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Sum rules and static local-field corrections of electron liquids in two and three dimensions
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The dielectric functions of electron liquids which take into account short-range electron-electron
cor'relations via the static local-field corrections are examined in the light of the frequency-moment
sum rules. The formulation is given for degenerate as well as classical electron liquids in arbitrary
(d) spatial dimensions, which is suitable for comparison between the two- and three-dimensional
cases. By using the virial equations of state it is shown that such dielectric functions cannot satisfy
the compressibility sum rule and the third-frequency-moment sum rule simultaneously. In the de-
generate case, the plasmon, single-pair, and multipair contributions to the sum rules are analyzed,
and the reason for this incompatibility is discussed.

I. INTRODUCTION e~(q, co) =1 u„(q)X—'d'(q, ~) . (l.lb)

Xq(q, co)
Xg'(q, co)= o (model),

1+ud(q )G(q)Xd(q, co)
(1.1a)

where the spatial dimensionality is indicated by the suffix
d, u~(q) is the Fourier transformed Coulomb potential
e lr, and Xd(q, co) is taken to be the Lindhard response
function X~(q, co) for the degenerate case and the Vlasov
response function Xd(q, co) for the classical case. By defi-
nition, the dielectric function is given by'

In the study of the dielectric properties of electron
liquids, several exact relations which do not require a
small value of the coupling constant in atomic units are
known. ' Such relations are useful since the perturbation
theory is not reliable in the strong coupling regime, where
the dimensionless coupling constant is larger than unity.
The frequency moment sum rules provide some of the ex-
act boundary conditions which the dielectric response
function of electron liquids must satisfy. ' Not only are
these sum rules used in testing the validity of the various
theoretical models but are powerful as guiding principles
to find satisfactory response functions in the theoretical
formulation of electron liquids. ' In this paper we con-
sider the approximation scheme beyond the random-phase
approximation (RPA) in which short-range electron-
electron correlations are taken into account via the static
local-field correction G(q). Physically, the function G(q)

'

may be interpreted as the screening charge density (in
units of the electronic charge) in the Fourier space, and
expresses the degree to which the dielectric response devi-
ates from the RPA. ' " There are at least four cases in
the strong coupling regime which are experimentally or
observationally accessible: (1) degenerate case in three di-
mensions (bulk-metallic electrons), ' "' ' ' (2) degenerate
case in two dimensions (silicon-inversion layers), ' " (3)
classical case in three dimensions (ions inside large plan-
ets, white dwarfs, and neutron stars; inertially confined
thermonuclear fusion plasmas), ' ' " ' ' and (4) classical
case in two dimensions (electrons on the surface of liquid
helium). ' ' ' ' ' ' In all these cases the screened response
function in such a scheme is assumed to have the form

Various approximate schemes lead to a screened response
function of the form (l.la). For degenerate electron
liquids in three dimensions, many models since the early
works by Hubbard' and by Singwi, Tosi, Land, and
Sjolander (STLS) reduce to this form. ' "' ' ' In two di-
mensions, Jonson studied the STLS scheme. ' For classi-
cal electron liquids there are also many model screened
response functions of this type. ' ' " ' ' We examine the
dielectric function (l.lb) with the screened response func-
tion (l. la) in the light of the compressibility sum rule and
the third frequency moment sum rule. We find that the
form (1.1) cannot satisfy both sum rules simultaneously in
the long wavelength limit. Using the virial equation of
state, we explicitly give two constraints on the static
local-field correction from these sum rules in terms of the
dimensionless coupling constant [r, or I of (2.3) and (6.6),
respectively] derivative of the interaction energy, and
show that these two constraints are incompatible. We
also consider the weak coupling limit, in particular, and
express these two constraints in the form of the coupling
constant (r, or I ) expansion, using the RPA equation of
state.

For degenerate electron liquids in three dimensions, a
similar conclusion has been reached by Vaishya and Gup-
ta, ' who show that the two requirements on G(q) from
these sum rules lead to the violation of Ferrell's condition
on the ground-state energy. ' However, our form is
simpler and more transparent than theirs because of the
use of the virial theorem. 'Also Kugler@ ' has studied the
constraints from these sum rules on the dynamic local-
field correction G(q, co).

In the degenerate case in two and three dimensions, we
further discuss. the reason for the impossibility of satisfy-
ing the two constraints simultaneously by analyzing the
plasmon, single pair, and multipair contributions to the
sum rules.

The paper is organized as follows. We begin with de-
generate electron liquids. For the sake of generality we
shall formulate the problem in an arbitrary number of (d)
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spatial dimensions before reducing to two and three di-
mensions. In Sec. II, we give definitions of various physi-
cal quantities in degenerate electron liquids in d dirnen-
sions. In Secs. III and IV, we derive the two constraints
on the static local-field correction from the two sum rules
in the long-wavelength limit, and give the expressions of
these constraints in the high-density limit. In Sec. V, we
analyze the sum rule contributions of three types of densi-
ty fluctuation excitations in the long-wavelength limit,
and discuss the reason why the two constraints are dif-
ferent. Then we consider the classical electron liquids in
Sec. VI. Surnrnary and discussions are given in Sec. VII.
In the appendixes, we give the calculational details of the
exchange energy, the frequency moment sum rules for the
Lindhard function, together with the plasmon dispersion
in the RPA and from the co sum rule in d dimensions,
and'discuss the plasmon dispersion for classical electron
liquids.

II. DEGENERATE ELECTRON LIQUIDS
IN d DIMENSIONS

q 21—(1/d )it 1 /2[ I (
1 d + 1 ) ]1/dn 1/d

(3 n)', d=3
QF= '

(2m.n)'/, d =2 .

(2.5a)

(2.5b)

(2.Sc)

The Fermi wave number and the mean particle distance
are related:

qF 1——/ctd r,ati,
where

ag =2" ' '[I'( —,
' d+1)]

(4/9m)'/', d =3

2—1/2

(2.6)

(2.7a)

(2.7b)

(2.7c)

(iv) Fourier component of the Coulomb potential v~(q):
Using the formula,

fd rf(r rl)

=S~ 1 f dr r" ' f d8(sin@) f(r, rlr cos5)

(2.8)
Consider a system of electrons of total number X at

zero temperature in a d-dimensional region V=I. , in-
teracting with the Coulomb potential e /r. Note that V
actually stands for the area for d =2. A uniform neutral-
izing positive charge background is assumed. In this sec-
tion we define fundamental physical quantities for this
system.

