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The Laplace-transformed Heisenberg equations of motion are resummed in such a way that the resulting
iterative series expansion of any operator is given in terms of exact perturbed operator self-energies. We
show how to incorporate this result into a recently introduced Liouvillian Green’s-function and self-energy
approach to nonequilibrium statistical mechanics. The spontaneous emission of a two-level atom is dis-
cussed as a simple example of this new resummation technique.

The behavior of nonequilibrium many-body systems is of
considerable current interest. Quantum field-theoretic
Green’s functions and self-energies are important tools in
calculating this behavior; however, standard temperature-
time Green’s-function perturbation techniques are, in gen-
eral, inapplicable since they depend on specific properties of
thermal equilibrium.! Recently, a new approach which com-
bines Green’s-function techniques with a systematic use of
the Liouvillian and Liouville-space methods has been shown
to be well suited to the development of nonequilibrium sta-
tistical mechanics.2 This Liouvillian Green’s-function and
self-energy theory leads to a systematic procedure for the
calculation of the dynamics of propagation, to arbitrary
times ¢ > 0, of correlations which are presumed known at
t=0.

In the Liouvillian Green’s-function approach one uses
Laplace-transform techniques to convert the Heisenberg
equations of motion into coupled algebraic equations and
then defines self-energies 3,(z) for the various excitations
of the system.> It is important to note that these self-
energies 2,(z) are not the same as the usual self-energy su-
peroperator which results from the decomposition of
(s+ i), where .Z is the Liouvillian, into a diagonal and
nondiagonal part; rather, the 3,(z) also include environ-
mental contributions arising from the nondiagonal part of
(s+i.2)"! (see Ref. 2 for further discussion of this point).

In Ref. 2 these generalized self-energy functions were cal- |

culated in a perturbation expansion in which each term
depends on the unperturbed poles (eigenenergies) of the
various operators. A problem can arise when attempting to
solve certain problems using this technique. For example,
if one calculates the resonance fluorescence (Mollow) spec-
trum* of a two-level atom driven by a strong monochromat-
ic field, using the method of Ref. 2, one finds that the
linewidths of the three-peaked emission spectrum do not
come out correctly. This can easily be shown to be directly
attributable to the fact that the Liouvillian Green’s-function
approach of Ref. 2 is a perturbation expansion in terms of
the unperturbed poles. In this paper we show that it is possi-
ble to improve the series expansion for 3,(z) by resum-
ming the Heisenberg equations of motion in such a way that
the new self-energy functions 3,(z) are given by a pertur-
bation expansion in which each term depends on the exact
perturbed operator poles. This resummation procedure al-
leviates the aforementioned problem and the resulting, im-
proved, Liouvillian Green’s-function technique can then be
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applied to other many-body problems.

This exact resummation of the Heisenberg equations of
motion, though fairly simple, does not seem to have been
done before in the way which is presented herein. It
amounts to an exact (quasiperturbative) decomposition of
the resolvant into diagonal and nondiagonal parts in the
sense of van Hove.’ Such a decomposition is also achieved
in the various projection operator methods;® however, as
discussed in Ref. 2 the present Liouvillian Green’s-function
approach has the advantage of explicitly including environ-
mental effects in the self-energy functions. In other words,
the present formalism fully incorporates the quantum sta-
tistical effects present in many-body systems. An explicit
example of the usefulness of the inclusion of environmental
effects in the self-energy is presented in the second paper of
Ref. 2 where the line shift and width of a two-level atom in
a finite-temperature radiation bath is derived.

