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Landau theory of cholesteric blue phases: The role of higher harmonics
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The Landau theory of blue phases (BP) in cholesteric liquid systems is further developed by sys-
tematically including the effect of higher harmonics in the structure factor on the free energy. The
inclusion of a third harmonic results in two new body-centered-cubic (bcc) structures, Ob and 0„in
addition to the bcc 0' (I432) and 0, (I4l32) and simple-cubic 0 (P4232) structures previously
obtained [Phys. Rev. A 28, 1114 119831] in the two-harmonic framework. Introducing a fourth har-
monic does not lead to any further structures or significant changes in the free energies. Detailed
results of the Landau-theory calculations are compared with experimental data and those obtained
with other models. It is shown that, in general, the observed properties of BP I and BP II are con-
sistent with the structure assignment BP I~O, and BP II+ 0 . Some points requiring further in-

vestigation and clarification are indicated.

I. INTRODUCTION

It is now generally accepted that the blue phases (BP)'
which appear in many cholesteric liquid crystals below
their clearing point possess cubic orientational order (not,
however, the "gray" of "fog" phase, also known as BP
III). Using Landau theory, we have shown that such or-
dered structures are indeed thermodynamically stable in
certain regions of the temperature-chirality plane. Our
approach was as follows. Taking as our order parameter
the anisotropic part of the dielectric tensor

e;J(r) =—e;~(r) ——,
' Tr(e")5;j,

we formally expanded e,j(r) in a Fourier series. Initially,
we restricted ourselves to considering only those contribu-
tions to the Fourier sum associated with a set of wave vec-
tors having equal magnitudes. This procedure, which is
asymptotically exact in the high-chirality (short-pitch) re-

gime, yielded a transition from the isotropic (I) phase to
one having a body-centered-cubic structure belonging to
the space group 0 (I432). This structure, however, is
not the thermodynamically stable one at physically in-
teresting values of the cholesteric pitch, due to the signifi-
cant role played by Fourier components of e;J(r ) associat-
ed with harmonics of the basic spatial wave vector. By
explicit calculation we showed that even the addition of a
single harmonic results in the appearance of new struc-
tures. Significantly, we found that structures belonging
to both body-centered-cubic 0 (I4,32) and simple-cubic
0 (P4z32) space groups become stable in regions of the
phase diagram of experimental interest.

These results naturally lead one to wonder what the ef-
fect of additional harmonics would be on the theoretical
phase diagram. However, direct analytic calculations of
the Landau free energy become extremely time-consuming
as additional Fourier components of e(tri) are taken into
account. We have therefore developed a different ap-
proach, combining symmetry considerations and numeri-
cal techniques, to greatly reduce the complexity of the cal-
culation. Using this procedure, the contributions of addi-
tional harmonics can be systematically incorporated into
the Landau free energy. We here present results obtained
by including up to four different wave-vector magnitudes
(i.e., fundamental and three harmonics) in the Fourier
SUm.

This paper is organized as follows. In Sec. II we calcu-
late expressions for the free energies of the 0, 0, 0,
and usual helicoidal ( C) phases as functions of the
Fourier amplitudes. We also give here and in Appendix A
details of the technique employed. Then, in Sec. III, we
discuss the minimization of the free energies and obtain
the thermodynamic phase diagram in the temperature-
chirality plane. Models of the various BP structures are
also presented. Section IV is devoted to a detailed com-
parison of our results with the experimental data and oth-
er theoretical calculations. A critical summary with em-
phasis on outstanding questions is given in the concluding
section.

II. CALCULATION OF THE FREE ENERGIES

For cholesteric systems, the average free-energy density
is given by '
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F= V ' dr —,
' aEj'+c],c&j'(+c26&j'&E(j

tjt &tn ejn, t ) ~&tj'eji ~tt

+y(e,'j) ], (2)

and c j + —,c2 be positive. ' Expanding

eij(r)= g N 'r etj(o)exP[iq(hx+ky+Iz)],
A, k, 1

(3)

where, as usual, a is proportional to a reduced tempera-
ture, ci, c2, d, P, and y are temperature-independent pa-
rameters, e;j i =Be;j/Bxt, and we sum on repeated indices.
For thermodynamic stability it is necessary that c&, y,

with o=h +k +&, %=3!2 'Ini!, where no (ni) is
the number of vanishing (equal)