(i) Mean particle distance ro. The mean-particle dis-
tance is defined as

one obtains

vd(q)= f d"r e
r

2d —l~(tf —) )/21 (
1 (d —1 ) )e q d:—Q e q

(2.9a)

n d r=Vdron =1, (2.1)
P &Pp

where d r is the volume element in d dimensions,
Vd =Sd /d=ir /I ( —,

' d+ 1) is the volume of the d-

dimensional sphere of unit radius, and n =l)i/V, which is
the volume number density for d =3 and the area number
density for d =2. Thus, '9

ro ——m
' [I ( —'d+1))' "n (2.2)

(ii) Dimensionless coupling constant r, : The ratio of the
mean particle distance to the Bohr radius ali fi /me- —
gives the dirnensionless coupling constant

r,:—ro/alt ——~ ' [I ( —,'4+1)]' n ' "me /1)2'

4ne/q, d .=3v(q)="
2me /q, d=2.

(2.9b)

(2.9c)

&kin:=
Aq 1

2m N
q, u

iqi&qF

fi qF

d+2 2m

d 1

d +2 (y2r 2 Ry

(2.10a)

3 1
Ry, d =3

0! rS

(2.10b)

(v) Free particle kinetic-energy per particle ez;„
(= (Ek;„)0) is proportional to n as

Thus,

(2.3a) kin

2 Ry, d=2
r,

(2.10c)

(3/4~)1/3n —1/3me21ri —2 d =3
—1/2 —1/2 2g —2

(2.3b)

(2.3c)

=2V(2n)VdqF =X.,
q, a

I q I &eF

so that

(2.4)

(iii) Fermi wave number qF The Fermi .wave number is
defined as a sum over wave vector q and spin o of the
electron states in the Fermi sphere; viz. , ex— g vd(q)

1

"q k

I
k

I &cF I k+q I &cp

4 d 1
Ry,~d2 —1 ar,

(2.11a)

where 1 Ry=e /2a&.
(vi) Hartree Fock exchange ener-gy per particle e,„is pro-

portional to n as
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which reduces to

—(3/2m. )/ctr, Ry, d =3
—8v 2/3~r, Ry, d=2

(2.11b)

(2.11c)

where the results in Eqs. (2.11b) and (2.11c) reproduce
those given, respectively, in Refs. 1 and 21. The deriva-
tion. is given in Appendix A.

(vii) Fermi Th-omas wave number qFr..
1/(d —1)

d dne

2EF

where the pressure may be obtained from the ground-state
energy E (:eN—),

BE'=n
Bn

and

1 Bep= ——nr,
d 'Br, (2.16b)

p= BE
BV

(2.16a)

Changing the variable from n to r, ~ n '/ [Eq. (2.3a)],
one obtains

d2" m' " I ( —,
' (d —1))ne

(2.12a)

1
nr, (d —1) r, —BG B E'

Bp'

Writing the ground-state energy per particle as

(2.15b)

j. /2
6mne

E
r

2~ne2

Ep

d =3. (2.12b)

(2.12c) 2d
nr,

d cxT

4d 1

m(d —1) ctr,~ dr,

&=&kln+&eX+&C ~

and using Eqs. (2.10a) and (2.11a), one obtains

21 ( —,
' (d —1))

~'/ I ( —,'d)
(~r )1/(d —1)q (2.13a)

(4tzr, /m. )'/, d =3
qFr/qF =

(2.13b)

(2.13c)

The meaning of this definition becomes clear later [cf.
Eqs. (3.2b) and (3.3)].

(viii) Plasma frequency to&(q):

to&(q)
—= (nq /m )Ud(q)

=2'" "m' "/ I ( —,
' (d —1))ne q "/m,

(2.14a)

where EF =th' qF/2m is the Fermi energy.
The relation of the Fermi-Thomas wave number to the

Fermi wave number is
' 1/(d —1)

B E
+r~ (2.15c)

1 2 I=—n
& ~s

0 2 2

From Eqs. (2.15c) and (2.17) one obtains

(2.17)

0

1— 2 d —1
&~s+ & ~s

(d —1)vr
' 2d '

dr,

2
~C

2 Qp
& ~s

(2.18)

The isothermal compressibility may be expressed in terms
of the isothermal sound velocity,

S= ap (2.19)
P1 Bn

where e, is the correlation energy per particle in units of
rydbergs. The isothermal compressibility of a free Fermi
gas KT 1S

4mne /m, d=3
co (q)= '

2~nezq/m, d =2.
(2.14b)

(2.14c) j/KT = pj,'ns

In particular, for a free Fermi gas,

(2.20a)

(ix) Isothermal compressibility Icr. The isothermal
compressibility is defined as

1/Ir T mns0,0 2 (2.20b)

Bp
BV

Bp
Bn

(2.15a)
where so ——vF/v d with vz fiq~/m the Ferm——i velocity.

(x) Lindhard function Xq(q, co): The Lindhard function
is defined. as

Xd(q, co)—:— n (1 n)—1 I

fiV ~ 7+ q co+co +iO co —co +iO
p, o' p q p q

(2.21)

where V=L is the normalization volume, n is the Fermi distribution function, and co =gq ~ p/m+@ /m
p 0' p q

static long-wavelength behavior is
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lim X~(q, O) = n—AT
q —+0 2

mSO
(2.22)

where ~T is given by Eqs. (2.17) and (2.20b). At high frequencies, it has the asymptotic form

" Lzj-i(q)
lim X~(q,co)= g

CO~ oo 1= N

where

q2 j—& 22~ (2J 1)} I ( —d+ 1)r(l+ -,
'

)

( 2
' —1 —2l )!(21)!m ~=p ~ J —— I"(—,d+I+1)

(2.23}

(2.24)

and cop(q) =Q /2m. The derivation of Eq. (2.24) is given
in Appendix B. The first few moments are

L)(q)=
m

L3(q) = [~p(q) + ( 12/d) (E„;„}p~p(q)/R], (2.25b)

(2.258)-

e~ (q, co) = 1 —U~(q)X~(q, co) (model) . (2.26)

The RPA plasmon dispersion relation is given in Appen-
dix C.

