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We derive inequalities for the ground-state energy of N bosons or fermions in the two-body confining

potential ¥ (x,y) =ylx—ypl.
correct.

In a paper,' Muriel claimed that the quantum problem of
N bosons in the confining potential ¥ (x,y) =vy|x —y| was
exactly solvable. Its solution is relevant to studying stellar
dynamics of halo stars and also to the large-N limit of one-
dimensional models of baryons with N quarks. This result
was further quoted in a review article by Perelomov? as one
of a few exactly solvable N-particle problems.

In this Comment we derive inequalities for the ground-
state energy which disagree with the value obtained by Mu-
riel.! The Schrodinger equation considered in Ref. 1 is
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We shall set a lower bound on the eigenvalues of this
equation. Let us first find a solution for N =2 in terms of
the Airy function Ai. By introducing z = (m3y13/523)

x (x,—x1), BEq. (1) in the c.m. system is reduced to
d2
L el g @)|u=0 . @

Equation (2) represents two equations, the one for z >0
and the other for z < 0. Matching the derivative of the
solutions, we obtain for the lowest eigenvalue
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where uo is the lowest zero defined by Ai'(—pu)=0. The
value (3) is different from Muriel’s value for N =2. Now
we can proceed to obtain the Dyson-Lenard® inequality for
the ground-state energy of the N -particle system. Rewriting
the Hamiltonian of the system as
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we obtain a lower bound in the form
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By using Eq. (3) we find that
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We comment on why the results on this problem, derived previously, are in-

and therefore the lower bound is
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For large N, the leading term behaves as
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This result clearly disagrees with the value obtained by Mu-
riel! for the bosonic case, Emurie= 0.4IN3(y %%/ m) /3.

Let us comment on why the method used in Ref. 1 for
solving Eq. (1) is not correct. If we assume the Baxter for-
mula

zlx,—x,|—~ E(N 2j+1)x; , )
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which is valid only in the region x; < x;<x3< - - <X,
we have to solve the Schrodinger equation with an appropri-
ate boundary condition. If we use the factorization assump-
tion

plxy, oo xn) =ga(x) - o dv(xw)

we have to solve the Schrodinger equation for (x;) with
the condition x;-1 < x; < x;+1. From here it follows that ¢;
will be a function of x;—; and x;+1, €,=¢;(x;~1,x;+1) and
¥;=;(x;-1,x,x;+1). This contradicts the factorization as-
sumption. The solutions of Eq. (1) are not factorizable.
This is also clear from the (c.m.) solution for N =2:
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Although the model is not exactly solvable, in the large-N
limit we can find an approximate value for the ground-state
energy. We shall use the Bohm-Pines* collective field as
elaborated by Jevicki and Sakita.”> The N-particle system in
the large-N limit is described by the particle density p(x).
The energy functional is given by
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where the first term is a Weizsicker term® due to the kinetic
energy of the particles. The ground-state energy of the sys-
tem is obtained by minimizing the functional (11) with the
condition

fp(x)dx=N . 12)
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It is not possible to obtain the solution of 8E(p)/dp=Xx
analytically (X is a Lagrange multiplier) and therefore we in-
vestigate this problem numerically.
We have found that the numerical bounds on the
ground-state energy are
?ﬁ |1/3
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It is also clear from our numerical investigation that the
value from Ref. 1 is incorrect because it lies below the lower
bound.

A similar analysis can be extended to fermions interacting
via the gravitational potential. Rearranging the Hamiltoni-
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we have written H as a sum of N similar Hamiltonians, each
representing (N — 1) independent particles j 3 / in the field
of a fixed particle (namely, the ith particle). The ground-
" state energy of H, is given by distributing N —1 fermions
over the lowest N — 1 levels of the Hamiltonian

.
I N=D [xl 15)

The eigenfunctions are Airy functions and the spectrum is
given by
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Ai'(=p,)=0, forn=0,1,2,..., an
for even levels, and
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for odd levels. Note the difference between Egs. (17) and
(19), which is due to matching the solutions for even and
odd levels. Now we can write the bounds
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for N even. These two formulas have the same large-N
behavior. We can perform an approximate evaluation of
the sums in Egs. (20) and (21) by using an asymptotic ex-
pansion of Airy functions. The zeros of these functions are
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Equations (22) and (23) are approximately valid for large n,
but these are also a good approximation for small » (the or-
der of a few percent).

Using the Euler-MacLauren summation formula, we ob-
tain the lower bound for the system of N fermions:
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Let us mention that the problem of the two fermions in
the confining potential can be solved exactly, and the result
for N=2is
1/3
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Equation (25) also disagrees with Muriel’s value for fer-
mions.

In spite of the fact that the problem is probably not exact-
ly solvable, the leading term in the large-N expansion for
the ground-state energy of confined fermions can be deter-
mined exactly by the collective-field method.®! By minimiz-
ing the functional
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we obtain
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in agreement with the bound given by Eq. (24).

From the results given by Egs. (8) and (24) for both sys-
tems, bosonic and fermionic, we may conclude that these
systems are not extensive and therefore cannot be treated
thermodynamically.

We would like to thank A. Mikelic for his invaluable con-
tribution to this numerical investigation.
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