~
h, k ~, ~

l ~, and, for
each [hkl] (including [0(Ãj)

001 —1 0 0
+ee ' 00 i +Q —,'eoe ' 0

1 i 0 0 0 2

0 —I 0
—i —1 0
0 0 0)

+e 2e
ig+e &e

Ef 0 0 i
—1 i 0

1 i 0

[e(o)]= g e~(o)e [M~(hkl)]= — e2e
' i —1 0

f73 = —2 000
0

(4)

with e~(o) &0 and i)'j~(hkl)= P~(h—kl). The basis ma-
trices [M„]are defined such that [hkl] is the polar axis of
a local coordinate system which is defined separately for
each [hkl]. These [M~] matrices are in fact isomorphous
to the five j=2 spherical harmonics.

Using (2)—(4), the harmonic part of F is easily found to
be

Fz ———,
' g Ia —mdqo' +[ci+ ,'c2(4—m)—]q o.je (o.) .

Since, in Landau theory, we ignore any explicit q depen-
dence of higher than second-order contributions, we have
BFIBq =BF2/Bq and, from (5),

r =q/qo —— g [mcr'j e~(o)]
0,m

~2 g I[1+—,'(4 —m )cz/c, joe~(o-)I
0'& M

(6) .

with qo=d/v 2ci. The o =0 term is excluded from the
sums in (6).

The excitation spectrum for a chiral (d&0) system is
shown in Fig. 1. Note that the stability condition c~

+ 3 c2 )0 guarantees that the ground state lies on the

m =2 branch (for d & 0) of the excitation spectrum.
%'e shall here consider order parameters whose energet-

ically significant Fourier amplitudes belong exclusively to
the low-lying (m =2 for d &0) branch of the excitation
spectrum. In this case the ci term in (2) does not contri-
bute [see (5)] and we can simplify our notation by intro-

ducing the scaled quantities

We shall now use (3) and (4) (with e replaced by p) to cal-
culate f for a restricted number of terms in the Fourier
sum. Before doing this, however, we determine the phases
$2(hkl). For a given space group these phases are not in-

dependent of each other and symmetry considerations can
be used ta simplify the free-energy calculations consider-
ably. %'e therefore proceed by analyzing separately the
three cubic space groups pf interest: 0, 05 and 0 . In
each case we restrict ourselves to the contributions of the

etj sptj, s =P/W6——y, f=Fl(P l36y ),

t =(3y/P )a, —,'gjt ——(—3y/P )ci,

qckR ~&qo4

(7)

Nate that q~ ——d/c& is the wave vector of the usual
cholesteric (helicoidal) phase, which is characterized by a
single nonzero wave vector. Substituting (7) into (2) and

using (5) gives

f= —,
' g t —~ +~ (o' j r lv 2 1)pz(cr)— WAVE VECTOR (q)

+ ~ I dr [ ~~V jjtjlu! +(p'j)'' FICx, 1. Wave vector (q) and eigenvalue (m) dependence of
the quadratic part of the Landau free energy for a cholesteric

liquid crystal.
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four lowest-lying independent Fourier amplitudes to the
free energy.

(]) Oz: For all simple cubic groups the four lowest-

lying states correspond to o.= 1, 2, 3, and 4. For 0, how-
ever, occupation of the m =2,o =3 and 4 harmonics is

forbidden by symmetry and pz(3) =!Mz(4)=0. Thus
only two amplitudes need be considered explicitly. This
case has been treated previously and it is therefore suffi-
cient to summarize the results. Phases are fixed by setting
the origin of the coordinate frame at the point (000) in the
0 unit cell with point-group symmetry 23 (T). The
threefold [111] symmetry axis passes through this point

I

and it immediately follows that there are at most three in-
dependent phases, gz(100), gz(110), and itjz(110). All oth-
ers are determined by cyclic permutation. Next, as a

!

consequence of the fourfold screw-axis symmetry,
Pz(110)=gz(110). Finally, the twofold symmetry with
respect to the coordinate axes requires that each phase be
equal to its negative and all phases are therefore either 0
or m. . The choice in each case is determined by our con-
vention that the Fourier amplitudes pz(1) and pz(2) be
positive at the free-energy minimum. In fact, since even.
powers of pz(1) appear in f, only Pz(110) need be fixed.
By setting it equal to ~, the expression for the normalized
free energy is

foz 4[t a———+a. (r/W2 1) ]!!zz(1—)+ ,' [t —v+z(r——1) ]pz(2) —[3(4+3W2)/8]pz(])pz(2)