III. CONSTRAINT FROM THE COMPRESSIBILITY
SUM RULE

The requirement that the response of the system to a
static long-wavelength perturbation (a uniform compres-
sion) must give the compressibility which is obtained ther-
modynamically from the ground-state energy provides a
constraint on the long-wavelength behavior of the static
screened response function and hence on G(q). The exact
form of the static screened response function in the long-
wavelength limit may be obtained by generalizing the ar-
gument in the three-dimensional case and is given by

lim P&'( q, 0)= na T, —
q~O

(3.1)

where KT is the true isothermal compressibility. From
Eqs. (l.lb) and (3.1), the exact form of the static dielectric
function in the long-wavelength limit is

where (Ek;„}p——ek;„——[d/(d+2)]EF is the average kinet-
ic energy per particle of a noninteracting system. In the
RPA the dielectric function is given by

co~ (q)
lim eq(q, O) = 1+ (exact)
q~O q

(3.2a)

qFT=1+
q

KT
(exact),

KT
(3.2b)

where we have used Eq. (2.20a) and the definitions (2.12a)
and (2.14a). In particular, the RPA dielectric function
(2.26) in the long-wavelength limit has the form

d —1

lim e~ (q, O) =1+, (3.3)
q —+0 q

which naturally defines the Fermi-Thomas wave number

(2.12a). If one adopts a model for the screened response
function [Eq. (l.la)] one obtains a constraint on the static
local-field correction from Eq. (3.1). Since from Eqs.
(l. la) and (2.22)

n2KO,
(model), (3.4)

1-«F,/q)'-'G(q)

the static local-field correction that satisfies the compres-
sibility sum rule [which we shall denote by G &(q)] has
the following long-wavelength behavior:

0 . .d —1

KT

lim X~'(q, O) =-
q —+0

(3.5a)limG ~(q)= 1—
q —+0 KT qFT

~'~'r(-,' d )

2ar, I ( —,'(d —1)}

0

1—
KT

q
d —1

(3.5b)

where Eq. (2.13a) has been used. Using Eq. (2.18) one fi-

nally obtains

lim G &(q)=
q~0

In particular,

r( —,
' d)

2m'~ I ( —,'(d +1))
(d —1) p ~~c

1+ ~ar, d —I 3~&e2
q

qF

d —1

(3.6a)

2
'

2
286~ ~ 38 6'

q (3.6b)

lim G, (q)= '
2

q 0 & ] 2Be, &,Be,—+—a~, ——ar, G =2 .
qF

(3.6c)
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In Eqs. (3.6a)—(3.6c) e, is in rydberg units.
Finally we give the expressions for Eqs. (3.6b) and (3.6c) in the high-density limit. The correlation energy per particle

in the high-density limit (r, && 1) is

2
(1—1n2)lnr, —0.094+0.018r, lnr, +O(r, ) Ry, d =3 (3.7a)

—0.38— (10—3m. )r, lnr, +O(r, ) Ry, d =22v2
3~ (3.7b)

where Eqs. (3.7a) and (3.7b) are the results given, respectively, in Refs. 24 and 25. Thus, at high densities, the long-
wavelength behavior is the following:

2

lim G &(q)= '

q~0

—+ (1—in2)ar, +O(r, , r, 1nr, )
4 4.

(10—3~)r, lnr, +O(r, )
12m

q

d=3

d=2

(3.8a)

(3.8b)

We note that these local-field corrections remain finite even in the weak-coupling limit r, —+0. The Hartree-Fock ex-
change energy is responsible for these finite terms.

IV. CONSTRAINT FROM THE
THIRD-FREQUENCY-MOMENT SUM RULE

The linear density-density response function, ' general-
ized to d dimensions, Xd(q, co), is related to the dielectric
function as

(~Pi ~)= — 2 d& ~i ~ Im
1

ud(q) —- 2~ e, (q, ~)
'

The first moment is the f-sum rule

(4.6)

1 = 1+ud(q)Xd(q, co) .
ed(q, co)

2l

The frequency moments

It may be expanded in the high-frequency limit as
2I —I )lim Xd(q, co)= g

(4.1)

(4.2)

and the third moment may be written in the form
2

(co3) = [co (q)+(12/d)(Ek;„)coo(q)/R
m

+~,'(q) l 1 —~d(q) l l

(4.7)

(4.8)

(~"-')= —J ~" 'ImX„(q, ~-), (4.3) where coo(q) =fiq /2ni, (Ek;„) is the average kinetic ener-

gy per particle of an interacting system, and

may be calculated exactly by generalizing the procedure in
three dimensions from the commutator algebra of the
Hamiltonian and the density operator in the Heisenberg
representation. The fluctuation-dissipation theorem at
zero temperature in d dimensions has the same form as in
the three-dimensional case

&d(q)= —— g, ICd(q, k)[S(
~ q —k

~
) —lj

q2
k (&q, 0)

(4.9)

with

2A
S(q,co) = — ImXd(q, co), co )0

n
(4A) IC (- k) q( /k)d-I (q ) q

2n ~ dco

2m
(4.5)

where S(q, co) is the dynamic form factor. Equation
(4.1) or (4.4) may be used to obtain the alternative forms
of Eq. (4.3)

(4.10)

and S(
~ q —k

~
) the static form factor. From Eqs.

(4.1)—(4.3), (4.7), and (4.8) one obtains the exact high-
frequency behavior of the dielectric function:

lim ed(q, co) =1—co~(q) co~(q) coo(q)

co co co& (q)

12(Ek;„)coo(q) Id(q)—
Picots(q)d

(4.11)
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The plasmon dispersion obtained from the co sum rule is given in Appendix E. On the other hand, the model [Eqs.
(I.la) and (1.1b)] has the high-frequency behavior

'(q) '(q) '(q) 12(E;,)o o(q) —G(q), (model)
QP~ oo co" co co~ (q) fico~ (q)d
lim ed(q, co) =1— (4.12)

where Eqs. (2.23) and (2.25) have been used. One sees that the model Eq. (4.12) satisfies the f-sum rule. Let us denote
the static local-field correction which satisfies the co sum rule by G3(q). Then, from Eqs. (4.11) and (4.12), one obtains

12coo(q)
G3(q)=Id(q) —

2 ((Ek; ) —(Ek; )0) .
fico~ (q)d

The long-wavelength limit of Id(q) is calculated in Appendix D and has the form

(4.13)

lim Id(q) =-
q —+0

where

(7 d)rc' —I.'( —,d )
ar, (q /qz)

(~)
4(d +2)1 ( —,

' (d —1)) me /2A
(4.14)

(m) = &Ud(q)[s(q) —1] =
2V 1V

(4.15)

is the average potential energy per particle (which is also referred to as the excess internal energy per particle, U,„/X, in
the classical case) of an interacting system.