Any operator {, satisfies the Heisenberg equations of
motion

i8, O ()=1 O,(1)Hl=% 0.(1) , 1)

for H the total Hamiltonian (assumed time independent)
and . the associated Liouvillian (super) operator. We as-
sume the existence of a linearly independent operator basis
B, (1) such that the evolution of #,(¢) may be expanded
in terms of this basis:

L O(1)=id, O, (1)=3 c(a|lm)B, , 2)

or, more generally,
i8,By=3,c(nlm)B, . -3
m
The c¢-matrix elements ¢(n|m) contain the dynamics of the
system. We rewrite Eq. (3) as
i9,B,=€,B,+3 c(nlm)B, , 4)
m

where €= c¢(n|n) is usually chosen such that
-fo B,=¢€,B,= [BmHO]
for Hy the unperturbed part of H and the prime on the

summation excludes m = n. Taking the Laplace transform,
where’

LG =F(o)= [ ar (e,
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gives

(s+i€,)B,(s)=B,(0)+ (=) c(nlm)B,(s) . Q)

The standard approach?3 to using Eq. (5) is to iterate the
expansion in a power series in the c(n |m), in other words,
substitute the expansion for B,(s) analogous to (5) into
the right-hand side of (5), and so on. This gives a pertur-
bation expansion for the B,(s) in terms of the unperturbed
poles €, and initial values B,(0) and in the Liouvillian
Green’s-function approach also leads to the aforementioned
expansion for the self-energies in terms of unperturbed
poles.

Here, however, we shall proceed differently. Add to both
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sides of Eq. (5) the term vy,(s)B,(s) where v,(s) is, as
yet, undetermined:

[s+i€y+y,(s)1B,(s)=B,(0)+ (=) 3 c(nlm)B,

+vy.(s)B,(s) ,
or
- _ B,(0) va($)B,(s)
Ba(s)= s+ie,+vy,(s) s+ie,+y,(s)
(_1) ’ =
stie,+yn(s) 2,,, c(nlm)Bn(s) . (6)

Next, iterate this expansion [defining ie,+7v,(s)=iE,(s)]

_
B(s)= B,(0)  v,(s)B, RCHIY c(nlm)B,,,(O) (=) 2, c(nlm)yn(s)By
" s+ iE, s+ iE, s+ iE, s+ iE, s+1E s+ iE,
(=)? « cnlm)c(m|l)B,
s+ iE, < s+ iEp

and separate out of the last term the contribution for /=nand /# n. Then

5 _ B.(0) B_ e clnlm)c(mln) (—1) ,c(n|m)B,,,(0) (=) < c(nlm)ym(s)B,
B,= S+iEn+s+E va(s)+(=1i) Em: s+ iE, S+IE s+ iE, s+1E E s+ iE,
(=i)? wx c(nlm)c(m|) B,

s+iE, ‘3 s+ iE, ’

where the star on the summation implies that none of the summation indices are equal.

™

This process can be continued in-

definitely and we shall just write down the third-order term as an example:

5 - B0 B, |

n

ya(s)+ (=2 3r clalmelmln) 4

3 c(nlm)c(mll)c(lln)]

s+ iE, s+E1 - s+ iE, “  (s+iEy) (s+iE)
(_,) ,c(nlm)B,,,(O) (=) ,c(n|m)B,,,[ o c(mlDc(lm)
s+1E 2,,, s+ iEy, s+tE 2 s+ iE, ly'"(S)+( 2 2, s+ iE

+ (—i)? 5 cnlm)ec(mlDB(0) | (=i)? 3° clnlm)c(m|Dy,(s)B,
s+iE, 4, (s+iEy)(s+iE) s+iE, m,l (s+iE,)(s+iE)

L (=0 3* cnlm)e(m|DeUlk)By ®
s+iE, mlk (s+iE,) (s+ iE;)

It is now clear that if we define
= _ < Y * C(n|m1)"’c(m1_1|n)
a()==3 (=D 1;”,,,1 (st iB) -~ Gt i) &

all terms on the right-hand side which have any y,,(s) in the numerator are zero. We then have the exact result in terms

of the true operator self-energies:

c(nlmy) - - -

5B

2(—1)’

c(m,_liml)Eml

_ B.(0) (=0

" S+1E S+IE =1

where the iterative T operation is defined by the explicit ex-
pression in terms of ‘‘starred’’ summations over distinct in-
dices.