+(23~ 2/32)!Mz(2)+ iz tuz( 1)+ [(139—12W2)/48]!Mz(] )pz(2)+ „pz(2), (9a)

with, from (6),

& =3/2[!!zz(1)+3/2pz(2)]/[pz(1)+2!Mz(2)] . (9b)

(2) 0: For all body-centered-cubic groups the four
lowest-lying states are those with 0 =2, 4, 6, and 8. In the
case of 0, the m =2,o =2 state is forbidden, ' thus
!!zz(4)=0. Setting our origin at the point (000) in the 0
unit cell with point-group symmetry 432 (0), it is
straightforward to show that (a) all other phases are relat-
ed to gz(110), gz(110), ]i!z(112),Pz(112), gz(112), itz(112),
gz(220), and gz(220) by permutation symmetry, (b)
gz(110)=fz(110), Pz(112)=fz(112)=gz(112), =gz(112),
and gz(220) =jazz(220) due to the fourfold symmetry, and
(c) the remaining independent phases gz(110), iljz(112),
and Pz(220) must be equal to either 0 or ~ as a conse-
quence of the twofold symmetry.

Setting all phases equal to zero, the expression for the
free energy was obtained by constructing analytically the
explicit real-space matrices!!41J(r;o) for each value of cr

l

(here 2, 6, and 8) separately and using (8). We divided the
integrals in (8) into subsets of the form

I3(o i oz o3) —z!3V ' J dr pz(r;oi)pjz(r oz)p&; (r;o3)
(10)

I4(oi oz o3 CF4) —Y/4V
' f dr@'J(r oi)p'J(r oz)

&(pi„(r;o3}!ill(r;o4) .
Here z]3=3!/ni! and F14 4!/ni!——nz!, where ni and nz are
the number of equal o;. Finally, the integrals I3 and I4
were evaluated numerically by sampling the unit cell at
(25) equally spaced points. As checks on the numerical
accuracy of this technique (a) the relevant computer re-
sults for I3 and I4 were compared with those found in an-
alytic studies of 0, 0, and 0 with one and two wave-
vector magnitudes and (b) the remaining I3 integrals were
also computed analytically. In all cases there was agree-
ment to seven significant figures.

The resulting expression for the 0 phase-normalized
free-energy density is

F,= —,g [t ~ +z (o'i r/V 2 1) ]!Mz(o ) —1.0—16466pz(2) —0.421 875pz(6) —1.016466!Mz(8)

—l.305 769pz(2)pz(6) +0.879 653!Mz(6)!Mz(8)+ l.611463!Mz(2)!!zz(6)

+3.265 544pz(2)!M z(6)!Mz(8) + 1.299 479pz(2) + 1.435 925@z(6) + 1.299 479pz(8)

+0.791441!Mz(2)pz(6)—0.656250!Mz(2}pz(8)+0.434449!!zz(6)!Mz(8) 0 42800—2p.z(2)!Mz(6)

+2.915720pz(2)!!4z(6)+2.890625pz(2)!Mz(8)+2. 34] 443!Mz(6)pz(8)

—0.362 657pz(2)!Mz(6)pz(8) —0.137 340pz(2)!Mz(6)!Mz(8) —D. 854 748!Mz(2)pz(6)pz(8), (1]a)

with
T

r =M2 g o'izpzz(o. ) go!!zz(o )
CT

(]lb)
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The sums in (11)are restricted to o =2, 6, and 8.
(3) 0: This group, like 0, is body-centered cubic and thus the four lowest-lying states are again o =2, 4, 6, and 8.

However, all these values are now symmetry allowed. ' The determination of the phases $2(hkl) is more complex for
this structure and is given in Appendix A. We show there that

$2(110)= —$2(110)—m/2=0 or n. .

$2(200) = —m./2 or +m/2,

$2(112)=$2(112)= —$2(112)—m/2=$2(112) —m/2=0 or m. ,

$2(220) =$2(220)+m =0 or m. .