The kinetic and potential energies per particle which appear in Eqs. (4.13) and (4.14) may be expressed in terms of the
correlation energy per particle e, by applying the virial theorem, generalized to d dimensions:

( Eki ) (Eki )0
a

Br

(P ) =e,„+— (r, e, ),1 0
r, Br,

(4.16)

(4.17)

where e,„ is the Hartree-Fock exchange energy per particle given in Eq. (2.11a). From Eqs. (2.11a), (4.13), (4.14), (4.16),
and (4.17) one obtains

lim G3(q)=
q~o

d(7 —d)l ( —,d)

4''i (d+2)I ( —,
' (d +3))

4(d —1) (d+ 1) (7d+ 5)(d —1)1+ mare, + mar, (q/qF) (4.18a)

In particular,

lim G3(q)= '

q~O

3 11 13+ mar, e, + mar, (q/qF), d =3
20 '

Br,

5 7 19 p c)ee
+ ar, e, + ar—, (q/qF), d =2 .

(4.18b)

(4.18c)

In the high-density limit, one may use Eqs. (3.7a) and (3.7b) for e, to obtain

lim G3(q)= '

q~0

+ (1—ln2)ar, lnr, +O(r, ) (q/qF), d =33 11
10m

5 33 20 24r, — —(.10—3m)r, lnr, +O(r, ) (q/qF), d =2 .

(4.19a)

(4.19b)

Upon comparing Eqs. (3.6a) and (4.18a) [Eqs. (3.6b) and
(4.18b) for d =3, and Eqs. (3.6c) and (4.18c) for d =2]
one finds that the static local-field correction which satis-
fies the compressibility sum rule [Eqs. (3.6)] cannot satis-
fy the constraint from the co sum rule [Eqs. (4.18)]: In
other words, the constraints which these sum rules impose

I

are incompatible in uniquely determining a static local-
field correction. This may be seen more clearly when one
compares two constraints in the high-density limit [Eqs.
(3.8a) and (4.19a) for d =3, and Eqs. (3.8b) and (4.19b) for
d =2].
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V. SUM RULE CONTRIBUTIONS OF DENSITY
FLUCTUATION EXCITATIONS IN THE

LONG-W'AVELENGTH LIMIT

In this section we discuss the reason for 6 I(q)&GI(q)
by analyzing the plasmon, single-pair, and multipair con-
tributions to the sum rules in the long-wavelength limit.
For this purpose, it is convenient to express Eq. (4.5) in
terms of the matrix elements for the density operator

( )=gyp((p ),
~

( „)
where co„o is the excitation frequency. The plasmon,
single-pair, and multipair contributions to the various
physical quantities and sum rules are listed in Tables
I—III for d, three, and two dimensions, respectively. The
notations are the same as those in Ref. 1. The quantity
(co ') ' in these tables is defined as29

(co ')'= I co 'S(q, a))
~
eg(q, co)

~
(5.2a)

g /
(p+)„0/ (co„o) '

) ed(q, a)„0)
/

I (5.2b)
n

and the compressibility sum rule [Eq. (3.1)] yields

n
2

=n Ky
RES

From these tables one sees the following similarities be-
tween the t%'0- RIll three-c4mens1onal cases.

(i) The plasmon contribution determines the static form
factor in the long-wavelength limit.

(ii) The single-pair contribution exhausts the compressi-
bility sum rule. The matrix element of the single-pair ex-
citations reproduces Eq. (S.3) exactly.

(iii) The plasmon contribution exhausts the f-sum rule.
(iv) The plasmon and multipair excitations give major

contributions to the co sum rule. One can identify the

term (nq im)I0&(q) in Eq. (4.8) as coming from the
lowest-order plasmon contribution with the excitation fre-
quency u„o——ruz(q). One can further identify the terms
proportional to (Ek;„) and Id(q) in Eq. (4.8) as the
higher-order plasmon contributions due to plasmon
dlspersloll ( 0'-q ) alld tile nlultlpall colltrllllltlo11s ( ~ q ).

On the other hand, the plasmon excitation frequency is
wave number dependent, in general, and the dielectric
screening property at the single-pair excitation frequency
depends on the dimensionality, both of which lead to the
change in the relative importance of the contributions
from these three types of density fluctuation excitations to
the sum rules.

(v) In three dimensions, multipair excitations contribute
to the static form factor to order q" next to the plasmon
contribution ( ~q ), while in two dimensions single-pair
excitations ( cc q ) follow the plasmon contribution

q
I/3)

(vi) In three dimensions, the single-pair contribution to
the f-sum rule (ocq ) is negligible, while in two dimen-
sions single-pair excitations contribute to the same order
( ~ q ) as IIlultlpalr excltatlolls.

(vii) In the co sum rule in two dimensions the multipair
contribution is by only one power of q higher than the
plasmon contribution.

Therefore, compared with the three-dimensional case,
one sees somewhat different interplay among the three
types of density fluctuation excitations in two dimensions.
It is possible to identify further the origin of the terms in
the co sum rule [Eq. (4.8)] by using a more accurate
plasmon excitation frequency. First, let us use the RPA
plasmon dispersion relation, given in Appendix C [Eq.
(C2a)]. Then we obtain the plasmon contribution to the

sum rule

(5.4)

TABLE I. Matrix elements, excitation frequencies, and sum rule contributions of density fluctuation excitations in the long-
wavelength limit in d dimensions.

Excitation frequency

Pauli-principle

restriction

Dielectric function e(q, or„o)

Plasm on

q [A'Ã/2m cop(q)]'~

(q) q
(3—d)/2

none

Single pair

q /m~(q)

m~(q)/s q ~q'

Multipair

none

Static form factor S(q)=g
~
(p+)„0

~

1 ~'/2m', (q) ~ q"+"'"
q /alp(q) o q

"

Compressibility
sum rule

&~ ')' n
~

=Pl KT
PCS
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TABLE Ii. Same as Table I in three dimensions.

Matrix element

Excitation frequency

Pauli-principle restriction

Dielectric function

Static form factor

Compressibility sum rule

f-sum rule

co' sum rule

Plasmon

q(A'X/2m cop )
'~'

none

~0
Aq /2m cdp

nq

nq
m

Single pair

q

qUF

q /qF

COp /S

n
n KT

t7l 5

q8

Multipair

q4

q4

Since
2

12 E~, I2
(qZq )'= „(E;„&o o(q)ZA.

d +2 lisp
(5.5)

where Id ~(q) is the part of Id(q) which contributes to or-
der q

' in the long-wavelength limit. One thus sees the
plasmon contribution due to dispersion mare clearly. One
can further take the plasmon dispersion relation up to
0(q ) in order to reproduce the term proportional to
coo(q) in Eq. (4.8). However, it is not possible to distin-
guish the plasmon contribution from that of multipair ex-
citations to order q in the co sum rule. This is because
(Eq;„& and Id(q) include both contributions. In other
words, the plasrnon dispersion relation which gives Eq.

the RPA plasmon dispersion accounts for a part of the
term proportional to (Ek;„& in Eq. (4.8).

