos in acousto-optic bistability

Real Vallee and Claude Delisle
Laboratoire de Recherches en Optique et Laser, Departement de Physique, Universite Laval, Quebec,

Quebec, Canada GM 7P4

Jacek Chrostowski
Division of Electrical Engineering, National Research Council of Canada, Ottawa, Canada IC1A OR6

(Received 2 December 1983)

We present a study of the evolution to chaos for the acousto-optic bistable device. We numerical-
ly solve the difference-differential equation describing the system which shows excellent agreement
with the experiment. We analyze the influence of noise —additive and multiplicative —en the bifur-
cation sequence and on the onset of chaos. It is shown experimentally that both types of noise create
a gap in bifurcation sequence. In addition we present a comparison between theory and experiment
of the time evolution of the signal.
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I. INTRODUCTION II. CHAOS IN ACOUSTO-OPTiC BISTABILITY

The chaotic or turbulent behavior seen in physical,
chemical, or biological systems which are governed by
deterministic equations has attracted intense interest re-
cently. ' It has been pointed out that chaotic behavior can
occur in an optical bistable system which can be described
by a differential-difference equation. Since then, a
period-doubling route to chaos has been demonstrated in a
hybrid electro-optic and acousto-optic device with delay
in the feedback loop, all-optical passive systems, ' and
single-mode lasers. It is well known that such dynamical
systems exhibiting a continuous instability as a function
of the bifurcation parameter are extremely sensitive to
small perturbations, particularly at the points close to the
threshold of instability.

It has been shown that added noise can lead to a trunca-
tion of the sequence of periods. Experimentally, this
question has been studied in various systems by applying
artificial and experimentally controlled broad-band noise
to the control parameter. In the case of the electro-optic
device, Derstine et al. studied the influence of the shot
noise of their photomultiplier which is intensity depen-
dent, and found some departure from the theoretical
model based on intensity-independent noise.

In optical bistability, however, noise may appear in
both forms: intensity dependent (multiplicative) and inten-
sity independent (additive). In this paper we will consider
the two sources of noise influencing our system —intensity
fluctuations of the laser and bias voltage fluctuations.
They appear in either of the so-named multiplicative or
additive form in the difference-differential equation
describing the system.

In order to see the real influence of these two kinds of
noise, we simulate them by adding noisy voltage with
known characteristics in different places of the loop. In
Sec. II we briefly describe the acousto-optic bistability. In
Sec. III we describe the model used to simulate the effect
of noise. In Sec. IV we analyze the time evolution of the
noisy system in the chaotic region.

Figure 1 shows the experimental layout of our hybrid
acousto-optic bistable device. The He-Ne laser diffracted
light is detected by a photodiode and the signal is delayed
by an amount of rD ——5 psec= 1(h where r is the response
time of the system. This delay results from an intrinsic
delay in the acousto-optic interaction and from the propa-
gation time through several hundred meters of coaxial
cable. The signal is fed to the rf generator (driver) which
produces a voltage on the Bragg cell proportional to the
feedback-signal amplitude, thus closing the loop. Further
experimental details were published elsewhere.

A Gaussian noise generator with a bandwidth of 5
MHz was used as a well-controlled source of noise. This
noise was introduced by two methods. (1) additive —when
fed into the amplifier producing a noisy offset in the loop
and (2) multiplicative —when modulating the intensity of
the laser by driving the second acousto-optic modulator
operating in the linear mode (Fig. 1).

The experimental bifurcation sequence for both multi-
plicative and additive noise was obtained on the oscillo-
scope by means of an electronic window comparator. The
results are illustrated in Fig. 2 for different noise levels.
The relative width of the electronic window allowed us to
obtain a well-defined branching structure while slowly
varying p (x axis). We could even observe the period-8
subharmonic at the lowest noise level. It is therefore near-
ly the null derivatives points of the signal that are plotted
with the Z-axis input of the oscilloscope because the
branches of the pitchfork bifurcations shown correspond
to the regions of the most probable values of the signal.

We can easily observe (cf. Fig. 2) the progressive disap-
pearance of the higher subharmonics with increasing
noise. This general feature is discussed for the
difference-equation case by Crutchfield et al. ' In a simi-
lar manner we can say that the effect of noise in our sys-
tem can be understood as a kind of dynamical average of
the structure of attractors over a range of nearby parame-
ters.
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where X is the normalized voltage at the input of the
acousto-optic driver; p, proportional to the laser intensity,
is the bifurcation parameter, and Xti and A are constants
related to the voltage offset. The solution of Eq. (1) takes
the form

t
X(t)= J e " 'F[X(s rD)—;p)ds,

where

(2)

F(X)= —pn. sin (X—Xii)+m.A, (3)
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FIG. 1. Acousto-optic bistable device.