(12)

All other phases are related to the above by cyclic permutation of the ( hkl) indices.
Choosing in each case the first-mentioned allowed value for the phase angle, the third- and fourth-order terms in (8)

were computed using the same technique discussed previously. The resulting expression for the free energy is

fo,= —,
' g [t ~ +x(o' 'r/v 2 1) jp—z(o) —0.625000p2(2) —0.421 875p2(6)+1.016466p2(8)

—2. 185 660p2(2)p2(4) —1.305 769p2(2)p2(6) —3.090990pp(4)pq(8)

+0.879 653p~(6)p2(8) +0. 101 175p2(2)p2(6) +2. 146 52 1p2(4)pp(6) +3.039 058p2(2)p2(4)p2(6)

—2.638 958p~(2)pz(6)p2(8) + l. 169271p2(2) + 1.083 333p2(4) + 1.312918p2(6)

+ 1.299479p2(8)+ 1.000 867p2(2)p2(4) —0.342 005pq(2)p2(6)+0. 530 330p2(2)p2(8)

+0.976298p2(6)p2(8)+0. 554214p2(2)p2(6) —0.981 769p2(4)p2(6)+3. 499 387p2(2)p2(4)

+2.291 159p2(2)p2(6)+2. 713 542pq(2)p2(8)+3. 280 513p2(4)p2(6)+2. 542280p2(4)p2'(8)

+4.273 114p2(6)p2(8) —0. 143 613p2(2)p2(4)p2(6)+ 1.717217p2(2)p2(4)p2(8)

—1.038 890p2(2)pq(6)p2(8) + 1.733 969pz(2)pp(4) p2(6) —2. 164 614p2(2)p2(4)p2(6)

+ 1.380 818p2(2)p2(6)p2(8) —1.729 131p2(2)p2(6)pz(8) —2.968 469p2(4)p2(6)p2(8)

—2.473 295p2(2)p2(4)p2( 6)p2( 8), (13a)

with

g opp(cr) (13b)

The sums in (13) are restricted to cr =2, 4, 6, and 8.
(4) C: For completeness we also give the result for the

usual cholesteric (helicoidal) phase. The expression for
the normalized free-energy density is

f =
4 &po(0)+ ~ (& —K )p2(2)+po(0)

—3po(0)pq(2) + [po(0) +p2(2) ] (14)

III. THERMODYNAMIC PHASE DIAGRAM

In the preceding section we presented expressions for
the free energies of four possible ordered phases in
cholesteric liquid crystals. One of these (0 ) has a non-
symmorphic simple-cubic (sc) structure, another (0 ) is
symmorphic body-centered cubic (bcc), the third (0 ) is
nonsymmorphic and body-centered cubic, and the fourth

I

(C) is the usual helicoidal cholesteric structure. In addi-
tion, of course, there is the isotropic (I) or disordered
phase with Fz ——0 which is always the thermodynamically
stable state at sufficiently high temperatures. Our objec-
tive is to determine which of these five phases is the ther-
modynamically stable one at any arbitrary point (t,a) in
the temperature-chirality plane. This is done by minimiz-
ing, for given (t,a), the free energy functions (9), (11),
(13), and (14) and then choosing the structure whose f;„
is lowest. The minimization was carried out numerically
using gradient search routines. Both analytic and numeri-
cal computations of the gradient vector were employed
and were found to give identical results. Since gradient
searches yield only local minima, it was necessary, partic-
ularly in the case of 0, to carry out a systematic search
for the global minimum by initiating the search procedure
at different points in the parameter space.

The results can be summarized as follows.

(1) 0: The minimization of (9) with respect to the pa-
rameters pq(1) and pq(2) presented no difficulties as only
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one minimum with p2(1),pz(2)&0 was found at all (t,a)
regardless of the initial starting point. In all cases, p2(1)
and p2(2) were positive at (fo&)~;„,thus Pz(o =2)=m is

the proper setting. Some typical results are listed in Table
I. Note that r/v 2 rather than r is given as, in the case of
sc symmetry, this is the relative shift of the longest wave-
length Bragg reflection with respect to that of the C
phase.