Second, we may use the plasmon dispersion from Eq.
(4.11) to obtain

nq', 12(Ek.&~o(q)
(co &p)

—— cup(q) 1+ 2 Id )(q) —+
Acus (q)d

(5.6)

Xd(q, ~)= —I d p q.
m —q. v+10 Qp

(6.1a)

(5.6) already includes the contribution from multipair ex-
citations through (Ek;„& and Id(q).

From the above analysis it is now clear why G t(q)
differs from G3(q): The single-pair excitations exhaust
the compressibility sum rule, while the plasmon and mul-
tipair excitations contribute to the co sum rule. There-
fore, G ~(q) incorporates the modification due to single-
pair excitations in order to satisfy the compressibility sum
rule. On the other hand, G3(q) incorporates the plasmon
and multipair excitations in order to satisfy the co sum
rule. Since G ~(q) and G3(q) take into account different
types of density fluctuation excitations in this way, they
are intrinsically different, and thus it is natural that they
do not agree.

VI. CLASSICAL ELECTRON LIQUIDS

We now turn to classical electron liquids. The analysis
proceeds in a manner similar to the degenerate case. We
consider the dielectric function (1.lb) with a model
screened response function (l. la) in which Xd(q, co) is tak-
en to be the Vlasov response function,

TABLE III. Same as Table I in two dimensions.

Plasmon Single pair Multipair

Matrix element

Excitation frequency

Pauli-principle restriction

Dielectric function

Static form factor

Compressibility sum rule

f-sum rule

ap' sum rule

q [A'N /2m co~(q)] '~

ap(q) ~ q'~'

none

=0
Aq /2mcop(q) ~q

nq

nq ~ (q) q

q /co~(q)

qUF .

q/qF
m~(q)/s'q' q

—'

q'/~~(q) ~ q'
2=n KTIS

q /su~(q) ~q

q /cop(q) q

q

none
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where
8'(z) = f dx

277 x —z —tO
(6.3)

2//2mkf( p ) =n (2m.mkz T )
/ e (6.2) one can rewrite Eq. (6.1a) as

r

is the Maxwellian momentum distribution function with a
temperature T, kB the Boltzmann constant, and
v = p/m. Introducing the plasma dispersion function

X~(q, co) = — 8"v n CO

q(kz T/rn )'

The function W(z) has the following behavior:

(6.1b)

—z2/2 2
Z'

i(n/2)'. /ze ' / +1—z + — . , z«1
3

W(z) = '

i(ml2)' ze ' — — —.. . , z»1 .
Z2 Z4

(6.4a)

(6.4b)

The RPA corresponds to setting G(q) =0 in Eq. (l.la), so
that

0

1 — ' 1 ~x 1 I- d ex
. (6.8b)

U U

d NkgT d~ dI NkgT

eq (q, p1) =1+
q(kz T/m )'/ (6.5)

The RPA plasmon dispersion relation and the damping
rate are given in Appendix C.

In classical electron liquids, the dimensionless coupling
constant is defined in terms of the mean particle distance
(2.2) as

=1+(qD/q) '
p

(exac't),
Ky

(6.10b)

The exact form of the static screened response function
is given by Eq. (3.1). The static dielectric function is then

co~ (q)
eg(q, O) = 1+ (exact)2 2

I =e /rpkgT

~1/2[1 ( d+ 1)]—1/dn 1/de 2(k T)—1

Thus,

(6.6a)

where co&(q) is the plasma frequency [Eqs. (2.14)], s is the
isothermal sound velocity [Eq. (2.19) whose ideal gas
value is now sp (k~T/m)' ], a——nd qD the Debye wave
number defined by

(4m/3)' n' e (k T) ', d=3
77 n e (kgT)

— (6.6b)

(6.6c)

A. Compressibility sum rule

The pressure and isothermal compressibility (2.15a)
may be expressed in terms of the coupling constant (I )

derivative of the excess internal energy via the thermo-
dynamic relation:

qD =2'' [I ( —,(d —1))ne /kgT ]' (6.1 1)

e~ (q, O) =1+(qD/q) (6.12)

where we have used the Vlasov response function (6.1b) in
the static limit [cf. (6.4a)],

The Debye wave number is related to the plasma frequen-
cy as co&(q) =spq (qD/q)" ', and has the values

qD (4vrne Ik&T—)—' for d =3, and qD 2rrne Ik~T f——or
d =2. In particular, the static RPA dielectric function
(6.5) has the form

l Uex
p =nkBT 1+—

d XkBT

d NkBT d2 dI XkBT

(6.7)

Xq(q, O) =-
B

n 2 0
2

= —n KT
mSp

(6.13)

(6.8a)
On the other hand, the model screened response function
[(l.la) and (6.1b)j in the static limit is

where the excess internal energy U„ is defined as the
difference between the internal energy and the kinetic en-
ergy ( , d)Nk+T [cf. Eq. (—4.15)j. In this equation d/dI
means differentiation with respect to the parameter I.
The isothermal compressibility of an ideal gas is

0
n KT

Xg'(q, O) =—
1 —(qD/q) 'G(q)

(6.14)

x T
——1/nkB T,

so that

(6.9) Let us denote the static local-field correction that satisfies
the compressibility sum rule by G 1(q). Comparing Eqs.
(3.1) and (6.14), one obtains the constraint
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G i(q)= 1 — (q/q ) (6.15a)

d
d %kg T j2 dI Xk T

In the weak coupling (low-density, I && 1) limit, the excess internal energy is calculated to be

(6.15b)

Uex

Xk~ T

~n—I —31 —ln(3I )+—y ——+, d =31

2 8 2 3

21 ln(2I ) ——+y + . , d =22 1

2

(6.16a)

(6.16b)

where y =0.5772. . . is the Euler constant; and Eqs. (6.16a) and (6.16b) are the results given, respectively, in Refs. 32 and
33. Using Eqs. (6.16a) and (6.16b), one obtains in the low-density limit

i(q)= '

13
4

I ~ +1 —ln(3I )+y—
24

(q/qD)', d=3 (6.17a)

—21 ln(2I ) ——+y (q/qD), d =2 . (6.17b)

Contrary to the degenerate case, these local-field corrections vanish in the weak-coupling limit I —+O.