III. NUMERICAL ANALYSIS
OF THE STOCHASTIC EQUATION

The transient behavior of the noiseless system is given
by the difference-differential equation"

According to this view, the averaging of a periodic or-
bit with adjacent chaotic orbits tends to lower the transi-
tion to chaos. On the other hand, in the case of the tran-
sition from a periodic orbit to the next one, the averaging
does not produce a shift of the bifurcation. In Fig. 3 we
can see an enlargement of the bifurcation from the
period-1 to the period-2 cycle for the following two cases:
(1) when there is no noise added [Fig. 3(a)]; (2) with a
multiplicative noise of amplitude p =0.03 [Fig. 3(b)]. It
appears clearly that the bifurcation point remains globally
unchanged even though a Fourier analysis of the signal re-
veals that the noise substantially reduces the slope of the
growing of the period-2 frequency with the bifurcation
parameter p.

Moreover, we could observe, by studying the evolution
of the Fourier components, that the disappearance of a
periodic waveform for example, (8-P) was preceding that
of its corresponding chaotic waveform (8-C) for both
types of noise. Derstine et al. previously observed such a
phenomenon, but for multiplicative noise only. The
departure from the model developed by Crutchfield
et al. , "which predicts the simultaneous disappearance
of 8-C and 8-P with increasing noise (symmetric gap), can
thus be attributed to the fact that our hybrid system is
described by a delay-differential equation instead of the
nonlinear differential equation of the model.

and in general requires numerical calculations. Solutions
for the similar type of equations appearing in different ex-
amples of bistability have been presented recently. ' Up
until now, as far as we know, there was no attempt to
record experimentally and compare with theory the tran-
sient behavior of the bistable system in the chaotic
domain.

The deterministic evolution given by Eq. (1) is subject
to at least two sources of noise in our experiment: the in-
tensity of the laser undergoes fast 5-correlated fluctua-
tions and the electrical part of the device also produces
white noise. We model these by adding noise terms to the
right-hand side of Eq. (1). The corresponding Langevin
equation takes the form

X(t)+~[(—A +qg, )
dX(t)

dt

—(p+pg2)sin [X(t —rD) —Xe]j,
(4)

where gi, g2 are Gaussian random processes with zero
mean, variance one, and a correlation function given by
6 (t —t') =5(t t'); p and —q control the amplitudes of the
multiplicative and additive noise.

If the overall delay stan is small compared to the
response time ~, the system will end up its evolution into
the steady state governed by the initial conditions and pa-
rameter p. In this case, it shows hysteresis and bistability
in three modes: input intensity variation, feedback gain,
and modulator-bias voltage variation.

If the response time r becomes much faster than the de-
lay ~D, the time evolution can be approximated by a
difference equation. It shows the famous bifurcation se-
quence predicted by Feigenbaum. The difference equation
correctly describes most of the basic features of the bifur-
cation sequence.

In Fig. 4 we present the bifurcation diagram for the
noisy difference equation:

X(t) =m. [(A +qgi) —(p+p~~2) sin [X(t rD) —Xe] J
—(5)

for different additive qg& and multiplicative p(2 noise lev-
els. Comparison with the experimental results (Fig. 2)
shows good qualitative agreement, particularly in the case
of additive noise.

However, the stochastic-difference equation (5) can only
give us a crude approximation of the real experiment.
The differential term in Eq. (1) is responsible for interest-
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FIG. 2. Bifurcation diagram [of tX„Jversus p (the bifurcation parameteri] experimentally obtained for rz ——10'. For the multipli-
cative noise the experimental error associated with the measure of the rms amplitude was of the order of 50%. For additive noise it
was less than 10%%uo. Figure (a) shows the effect of additive noise for different amplitudes q: (1) q =0.0004, (2) q =0.001, (3) 0.005,
and (4) 0.008. Figure (b) shows the effect of multiplicative noise for different amplitudes p: (1) p =0, (2) p =0.01, (3) p =0.04, and
(4) p =0.15. A residual, mainly additive, noise was always present with an amplitude of q =0.0004.



30 NOISE VERSUS CHAOS IN ACOUSTO-OPTIC BISTABILITY 339

with those of the preceding method for the periodic region
and did not seem to present numerical instabilities in the
chaotic region when adding noise. The way we have
modeled the noise in our system and the particular nature
of the noise considered allows us to introduce noise in a
simple manner.

IV. NOISY EVOLUTION TO CHAOS
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FIG. 3. Enlargement of the period-1 to period-2 bifurcation.
Figure (a) corresponds to the situation when there is no noise
added. Figure (b) is for a multiplicative noise of p =0.03.

ing features that a simple difference equation cannot ex-
plain (frequency-locked oscillations, for example). Fur-
thermore, in order to analyze the influence of noise on
chaos on a definite time scale, one needs to consider the
solution of the stochastic-differential-difference equation
(4).