(2) 0: The free energy (ll) was minimized with
respect to the three parameters pz(2), p2(6), and p2(8).
As in the case of 0, only one minimum with nonzero
Fourier amplitudes was found for all (t, ic). At the mini-
ma, p2(2) and p2(6) were always positive, thus the corre-
sponding phases are indeed zero. For p2(8), on the other
hand, the appropriate choice of the associated phase
Pz(220) is ( t,a) dependent. The higher-order amplitudes
always satisfied p2(6) &0.15pz(2) and p2(8) &0.04p2(2);
thus the effect of including harmonics on the structure
and free energy of the 0 phase is small. In particular,
the fourth (o.=8) harmonic is negligible. Some results are
given in Table I. Note that where the amplitude p2(8) is
enclosed in parenthesis, 11|2(220)=m. Otherwise, all
phases are equal to zero.

(3) 0: The minimization of (13) with respect to the
four parameters p2(2), p2(4), p2(6), and pz(8) was much
more complicated than the corresponding calculations for
the other phases. As an intermediate step, we therefore
set p2(8)=0 and carried out a three parameter search.

Three local minima were found (as compared with one
when only two amplitudes were considered ) in various re-
gions of the (t,a)p. lane and a systematic choice of initial
starting points was used in order to locate the global
minimuin with certainty. The fourth amplitude was then
also allowed to vary. This resulted in very small changes
in the positions in parameter space and associated free en-

ergies of the three local minima, but no additional minima
were found. This indicates that incorporating three
Fourier amplitudes in the order parameter suffices to lo-
cate ail the free-energy minima of the 0 structure, with
the fourth amplitude serving only to refine the energy cal-
culation.

It is useful to discuss the three relative minima of (13)
separately. %e begin by noting that, when only two
Fourier amplitudes were taken into account, a single
minima was found with positive amplitudes for
fz(110)=0, $2(110)=P(200) = n /2—In t. his structure,
which we shall henceforth refer to as 0„the amplitude
ratio p2(4;0, )/p2(2;0, ) was approximately —,

' . Including
the cr =6 and 8 harmonics, we find that 0, is the energet-
ically preferred 0 structure only in a restricted region of
the phase diagram just below the clearing point (see Fig.
2). An example given in Table I is at t =1.7, a =0.9. As
before, 0, is characterized by pz(4;0, )/p2(2;0, )=—,

'

with much smaller contributions (less than 7%%uo) from the
a=6 and 8 harmonics. In all cases, the amplitudes are

TABLE I. Fourier amplitudes p (o), frequency shift r (for O, r/V 2), and reduced free energy f of the cubic phases 0, 0, 0„
Ob, 0,', and helicoidal phase C at selected points (t,~) in the theoretical phase diagram. The appropriate choice of phase angles is
summarized in Table V. Note the alternate choice for those amplitudes given in parentheses.

a =0.9
1.2 1.6 1.7 0.6 2.5

v=1.3
2.6 0.1 0.4

v=1.5

2.9 3.1

02
p2(1)
p2(2)
r/V 2
10f

0.53
0.30
0.89

—0.44

0.52
0.29
0.89

—0.35

0.42
0.24
0.89

—0.056

0.39
0.22
0.89

—0.002

0.71
0.39
0.89

—2.19

0.41
0.23
0.89

—0.032

0.37
0.21
0.89

+0.018

0.80
0.43
0.89

—4.13

0.78
0.42
0.89

—3.52

0.45
0.25
0.89

—0.12

0.39
0.22
0.89

—0.003

p2{2)
p2(4)
p2(6)
p2(8)

10f

08
0.54
0.02
0.25
0.10
0.81

—0.42

08
0.53
0.02
0.24
0.10
0.81

—0.33

08
0.43
0.03
0.18
0.08
0.82

—0.042

08
0.33
0.16
0.01
0.02
0.90

—0.003

08
0.72
0.01
0.33
0.12
0.82

—2.11

0'
0.43
0
0.06
(0.02)
0.97

—0.041

0'
0.39
0
0.06
{0.02)
0.97

+0.003

08
0.32
0.15
0.00
0.02
0.91

+0.011

08
0.82
0.01
0.38
0.12
0.83

—4.00

08
0.79
0.01
0.36
0.12
0.83

—3.40

0'
0.48
0
0.06
0.01
0.98

—0.12

0'
0.42
0
0.06
0.01
0.98

—0.02

08
p (2)
p2(4)
p2(6)
p2(8)