B. Third-frequency-moment sum rule

In the classical case, the frequency moments may also be defined by Eqs. (4.2) and (4.3). The fluctuation-dissipation
theorem now reads

2k' T
S(q, co) = — ImXq(q, co),

neo

for all ~, so that Eq. (4.5) is replaced by

(6.18)

(6.19)

while Eq. (4.6) still holds. The first two moments in the classical case have the same form (cf. Ref. 4 for d =3) as in the
degenerate case [Eqs. (4.7) and (4.8)] except that the term proportional to coo(q) does not appear' in (co ) and

(E„;„)= (Ez;„)„=(d/2)kii T. The long-wavelength limit of the function I~(q) [(4.9)] in Eq. (4.8) may be expressed as
[cf. Eq. (D10)]

7 —d d —1

d(d+2) Xk T

where U,„/X is identical to (P ) [cf. Eq. (4.15)]. The exact high-frequency behavior of the dielectric function is again
given by Eq. (4.11) except that the term proportional to coo(q) is absent and (Ei,;„)= ( —,

'
d)kz T. On the other hand, from

Eqs. (1.1a), (l. lb), (6.1b), and (6.4b), the model dielectric function has the asymptotic behavior,

co&(q) co&(q) 12(Ek;„)oooo(q)
2

—G(q) (model) . (6.21)
CO~ oo co co fico~(q)d
lim e~(q, co)=1—

One sees that the model dielectric function satisfies the f-sum rule. Let us denote the static local-field correction that
satisfies the co sum rule by G3 (q). Then, comparing Eqs. (4.11) [with the term proportional to coo(q) omitted] and
(6.21), one obtains the constraint from the co sum rule

G3 (q) =lq(q) .

Thus, from Eq. (6.20) the constraint in the long-wavelength limit becomes

(6.22)

d —1

0 d(d+2) Xk T

In the low-density limit one may again use Eqs. (6.16a) and (6.16b) in Eq. (6.23) to obtain

(6.23)
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lim G3(q)= '

q~0

2v3 „, 4, 3I / +—1" —ln(3I )+—y ——+ . (q/qD), d =31 1 2

15 5 8 2 3

——I ln(2I') ——+@+ ~ (q/qD), d =25 1

4 2

(6.24a)

(6.24b)

Upon comparing Eqs. (6.151) and (6.23) [or (6.17a) and (6.24a) for d =3; (6.17b) and (6.24b) for d =2 in the low-density
limit], one finds that

lim G )(q)&lim G3 (q) .
q-+0 q-+0

(6.25)

Therefore, for classical electron liquids the dielectric function which takes into account short-range electron-electron in-
teractions via the static local-field correction in the form Eqs. (l.lb) with the Vlasov response function (6.1b) for pd(q, co)
in Eq. (l.la) cannot satisfy the compressibility sum rule and the third-frequency-moment sum rule simultaneously, as in
the case of degenerate electron liquids.

VII. SUMMARY AND DISCUSSIONS

In summary, we have examined the dielectric functions
which take into account short-range electron-electron
correlations in terms of the static local-field corrections in
the light of the compressibility sum rule and the third-
frequency-moment sum rule for degenerate and classical
electron liquids in d dimensions with special emphasis on
d =2 and 3. We have shown, in a transparent fashion,
that the requirements from these sum rules cannot be sa-
tisfied simultaneously in the long-wavelength limit by
such dielectric functions. We, in particular, analyzed the
sum rule contributions from three types of density fluc-
tuation excitations in degenerate liquids and explained the
incompatibility of those two requirements by notirig that
single-pair excitations contribute to the compressibility
sum rule and plasmon and multipair excitations contri-
bute to the co sum rule in the long-wavelength limit.

Here, it is worth mentioning the study of the two-
dimensional degenerate electron liquids by Jonson, ' who
finds that the short-range correlation effects in the corre-
lation energy and the pair correlation function are more
pronounced in two dimensions than in three dimensions.
As has been stressed in Sec. V, the change in spatial
dimensionality (from d =3 to d =2, for example) affects
the relative importance of the plasmon, single-pair, and
multipair excitation contributions to various physical
quantities. Therefore, the comparison of the systems in
different dimensions provides, in principle, the possibility
of allowing one to sort out the effects of each density fluc-
tuation excitation, to a certain degree, separately.
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APPENDIX A: EXCHANGE ENERGY
IN d DIMENSIONS

In this appendix we calculate the Hartree-Fock ex-
change energy in d dimensions. Using Eq. (2.9a) and the
formula (2.8) in Eq. (2.11a), one obtains

1e„=—— e qFJ,
vr d —1

where

(Al)

I ( —,
' (d +1))

=B(1,—,(d +1))=
I (I+.—'(d + I )) d + 1

(A3)

where B(1,—,
'

( d + 1)) is the beta function. Since
e qF (2/ar, ) Ry the use o——f Eq. (A3) in Eq. (Al) gives

4 d 1

7T d —1 elf

APPENDIX B: FREQUENCY-MOMENT SUM
RULES FOR THE LINDHARD FUNCTION

In this appendix we derive the asymptotic for~ of the
Lindhard function in terms of the frequency-moment sum
rules. One can write the Lindhard function (2.21) as

&d(q ~)=—f f I e(qF
I p+ q I

)]«—qF ——
I p I

)
4 d p

(2')"
CO~~

P O

2 2
CO —CO~ ~

v s

(Bl)

2 1J—:f dx f dy(1 —y )' " (A2)
0 x/2

with x =q/qF, and y=cos5. Changing the order of in-
tegration and the variables to z=x/2 and t =y, one ob-
tains

1 1J2 f dz f dy( 1 y2)(d 1)/2
0 z

2 f dy f dz(1 y2)(d —1)/2
0 0

1

dt( 1 r )(d —1)/2
0
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where

co =fiq p/m+fiq /2m .

Since e(qF —
~
p+ q ~

)e(qF —
~ p ~

) is even under the in-

terchange p~p+q, while co is odd under the same
P q

interchange, one obtains

Since 2~ lC2l ——(2j —1)!/(2j—1 —2l)!(21)!, Eq. (2.24) re-
sults.

