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A transit-time broadened swept-gain laser amplifier is investigated theoretically. General values of the
slippage parameter, which measures the relative values of the time of transit of the radiating sources across
the device and the pulse width of the sources, are considered. The sources in this calculation are two-level
atoms, but the result should be directly applicable to the free-electron laser (FEL). Both the linear and
nonlinear operation are considered, and the results are in much better agreement with FEL expeﬁment
than are the corresponding FEL calculations. A formula is found which predicts maximum output power

for all values of slippage parameter.

Recently there has been a renewed theoretical interest in
swept-gain laser amplifiers,! since they have close parallels
in the free-electron laser (FEL).2 In swept-gain laser am-
plifiers, the sources, at any position z, have a time depen-
dence p(t—z/v), where ¢ is time, p is the density of the
sources, and v is the velocity at which the gain is swept. In
cases in which the width of the source, i.e., the width of
p(#), is comparable to the relaxation times of the source,
which is the case in the FEL, the gain process is character-
ized by “‘laser lethargy.”’>* In a lethargic amplifier, long re-
laxation times lead to inefficient radiation and low gain for
the leading edge of the optical pulse. If v=c, where c is the
velocity of light, it has been shown that the gain decreases
asymptotically to zero in the limit of large z independently
of conditions of loss or saturation. Hence, the condition of
gain exceeding losses is unachievable. One can achieve
nonzero gain* by setting v < ¢, where ¢ is the velocity of
light. The trailing edge of the pulse is built up by the spon-
taneous emission by the induced polarization into the vacu-
um. This coherent spontaneous emission has infinite gain,
and compensates for the low gain on the leading edge of the
optical pulse. Hence, a finite overall gain is achieved.

With such a complex radiation process, many of the prop-
erties of the radiating system turn out to be insensitive to
the details of the radiating source. In previous work,>’
two-level atom models, configured to have properties that
are similar to the FEL (i.e., swept-gain configurations!)
have been shown to give results that are largely indistin-
guishable from comparable FEL predictions.” Atomic
models are simpler than the corresponding cases in FEL’s,
and can sometimes give analytic results.® Atomic calcula-
tions are also of interest as a means by which FEL results
that arise through the radiation process can be distinguished
from those due to the novel free-electron gain medium.

In the present work, earlier results are generalized to cov-
. er small-signal gain and energy extraction for finite slippage
parameter.>® In the rest frame of the optical pulse, the in-
dividual radiating sources move at a finite velocity, which
causes them to slip relative to the optical pulse over a time
to. In the atomic models and in the FEL, ¢y denotes the
transit time of the sources across the space-time regime in
which the optical pulse is confined (a light guide®’ is as-
sumed for the atomic case). In addition, the pulse of radiat-
ing sources can have a finite duration uo of its own. The
optical pulse built up from the sources must be zero at any
position z and retarded time w=¢—z/c¢ (7 is time in the la-
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boratory frame) if there are no radiating sources for all
z' <z, u'=t—z'/c. Consider, for simplicity, the case v=c
in which the first radiating source appears at u =0 for all z.
Then the pulse duration is strictly limited to the interval
0<u<puotto. Now follow Ref. 9 in defining a slippage
parameter s =2¢y/mo. Then, as s — oo (uo << ty) the opti-
cal pulse width is determined by ¢, and as s — 0(uo >> to),
it is determined by wo. The limit wo— oo describes continu-
ous pumping. One expects to achieve conventional laser ac-
tion in that limit, which is shown later to be true (not all
cases in which conventional laser gain is expected turn out
to be so straightforward!?).

Now define 1/8=1/v—1/c, and let the atoms arrive sta-
tistically at a position z with a uniform probability over the
interval z/8 < u =< z/B + wo, which is equivalent,!! to a uni-
form pump pulse of duration we. Only novel features in-
volving wo are described here; otherwise the discussion fol-
lows precisely the earlier ones.””” The dimensionless time
reads m=(u+z/B8)/ty, the dimensionless length reads
{=z/a'ty, where a' is defined in Eq. (6.4) of Ref. 12, and
the electric field (measured in units of the Rabi frequency)
is made dimensionless by multiplying by ¢y,. Expand the
electromagnetic field as a linear superposition of super-
modes," denoted fi(n) exp(gx{), which are pulses of fixed
temporal shape that grow exponentially in {. Then keep
only the term with highest achieved gain g, which should
dominate for large ¢, and drop the superfluous index k.

In dimensionless units,’ the transit time is unity, the
duration of the pump pulse is no=2/s, and the supermodes
are defined by the equation

1 df 1 7 ' '
- t+af =— , , 1
Bo dm s Mo J:'I sind(n, n")d m
where
’ K " 1"
6Cn. )= [ fn"yam" . @)
n

Equation (1) is obtained by generalizing the sine-Gordon
equation (see, e.g., Ref. 7) and then substituting the super-
mode.>7 In Eq. (1), the small-signal regime is obtained by
setting @ =g, where g is the achieved gain, and expanding
the sine to first order in the angle [there are factors left out
of Eq. (1) that cancel when this expansion is made’]. The
nonlinear regime is obtained by letting a = x, where « is the
loss [the factors left out of Eq. (1) are unity in this case’].
Restricting the discussion to 8y > 0(v < ¢), where B is the

3336 ©1984 The American Physical Society



RAPID COMMUNICATIONS

30 INFLUENCE OF SLIPPAGE PARAMETER ON SWEPT-GAIN . .. _ 3337

scaled value of 8, sets the limits of integration in Eq. (1) to

0<mn<mo =0 Nu="
<l m<n<l M=m=mo Mu=n
I<n<l+mo wm=7m—m0 Mu=
n<1 =0 M ="n
Mo > 1 l<m<me m=n-1 M=m
n<n<ltne wm=n—-1  nu=mno