r
10f

0.45
0.35
0.23
0.00
0.77

—0.44

0.44
0.33
0.22
0.01
0.77

—0.35

0.36
0.28
0.18
0.01
0.77

—0.048

0.32
0.26
0.16
0.01
0.77

+0.006

0.60
0.45
0.30
(0.00)
0.78

—2.19

0.33
0.27
0.16
0.02
0.77

—0.014

0.29
0.24
6.14
0.02
0.77

+0.033

0.69
0.51
0.33
0.00
0.78

—4.14

0.67
0.50
0.32
0.00
0.78

—3.52

0.37
0.30
0.18
0.02
0.77

—0.09

0.30
0.26
0.15
0.02
0.77

+0.02

C
po(0)
p2(2)
10f

0.31
0.58

—0.45

0.29
0.52

—0.35

0.24 0.21 0.39
0.45 0.40 0.76

—0.013 +0.045 —2.19

0.44
0.86

—4.13

0.42
0.83

—3.46
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K

FIG. 2. Theoretical phase diagram when only the I, C, and

three 0 phases (O„Ob,O, ) are allowed. Here A,c is the C-

phase Bragg back-reAection wavelength in air, n is the index of
refraction, and gz is a racemic mixture correlation length at the

phase transition. All boundaries denote first-order phase transi-

tions.

0

positive for the choice of phase angles used in (13).
In addition to O„wefind taro other 1'ocal1y stable 0'

structures. The first, which we shall refer to as O~, is
simi. lar to 0, in that its Fourier amplitudes are also all
positive for the phase angles used in (13). It differs from
0, primarily in that the second Fourier amplitude
pz(4;Oi, ) essentially vanishes. That is pz(4;Ob)/
pz(2;Oi, ) &0.07 while pz(6;Ob)/pz(2;Oi, )=0.5 (see Table
I). Note that the fourth harmonic is not negligible, as
pz(8;Ob)/pz(2;0b) can be as large as 0.2. Finally, the
third 0 structure, which we call 0„is quite different
from either 0, or Ob. In this case, the fundamental am-
plitude pz(2, 0, ) is negative for the choice of phase angles
in (13) and it is therefore necessary to set itjz(110)
= —Pz(110)—ir/2=m for 0, . [This is equivalent to re-
placing pz(2) by its negative in (13).] The phase of the
fourth harmonic is ( t, ir) dependent for 0,', where pz(8) is
enclosed in parentheses in Table I, the correct choice is
gz(220)=itjz(220)+ir=ir In any .case, this harmonic is
negligible.

When only the phases I, C, and 0 are considered, the
phase diagram shown in Fi,g. 2 is obtained. In general, for
fixed i~, the transitions are from I~O, ~O, ~C as the
teinperature decreases. The Ob structure does not appar.

When all seven structures (I, 0, 0, 0„0b,O„and
C) are considered, we obtain the phase diagram shown in
Fig. 3. It contains five phases [the 0, structure is, in ad-
dition, thermodynamically stable in an extremely narrow
region (b, t & 0.02) for i'd=0. 9 just below the clearing point
(e.g., at t = 1.7, i'd=0. 9 as given in Table I)], including the
0, 0, and 0, cubic structures. Of these three, sc 0
has the dominant position. As expected, body-centered-
cubic 0 appears im.mediately below the isotropic phase
and above 0 for sufficiently large v (here, i~) 1). More
important is the appearance of a bcc (0, ) structure be-8

tween 0 and C for v&1.3.
We stress, however, that the energy differences between

the various cubic structures is relatively sr@all. This is
particularly true of 0 -0 and 0 -O„respectively. To
illustrate this point we show, in Figs. 4(a)—(c), those re-
gions in which the free-energy differences between these
phases are less than 0.5%, 1%, and 2%, respectively.
(The clearing-point free energy is set to zero for this pur-

FIG. 3. Theoretical phase diagram when all sever phases, I,
C, 0, 0, O„Ob,and 0, are allowed. The notation is as in

Fig. 2.

pose. ) Note particularly the sensitivity of the Oz-Os

phase boundary to small shifts in the free energies. Also,
although the Ob structure does not appear in the thermo-
dynamic phase diagram, its free energy, particularly near
the 0 -C phase boundary (see Table I) is oiily 4% to 5%
greater than that of 0 . We shall return to these points in