APPENDIX C: PLASMON DISPERSION
IN THE RPA IN d DIMENSIONS

2j

where

4
~2j l (q) —=—J (2m ) P q

One first expands the power of co as
P q

)21 —1

P q

2j —I

RqF
k fiqkcos +

im gd(q co) = J „e(q l p
(27K) co —co

P q

(82)

(83)

(84)

(8&)

In this appendix we derive the plasmon dispersion rela-
tion within the RPA for degenerate and classical electron
liquids in d dimensions. In the degenerate case, the
asymptotic form of the RPA dielectric function (2.26) is
given by Eq. (4.12) with G(q) set equal to zero. The
plasmon dispersion relation, co=co(q), is obtained by solv-
1ng

ed (q, co(q))=0 .

The result is

co'(q) =cd'(q)+(12/d)(El, ;„)ocoo(q)/A+ . , (C2a)

which justifies the definition of the plasma frequency
(2.14). Equation (C2a) reproduces the well-known results

2j —2

I=O

2j —1 —I
Rq'

2j-ici
2m

'l

X k (cos5)l
Pl

(86)

co (q)= .
4rrne /m+ , (quF) +—,d =3
2~ne q/m+ —,(quF)2+, d =2

(C2b)

(C2c)

where cos8—= q p/
~ q ~ ~ p ~, and k =—

~ p ~
/qF, then uses

the formula (2.8) to obtain

given, respectively, in Refs. 1 and 36. It is of interest to
note that for d =4, the plasmon dispersion becomes

co (q)=4' ne /mq+ —,'(quF) +, d =4 (C2d)

2m. "
2j —1 —I

P2I

which has a minimum at q, =(crr, /4)' qF.
In the classical case, using Eq. (6.4b) one obtains the

asymptotic form of the RPA dielectric function (6.5),

Xk'(cos4) . (87)
RPA(

) 1
F

CO

3cuF(q)
(klan T/m )q

In Eq. (87), the terms with odd powers in cos5 vanish,
and

coF (q)cu
+i (vr/2) '/

(k~T/m) /
q

r(l+ —,
' )r( —,(d —1))J d8(sin@. ) (cos5) '=

I (l+ —,'d)

CO

&(exp 2 +
2(ke T/m )q

(C3)

(where p=cos5 and t =p ). Then Eq. (87) becomes

i-l 2"+'r( —,'d+1)r(l+ -,
'

)
+2j —1(q)= ~'/2r( ,'d+l+1)-

n
X 2j —IC2l g [~0(q)l' ' '«F/~)

(88)

(89)

Solving Eq. (Cl) with cu(q) =co&(q)+iy(q), one obtains

cotl(q)=cd(q)[1+3(q/qD) '+ ],
/2( q /q )

3(d —1 ) /2

con (q)

(C4a)

Xexp[ ——,
' (qD/q)" ' —

& ] .

Equations (C4a) and (CSa) reproduce the well-known re-
sults
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cog(q)= .2
4nne /m+3(k&T/m)q +, d =3

2~ne q/m+3(k& Tlm )q, d =2
(C4b)

(C4c)

given, respectively, in Ref. 31 and in Refs. 37, 38, and 33(c), and

(~/—8)' (qD/q)'exp[ —,
'

(qD—/q) —', —], d =3
y(q)/~g(q) = .

—(m. /8)' (qD/q) exp[ ——,
'

(qD/q) ——', ], d =2
(Csb)

(C5c)

given also, respectively, in Ref. 31 and in Refs. 37, 38, and 33(c).

APPENDIX D: LONG-WAVELENGTH LIMIT OF Iz(q)

In this appendix we derive the long-wavelength limit of I~(q), defined by (4.9). First, change the variable k —+ q —k in

Eq. (4.9) to write

I„(q)=——1

k (&q, 0)

(q —k).q (q —k) q

g

g

iq —k/

d —1

(q/k )" ' [S(k)—1] .
q

(D 1)

Second, expand the term
i q —k

~

' "for small q as

1 1 1+(d—l)px+ p x — x +O(x )
d' —122 d —I 2 3

fq —ki" 2 2

where p = q. k/
i q ~ i

k
~

and x =q/k, to obtain

limI~(q)= —— g x 'I[ —1+(d —1)p ]p/x+[1 ——,(d —1)p + —,(d —1)p ]+O(x)I[S(k)—1] .
q —+0

k (+q, 0)

In Eq. (D3) the angular integral of the term odd in p vanishes. The use of the the formula (2.8) in (D3) then gives

1
d —1 00

lim I~(q)= ——,A f dk[S(k) —1],
q~o n 2d —1 (1+1)/21 (

& (d —1))

where

1A—= dp1 —p '" ' 1 ——, d —1p+ —, d —1p

(D2)

(D3)

(D4)

i'(7 d) I ( —, (d —1))

2d(d +2)

The definition of the potential energy per particle (4.15) may be written as

(D6)

I ( 2 (d —1))e
(P )=, , f dk[S(k) —1] .

2m'i I ( —,d)

Putting Eqs. (D6) and (D7) in (D4), one obtains

(D7)

limI„(q) = — (1'') .
7—d 1

q~0 d(d+2) 2~ —&~~~ —i~v21 (

In the degenerate case, the definition (2.5), and the relation, e qF
——me /fi av„may be used to write (D8) in the form

(7—d )vr'i I ( —,d ) ( y-)
lim Iq(q) =—,av, (q/q~)"

4(d+2)I ( —,
' (d —1)) me 4/2A2

(D9a)
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In particular,

lim I(q)= '

q~0

(P ) = — ar, (q/qF)
q' m 2 (F) 3

1sane 10 me /2' 20

( &)= — ar, (q/qF)
s q s (m) s

16~ ne' 16 '
me 4/2@2

2 ~ec
2ar, e, +ar,

20!r e +mr
~rs

(q/qF)', d =3

(q/qF), d =2

(D9b)

(D9c)

where Eq. (D9b) reproduces the result given in Ref. 13(b). To obtain the last expressions in Eqs. (D9b) and (D9c), Eqs.
(2.lib), (2.11c), and (4.17) have been used and the correlation energy per particle e, is in rydberg units. In the classical
case one may use Eqs. (4.15) and (6.11) to write (D8) in the form

d —1lim Id(q) = — (q/qD) (D10)

