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%e derive inequalities for the ground-state energy of N bosons or ferrnions in the two-body confining

potential V(xy) =ylx —y l. We comment on why the results on this problem, derived previously, are in-

correct.

In a paper, ' Muriel claimed that the quantum problem of
N bosons in the confining potential V(x,y) = y lx —y l was

exactly solvable. Its solution is relevant to studying stellar
dynamics of halo stars and also to the large-N limit of one-
dimensional models of baryons with N quarks. This result
was further quoted in a review article by Perelomov as one
of a few exactly solvable Ã-particle problems.

In this Comment we derive inequalities for the ground-
state energy which disagree with the value obtained by Mu-
riel. The Schrodinger equation considered in Ref. 1 is

d 2

, +y $ lx, -x, l y=E(N)y .
2m, i dx;

We shall set a lower bound on the eigenvalues of this
equation, Let us first find a solution for N = 2 in terms of
the Airy function Ai. By introducing z = (m' y' //r )
x (x2 —xt), Eq. (1) in the c.m. system is reduced to

, +lzl — „,„,E(2) y=o .z' (2)

Equation (2) represents two equations, the one for z & 0
and the other for z & 0. Matching the derivative of the
solutions, we obtain for the lowest eigenvalue

A. 2/3 2/3

E;„(2)=,/, p, p, (3)

where p, a is the lowest zero defined by Ai'( —p, ) =0. The
value (3) is different from Muriel's value for N =2. Now
we can proceed to obtain the Dyson-Lenard' inequality for
the ground-state energy of the N-particle system. Rewriting
ihe Hamiltonian of the system as

and therefore the lower bound is

(N) N(N —I) E (2) N(N —I)

For large N, the leading term behaves as

2 2'1/3

E;„(N)~ N /'
2
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m
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This result clearly disagrees with the value obtained by Mu-
riel' for the bosonic case, EM„„,~= 0.49N / (y /r /m) '/ .

Let us comment on why the method used in Ref. l for
solving Eq. (1) is not correct. If we assume the Baxter for-
mula

$ lx, —x/I = —$ (N —2i+1)x, , (9)

whiCh iS valid Only in the regiOn XI ( x2 4 X3 ( ' ' 4 xN,
we have to solve the Schrodinger equation with an appropri-
ate boundary condition. If we use the factorization assump-
tion

$(xt,x2) —Ai((my//r )'/ lx2 —xrl —pa) (10)

4(xt, . , xtv) = 4r(xr) 4/v(x/v)

we have to solve the Schrodinger equation for P(x;) with

the COnditiOn x; l & x; (x;+i. From here it follOwS that e;
will be a function of x; r and x;+ t, e; = e;(x; r, x;+ t) and

Q;=re;(x; t,x;,x;+t). This contradicts the factorization as-
sumption. The solutions of Eq. (I) are not factorizable.
This is also clear from the (c.m. ) solution for N = 2:
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we obtain a lower bound in the form
N

E;„(N)=inf(H) ~ $ (H;, )
I (j

By using Eq. (3) we find that

8 2/3 2/3
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(4)

where the first term is a %eizsacker term due to the kinetic
energy of the particles. The ground-state energy of the sys-
tem is obtained by minimizing the functional (11) with the
condition

p(x)dx = N (12)

Although the model is not exactly solvable, in the large-N
limit we can find an approximate value for the ground-state
energy. We shall use the Bohm-Pines collective field as
elaborated by Jevicki and Sakita. 5 The N-particle system in

the large-N limit is described by the particle density p(x).
The energy functional is given by

"p'(x)'
E(p) = ' dx+ — p(x) lx —y lp(y)dx dy8m" p(x) 2"
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It is not possible to obtain the solution of BE(p)/Bp= X

analytically (A. is a Lagrange multiplier) and therefore we in-

vestigate this problem numerically.
We have found that the numerical bounds on the

ground-state energy are

2 2
r 1/3

0.5095N
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& J&;, 2(N —1)m 2
= $H;, (14)

we have written H as a sum of N similar Hamiltonians, each
representing (N —1) independent particles j A / in the field
of a fixed particle (namely, the /th particle). The ground-
state energy of H, is given by distributing N —1 fermions
over the lowest N —1 levels of the Hamiltonian

p 'y

2m (N - I) 2
(15)

The eigenfunctions are Airy functions and the spectrum is
given by

1/3 r ' 2/3t2 y
2m (N —1) 2

(16)

(13)
It is also clear from our numerical investigation that the
value from Ref. 1 is incorrect because it lies below the lower
bound.

A similar analysis can be extended to fermions interacting
via the gravitational potential. Rearranging the Hamiltoni-
an

(22)

2/3

r

( + ~ )2/3 (23)

Equations (22) and (23) are approximately valid for large n,
but these are also a good approximation for small n (the or-
der of a few percent).

Using the Euler-MacLauren summation formula, we ob-
tain the lower bound for the system of N fermions:

2/33 5/3 g 2 2
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i
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m

(24)

Let us mention that the problem of the two fermions in
the confining potential can be solved exactly, and the result
for N =2 is

f 2 2

E;„(N=2)= Po
m

(25)

Equation (25) also disagrees with Muriel's value for fer-
mions.

In spite of the fact that the problem is probably not exact-
ly solvable, the leading term in the large-N expansion for
the ground-state energy of confined fermions can be deter-
mined exactly by the collective-field method. By minimiz-
ing the functional

for N even. These two formulas have the same large-N
behavior. We can perform an approximate evaluation of
the sums in Eqs. (20) and (21) by using an asymptotic ex-
pansion of Airy functions. The zeros of these functions are

' 2/3
7r

( + 3 ) 2/3
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for even levels, and
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(18)
we obtain

(26)

Ai( —P,„)=0,n=0, 1, 2, . . . , (19)

for odd levels. Note the difference between Eqs. (17) and
(19), which is due to matching the solutions for even and
odd levels. Now we can write the bounds

' ~ ' 1/3

Eo'(N) =
28( 7r

= 0.654N /
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for N odd, and

EE
2 m(N —I)

1/3 (N —2)/2

n 0
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E;„(N)~ — y'/' g (P,„+p,„)
n 0

(20)

(21)

in agreement with the bound given by Eq. (24).
From the results given by Eqs. (8) and (24) for both sys-

tems, bosonic and fermionic, we may conclude that these
systems are not extensive and therefore cannot be treated
thermodynamically.

We would like to thank A. Mikelic for his invaluable con-
tribution to this numerical investigation.
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