Sec. IV.
Until now we have concentrated on the symmetries of

the different structures. One may also ask what they ac-
tually look like, i.e., how does the local molecular orienta-
tion change with position within a unit ce11? A useful
qualitative picture can be obtained by utilizing a concept
introduced earlier in which the order parameter is con-
strained to be locally uniaxial and cubic lattices are ob-

tained by packing space with arrays of interlaced right-
circular cylinders, in each of which the uniaxial director
describes a "curling-mode" configuration. A locally uni-

axial order parameter has the form

ej(r)=( —', )'~ e(r)[n;(r)n~(r) ——,'5J], (15)

with n =l. In the curling mode (also referred to as
"double twist"s) the director configuration can be written

in cylindrical coordinates ( r, B,z) as

n =0 sinm+z cosco, (16)

with co and e independent of 9 and z. Using (15) and (16)
with appropriate boundary conditions, an isolated single
cylinder with this configuration has been shown to be a
rigorous minimum of the Landau free-energy functional
(2) under certain conditions. This solution is shown
schematically in Fig. 5.

A sc 0 structure can be formed using these cylinders
by interlacing them in the manner shown in Fig. 6(a).
Note that the directors in adjacent units should coincide
at the contact paints and have continuous first deriva-
tives. In fact, the two-harmonic Landau-theory solution
for the 0 structure order parameter, obtained by minim-
izing (9) and using (2), is similar to Fig. 6(a). The main
differences occur in the small intercylinder regions, where
the Landau solution is strongly biaxial. In a strictly uni-
axial approach, these biaxial regions must be regarded as
disordered and {111)direction disclinations are then in-
troduced into the model. '

A skeleton bcc structure, compatible with O„canbe
obtained from the 0 one in Fig. 6(a) by removing, simul-
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FIG. 5. Schematic illustration of the cylindrically symmetric
spatially localized minimum Landau free-energy structure found
in Ref. 9. The director describes a curling-mode configuration.

both are invariant under the operations of the 0 space
group.

The 0 structure differs from 0 and 0 in that it is
symmorphic and cannot be modeled by an array of inter-
laced but nonintersecting cylinders. It necessarily con-
tains, even in biaxial models, points at which the system
remains disordered. In fact, these defect points define the
vertices of a bcc lattice and the earliest suggestion" of an
0 BP structure was formulated on this basis. A model
of the Landau-theory solution for 0 has been given
elsewhere. ' " The biaxial regions are located essentially
on the (111)axes, which become disclinations in a uniax-
ial model. '

(a)

0— C

FIG. 4. Theoretical phase diagram showing those regions in

which the free energies of adjoining cubic phases differ by less

than (a) 0.5%, (b) l%%ui, (c) 2%. The free-energy zero is at the

clearing point. The notation is as in Fig. 2.

t neously alternate curling-mode cylinders along thea
8

three crystallographic axes. 0, and O~, on the other
hand, are qualitatively modeled by the very different array
shown in Fig. 6(b). (This figure is somewhat closer to the

Ob Landau-theory solution for the order parameter than
that for 0, .) The 0„0barray and one corresponding to
0, will differ strongly as, in one case (0, ), cylinders will

lie along (100) axes, while in the other (0„0r,) they will

be along (111). Alternately, the disclinations (which
necessarily occur in strictly uniaxial models) would lie
along ( 111) and ( 100), respectively. ' Nevertheless,

FIG. 6. The (a) 0 and (b) O„Ob cubic structures, showing
how they can be visualized as appropriate interlaced assemblies
of the curling-mode configuration cylinders of Fig. 5.
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IV. COMPARISON WITH EXPERIMENT

In the previous sections we have expanded the Landau
theory of phase transitions in cholesterics so as to sys-
tematically include the effects of higher harmonics on the
structure factors of the cubic phases and their free ener-
gies. Before undertaking a detailed comparison with ex-
periment we note that the Landau theory of cholesterics
has already provided an explanation for many of the ob-
served properties of BP, including the following.

(1) The narrowing and eventual disappearance of the
BP with increasing pitch (i.e., decreasing «)."