APPENDIX E: PLASMON DISPERSION FROM THE co SUM RULE

In this appendix, we derive the plasmon dispersion in the long-wavelength limit by using the co sum rule in the degen-
erate case in d dimensions. We also give expressions in the form of the coupling constant (r, ) expansion in the weak-

coupling limit.
From Eq. (4.11) one obtains the plasmon dispersion in the long-wavelength limit

cu (q) =coF(q)+ (Eg;„)cop(q)/A' —cop(q)Id f(q)+
d

(El)

where Id i(q) has been defined in Eq. (5.6). The last two terms on the right-hand side of Eq. (El) contribute to order q .
One may use the virial theorem (4.16) to express (Ez;„) in terms of the correlation energy per particle e,

12
(Ek )cop(q)/A=(quF) 2 3

d+2
3 ~ a"

0: rs ee+rs
a

(E2)

In addition, from Eqs. (4.17) and (D9a) one obtains

2
coF(q)Id, (q) = — a r, (qvF) e,„+2e,+r, (E3)

where the relation

cuF'(q) =(spq) (q/qFT)

or, equivalently [cf. Eq. (2.13a)],

r(-,' (d —1))coF(q)=, ar, (quF) (q/qF)'
I ( —,'d+1)

has been used. In Eq. (E4) sp ——VF/~d. Equations (E2) and (E3) together with Eq. (2.11a) yield

(E5)

T

co (q)=coF(q)+(quF) —
2 ar, — a r, 2(4d —l)e, +(7d+5)r,2 — 2 3 2(7 —d) 1 2

c)eq

d +2 ~(d2 1)(d+2) ' 2d d+2 ' '
cjr,

+ ~ ~ ~

(E6a)

where e, is in rydberg units. In particular,

cu (q)=

4mne 2 3
m

+(qVF )
5
P

2&ne 2 3
m

q+(qvF)'

a"
rs — a rs 11ec+13rs

Be,a r, 14', +19r,
6m

' 16 ' ' '
()r,

+' ' d=3

+ ~ i ~

(E6b)

(E6c)
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In the high-density limit, one may use Eqs. (3.7a) and (3.7b) to obtain

co'(q) = .

4mne 2 3
+(qvp)'

m 5

2m.ne 2 3
q+(qvF)

m 4

3 22 2 2 26 2 2 3 3ar, — (1—ln2)a r, lnr, + (1—In2)a r, +O(r, ,r, lnr, ) +, d =3
15m 15m

SvZ, Iiv2
12 ' ' 16

r +r 0. 17+ (10—3')r lnr + + . , d =2 .'

(E7a)

(E7b)

In three dimensions, an expression corresponding to Eq.
(E6b) has been obtained by Kugler. '"' In two dimensions,
the first two terms which are proportional to q on the
right-hand side of Eq. (E6c) agree with the results by
Beck and Kumar and by Rajagopal, who took into ac-
count the exchange effects. The term with the coefficient
3/4 comes from the free-particle kinetic energy while the
term proportional to r, comes from the exchange energy.
Equations (E6c) and (E7b) include the correlation effects
up to third order in the frequency moments.

Experimentally, two dimensional plasmons have been
observed in silicon inversion layers. ' The observed
density and wave-number dependence of the plasma fre-
quency [cop(q) ~n'~ q'~ ], with the geometrical factor
which comes from the finite thickness of the oxide layer
included, agree well with theory. On the other hand, the
characteristic wave numbers in these experiments

(q/qp& 10 )
' and a recent one (q/qp-0. 14) are

still too small to test the dispersion relation (E6c).

aw
Xk~

d+2 d+1 ~2 d 1 Uex

dI I XkaT
(F4)

(F5)

(Cp/Cy)(AT/~T) =INST/~s . (F6)

Equation (F2) reduces to the expression obtained in the
collisionless approximation (C4b), since the collision fre-
quency,

COc —I cd,3/2 (F7)

BE d, d
Ãk Nk BT 2 dI I" Nk T

and 8' the enthalpy, and I~T/~T is given by Eq. (6.8b).
The coefficient in Eq. (F3) may be expressed in terms of
the adiabatic compressibility rc& as

APPENDIX F: COMMENTS ON PLASMON
DISPERSION IN CLASSICAL ELECTRON LIQUIDS

Let us brieAy mention the plasmon dispersion in the
classical case. Using the same procedure as in the degen-
erate case (cf. Appendix E) one might obtain from Eq.
(4.11) and (D10)

2 = 2 7 —d
co (q) =cop(q)+(soq) 3 — +

(Fl)

where s0——k&Tfm. However, this is not correct. In three
dimensions, the co sum rule, which neglects the collisional
effects, is known to be inappropriate to obtaining the
plasmon dispersion correctly. ' In the long-wavelength
limit, the plasmon dispersion has been obtained by Baus.
In the weak coupling limit, i.t is

4mn. e kgT
cu (q)= +(3+0 61I ~ + ) q +

I «q/qD «1 (FS)

for I ~pl.
The situation is different in two dimensions. First,

the collision frequency is independent of the dimension-
less coupling constant (I ) [co, -cop(q)]. " Thus, the col-
lisionless approximation "' ' ' is not valid even in the
weak-coupling limit, in contrast to the three-dimensional
case. Second, the collective mode has a low frequency in
the long-wavelength limit [cu(q) ~ cop(q) ~ q'~ ]. Thus, the
plasmon dispersion is identical to that obtained from hy-
drodynamics:

vanishes as I ~0. In the strong-coupling li.mit, since the
collision frequency increases as implied from the weak-
coupling expression (F7), the correct plasmon dispersion is
given by hydrodynamic description. Baus estimates the
region of validity of hydrodynamic description as

while in the strong coupling limit

2 4~ne 0 k~T
co (q)= +(Cp/Cp)(xT/~T) q +. . .

(F2) 27TPf 8 2

co (q) = q+(Cp/Cy)(Irz. /xr)(k&T/m )q + .0 2

In the weak-coupling limit, Eq. (F9) reduces to

(F9)

where Cp/Cz is the specific-heat ratio with

(F3) 2
2( )

277n8
q+

2k~ T
+ I 4 ~

m
(F10)
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which is, in fact, different from the collisionless result
(C4 )

33(c),37, 38

Molecular dynamic calculations have been carried out
in three and two dimensions, and the plasmon disper-
sion in both cases agree well with the theoretical result of
Bauss [Eqs. (F3) and (F9)], which predict negative disper-

sion for large values of I .
Experimentally, plasmons in the surface layer of elec-

trons on liquid helium have been observed. However,
the characteristic wave number in the experiment is not
yet large enough (q/qD & 10 ) to test the correlation ef-
fects in the dispersion relation.
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