Several comments are in order. First, this procedure has
effected an explicit separation of (s + i.#)~1B,(0) into a di-
agonal part, [s+ iE,(s)]171B,(0), and a nondiagonal part.
Next, it should be noted from Eq. (9) that y,(s) is given
implicitly in terms of all other y,(s) and, therefore, ex-
pression (9) is not just the usual perturbation series in

(st iEp) -

(s+iEy) — s+iE, s+ iE, Em c(nlm)B, , @10

[
powers of the c-matrix elements. The y,(s) can be com-
puted iteratively by choosing some initial y%(s) for the
right-hand side of Eq. (9) to get y}!!(s) and then iterating.
If one is judicious enough in choosing the y,[,‘”(s) in any
given problem, the higher-order /=3,4 ... terms may be
made small. This is analogous to Dyson’s equations where
one chooses a self-energy ansatz in some particular way
(i.e., summing all ring or ladder diagrams) so that the
resulting expansion contains the useful physics. Dyson-type
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resummation methods are extensively used in many-body
calculations (see, in particular, Ref. 1 and Breene, Ref. 6).
The ‘‘starred’’ summation excludes all terms in which any
two of the summation indices are the same—these are in-
cluded in the definition of the y,(s). It is important to
realize, however, that in the iteration the same basis opera-
tor can be arrived at via different commutators. For exam-
ple, a typical result might be c(1]2)c(2|4)B4(0) or
c(1]3)¢c(3|4) B,(0)—this will be clear in the example given
below. Finally, in order to incorporate these results into the
Liouvillian Green’s-function approach and to calculate en-
vironmental effects as described in Ref. 2, one needs only
J

clalbye(byla)  clalbl)e(s) la)

clalbin)e(binla)
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to replace the €, defined there by E,(s) and drop all terms
in which the c-matrix elements have the same indices.

The spontaneous emission of a two-level atom illustrates
our results nicely.23? The Hamiltonian is given by

H=«a'a+ 3 b{by+i 3 My\(b) +b)(a—a") , (D
A A

where a is a Fermi annihilation operator for the two-level
atom, b, an annihilation operator for photons of wave vec-
tor k (polarization index suppressed), and A = |k| (see Ref.
3 for further detail). From Eq. (9) the order /=2 contribu-
tion to y,(s), for example, is

[2](S)=
Ye % s+ iEy s+iE
A by

Ta and

clalb)y=—c(b\la)=

where n=a

€. =\, € t=

-\, E =
A by by

— Aty (s)

Note that for pure boson operators such as b{ or b; by the
corresponding y(s) is identically zero, whereas for mixed
operators such as bI n this is not so. If we now choose as
our initial iteration E. + = — A\ and use the continuum limit

byn
> ME— ,Bf d\\, where 8= (2|d|%?/3%) for d the di-
pole matrix element and A is a high-energy cutoff, Eq. (12)

gives

A
[21(g) = 1 1
va® (s) Bfo dx ) n\+s—ixl
2
—Bsln S:A . a3)

If we look at the pole approximation to Eq. (13) where
s+i€;+y.(s)=~s+ik+iA+T ,

we have I'=Bkm and A= —2B8xIn(A/k), the usual
Weisskopf-Wigner decay and improved log-divergent nonre-
lativistic Lamb shift. The logarithmic branch cut behavior
of y,(s) in Eq. (13) is intimately connected with the

- , (12)
s+ IE”)T"

clalbl)=c(b)la)=—Fc(albin)=%c(binla)=—iM, ,

Paley-Wiener theorem and affects both the very short and
the very long time behavior.> To illustrate our earlier point
about arriving at the same operator basis element via dif-
ferent commutators, one may easily check that a T(0) arises
at second order from' c(alb Ye(byla"), c(alb))c(b]la),
and c(alb,n)c(bynla’).

For the spontaneous emission line-shape calculation just
presented, it is clear that we did not need to use this new
resummation procedure; however, for more complicated
problems, especially for those where environmental effects
are important, it is anticipated that the improved Liouvillian
Green’s-function approach will prove useful. As mentioned
earlier, an important advantage of the derivation given
herein is that it allows one to obtain approximations to the
exact equations of motion in a manner similar to that used
when approximating the self-energy via Dyson’s equation.
One can replace all ie, by the corresponding approximated
iE,(s) calculated using Eq. (9) and truncate the equations
of motion at some given order. This approach also seems
well suited for computer calculations.
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