The electromagnetic field must vanish at the trailing edge,
since there are no radiators that can give rise to a field at
this time. Hence,

fn=14n)=0. 3)

In the small-signal regime, Eq. (3) makes f (%) an eigen-
vector of BEq. (1), whose eigenvalue is a =g. In the non-
linear regime, Eq. (3) fixes the initial value f(n=0). Ex-
cept for n=0(s — o), there seem to be no simple closed
solutions® or useful transformations® to these equations, but
the results are readily found numerically. The small-signal
results are given in Fig. 1. There the achieved gain g is
plotted as a function of the velocity B¢ for mo=0, 0.50,
..., 2.50 (the case ny=0 is determined analytically). As
slippage decreases (mo increases) the optimum gain de-
creases, shifts to larger 8o, and the range of By over which
near optimum gain is found increases. Since B¢p— oo corre-
sponds to v— ¢ (i.e., the scizzor velocity of the gain ap-
proaches the speed of light), Fig. 1 shows a passage to con-
ditions described by conventional laser theory. For ng>> 1
the optimum gain approaches g = 1/2n0, which is the value
expected from conventional gain analysis!* of a transit-time
broadened laser amplifier.

The nonlinear calculation determines the extraction effi-
ciency ¢, where

1 no 1 ’ ’
=— 1—cosf(mo+n', dn’ .
1= g0 f, 1= coso (o o', ) 1a

In Fig. 2, the efficiency is plotted as a function of 1/8,.
The plot is laid out to facilitate comparison with Fig. 5 of
Ref. 9, insofar as the vertical axis is proportional to the out-
put power of the device and the horizontal axis is propor-
tional to the desynchronism.? The case computed is s =1,
which corresponds approximately to the case s =1.2 in Ref.
9; uncertainties in experimental pulse shapes make more
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FIG. 1. Achieved gain as a function of gain velocity [inversely
proportional to delay (Refs. 4-7) or desynchronism (Ref. 8) in
FEL problems]. Cases are (top to bottom) my=0(s =o0), mg
=0.5(s =0.25), mg=1(s=0.5), mo=15(s=1.333), m=2.0(s
=1), no=2.5(s =0.8).
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FIG. 2. Power tuning curve: extraction efficiency ¢ vs 1/8 (in-
creasing to left) for x=0.5, 0.75, and 0.875g a5 (& max is the max-
imum of the curve s =1 of Fig. 1). Vertical axis is proportional to
power out, horizontal axis to desynchronism (negative by conven-
tion in the operating region of the FEL).

precise comparisons irrelevant. The different values of the
losses are labeled relative to gmax, Where gmax i the largest
gain (as a function of B, for constant s) achieved in Fig. 1.

The various values of the loss span the likely operating
conditions of the FEL,? and yield tuning curves with similar
shapes. These curves are in good agreement with the shape
of the experimental curve reported in Fig. 5 of Ref. 9, and
are in substantial disagreement with the shape of the
theoretical curve. The likely reason for the disagreement
between FEL and atomic theory lies in the instabilities!® 16
that are predicted by FEL theory in regions where the
theory and experiment disagree (see, e.g., Fig. 6 of Ref. 9).
These instabilities cannot occur in the atomic case, and are
an example in which the novel character of the free-electron
medium might give results that differ from the atomic
model. The theoretical findings in Fig. 2 suggest that these
instabilities are not occurring in this experiment.

In the limit of zero slippage, Egs. (1) and (2) have a solu-
tion in terms of a time-independent field, and the atomic
model becomes formally analogous to the molecular-beam
maser.’* In that case, {ma, the maximum value of { (as a
function of By for constant s), can be written as

Lmax = Sil’12 ISinc_ ! (K/gmax)1/2] » (4)

where sinc(x) =sin(x)/x. Equation (4) is found to fit to
within about 10% the maxima of Fig. 2, several other test
cases {mostly at s =0.75) and the s = curve in Fig. 2 of
Ref. 5 (there the efficiency is denoted 7, and k =0.43«/
gmax). Hence, Eq. (4) seems to apply approximately for all
values of slippage. As an estimate of output power it is far
superior to conventional laser formulas that are not even
qualitatively accurate.® The threshold g =« fixes the end
points of the power tuning curve. The curve { vs B is
roughly symmetrical, which allows an estimate of the value
of By that gives {max. Since Eq. (4) gives {max, the power
tuning characteristics for all s can be estimated from small-
signal calculations.

In summary, the effect of finite slippage parameter in
swept-gain amplifiers has been considered. The small-signal
gain is seen to approach continuous-wave (cw) operating
values as slippage parameter decreases, which is expected.
The nonlinear results are in better agreement with FEL ex-
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periment than are the FEL theoretical results. This suggests
that the instabilities'> ! that are predicted in FEL theory,
but which cannot occur in the atomic case, have not yet oc-
curred in the experiment. Finally, the atomic case is seen
to reduce to molecular-beam maser rather than to a conven-
tional laser in the cw limit. This is reasonable since the
swept-gain model used here, the molecular-beam maser,
and the FEL are dominated by phase-coherent interactions,
while conventional lasers are not. The energy extraction

formula from theory of the molecular-beam maser is found
empirically to give reasonably accurate results for arbitrary
values of the slippage parameter. This permits an estimate
of device performance from a knowledge of small-signal
gain.
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