To solve the stochastic equation (4) it would require the
simulation using Monte Carlo techniques. A discrete ver-
sion of Eq. (4) can be obtained following, for example, a
prescription of Sancho et al. ' With this procedure, the
resulting stochastic signal appears to be quite stable and
correct in the periodic region and for low noise amplitude.
However, in the chaotic region, as expected, the signal be-
gan to show numerical instabilities for very low noise lev-

el, resulting from the intrinsic error (of order b, /
) in the

algorithm. In order to increase the precision we used a
second method based on a Runge-Kutta model with error
in order three (b, ). The results are in good agreement

The critical point in the analysis of a noisy chaotic sig-
nal is to distinguish between the effect of noise on the
chaotic state itself and its effect on the stability of the nu-

merical analysis. A simple way to realize this distinction
is to study the probability density of the calculated signal.
Moreover, such an analysis revealed that, as for the differ-
ence case, the global stability of a chaotic attractor is not
perturbed very much by noise. We present in Fig. 5 the
effect of noise (q =0.02) on the probability density for the
chaotic attractor at @=0.78 from which we can conclude
that the chaotic signal nearly behaves the same way, sta-
tistically speaking, in presence of noise.

On the other hand, the time evolution of the signal ap-
pears to be extremely sensitive to noise. It seems, there-
fore, that the exact trajectory of the signal is meaningless
since it is indefinitely single valued or deterministic only
in the ideal case when there is no perturbation on the sys-
tem. In fact, the addition of noise at a very low level is
sufficient to produce a multitude of progressively diverg-
ing trajectories all originating from the same initial condi-
tions. Moreover, even without adding noise, the only un-

certainty related to the numerical analysis was enough to
cause the "deterioration" of the signal. While increasing
the number of calculated points, and therefore the pre-
cision of the analysis, we could observe that the diver-

gence of the trajectories was slightly postponed.
We present at Fig. 6 the superposition of chaotic trajec-

tories calculated with a small additive noise (q =0.001).
This noise induces a progressive loss of the initial condi-
tions so that all trajectories diverge more and more from
one another with increasing time. Of course, this interest-
ing feature is not really surprising since it is related to the
intrinsic nature of chaos. However, one can be very
surprised by the extreme sensitivity to noise of chaos for
numerical and for experimental signal.

The experimental time evolution of chaos (for p, =l)
starting from particular initial conditions was obtained by
using a switching gate in the feedback loop of our system.
The gate was alternately opened and closed by an external
periodic signal, simultaneously triggering the oscilloscope.
We could directly observe on the oscilloscope the superpo-
sition of many trajectories. The results are presented in
Fig. 7 where we can see that for the intrinsic (unavoid-
able) noise level of the system (q =0.004), trajectories
diverge completely inside a time interval of about 20rD
which is of the order of 0.1 msec in our system. Compar-
ison with numerical analysis shows good qualitative
agreement. The experiment also demonstrates a great
dependence of trajectories on fine change of the bifurca-
tion parameter p. It also appears that for a very small in-

crease of p, one could encounter frequency-locked,
period-2 chaos, and some of the harmonics predicted by
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FIG. 4. Bifurcation diagram obtained from the difference equation (5). In (a) we show the effect of additive noise for (1)

q =0.0003, (2) q =0.0011, (3) q =0.0045, and (4) q =0.0083. In (b) we consider the effect of multiplicative noise of amplitude: (1)

p =0.0015, (2) p =0.0025, (3) p =0.02, and (4) p =0.08.
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FIG. 5. Logarithmic plots of the probability density P(X) for p =0.78. One of the curves shown corresponds to the noiseless case;
the other is for an additive noise of amplitude q =0.02. P(X) is a histogram of 500000 points calculated from Eq. (4) and partitioned
in 500 bins. The effect of noise is practically visible only near the peaks where it rounds off the curve.

Ikeda et al. ' appearing and disappearing within a small
interval of time.

V. CONCLUSION

We presented an experimental study of the acousto-
optic bistable device in the periodic and in the chaotic re-
gime with external noise. In the fully deterministic case,
the agreement between theory and experiment is excellent.

The noise was introduced into the system in two ways: by
randomly varying the laser intensity (multiplicative noise)
and by varying the dc offset voltage in the amplifier (ad-
ditive noise). The bifurcation gap develops as the noise
amplitude is increased. In addition, the "transient" chaot-
ic signal experimentally obtained shows good agreement
with the calculated one concerning the sensitivity to noise.
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FIG. 6. Superposition of chaotic trajectories obtained numerically from Eq. (4) with p =0, q =0.001, and for p= 1 and ~D ——10~.
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FIG. 7. Superposition of chaotic trajectories experimentally obtained, just after the feedback loop is closed, and for the background
additive noise level of the system, q =0.0004.
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