(2) The relative narrowness of the BP region. Experi-
mentally, the correlation length gz defined in (7) is ap-
proximately' 25 nm and the index of refraction' n 1.6.
The C-ghase Bragg back-refiection wavelength"3 '5 in

air A,, =4n n /qc ——370 to 600 nm and, from (7),
«=4nngit/A, c' -0.8 to 1.4. The reduced temperature
scale unit is the extrapolated-from-the-disordered phase-
transition temperature for a racemic mixture and, experi-
mentally, ' is 0.5—1 K. From Fig. 3 it then follows that
the theoretical width of the measured BP region is 1—2 K,
in excellent agreement with experiment. "

(3) All cubic phases (including 0, 0, and 0 ) will ex-
hibit many of the experimentally observed optical proper-
ties of BP I and BP II, including absence of
birefringence, ' optical activity, ' and Bragg scatter-
ing 1,13—15

(4) The existence of more than one cubic BP. As dis-

cussed in the Introduction and Sec. II, the inclusion of one
additional harmonic in the order parameter was shown to
result in 0 and 0„in addition to 0, becoming thermo-
dynamically stable. However, these results were not suffi-
cient to allow a complete correlation of all the properties
of the observed phases with the model predictions. - While
the known BP properties were, in many respects, compati-
ble with an assignment of'. 0 for BP I ao,d 0 for BP II,
there were several inconsistencies, particularly between 0,
and BP I.

We now compare the more detailed results obtained in
this paper with the experimental data. As an aid to the
experimentalist, we also reformulate the Landau free ener-

gy (2) in terms of experimentally accessible quantities in

Appendix B.

A. Phase diagram

Experimentally at least two distinct phases exhibiting

Bragg scattering are known to exist between the isotropic
and helicoidal ones. With increasing temperature,
C~BP I—+BP II—+I. [An additional amorphouslike
phase, BP III, which is found between BP II and I, will be
discussed shortly. ] In the case of BP II the first two
Bragg peaks have been observed, while for BP I as many
as four have been found. "' ' ' The observation of a
strong second. Bragg reflection for both BP indicates that
neither of these phases has an 0 structure, since
ez(cr=2;0 ) =0. Even more definitely, the polarized light
studies of Flack and Crooker' eliminate any identifica-
tion of BP I or BP II with 0, as they found that the

second Bragg line is strongly sensitive to the sense of cir-
cularly polarized input light. Rigorous selection rules, '

completely I,ndependent of model calculations, require that
an.y 0 o.=2 reflection be polarization independent in
back reflection.

A comparison of Fig. 3 with the experimental phase se-

quence C~BP I~BP II~I clearly requires us to identi-
fy with BP I with 0, and BP II with 0 .' Although Fig.
3 indicates that 0, appears only for «) 1.3, the extremely
small energy difference between 0, and 0 (see Fig. 4)
means that small contributions [from, e.g., adding
higher-order terms to the basic Landau free-energy func-
tional (2)] could shift the 0 -0, phase boundary signifi-
cantly. Such terms lead, for example, to anisotropy in the
Frank elastic constants. They could also result in the
appearance of 0, at lower values of ~.8

As regards the phase diagram then, the remaining open
point is the apparent nonappearance of an 0~ phase be-
tween BP II (0 ) and the disordered phase for «) 1. As
noted, very small changes in the free energies would result
in 0 appearing only at much higher values of «. Also,
this is the region in which Marcus and Goodby' found
amorphous BP III. It thus appears that for intermediate
chiralities this amorphous phase could have a lower free
energy than 0 . It has been suggested that BP III could
be a disordered collection of the curling-mode cylinders il-
lustrated in Fig. 5, which then form into ordered arrays at
slightly lower temperatures. Clearly, a spatially non-
periodic minimum of the Landau free-energy functional
deserves further study as a potential BP structure.

ANT(o)=(m X V/8n A~)ez(cr)IO, (17)

where X is the multiplicity [see (3)], V the scattering
volume, n the index of refraction, and A, =4m/qcr' . In
(17), only the dominant m =2 contribution to the scatter-
ing is given.

From (17), the intensity ratio of steps at 0 i and oz (for
fixed Io) is

B. Bragg intensities

As already noted, 0 can be eliminated as the structure
of either BP I or BP II since both these phases exhibit
polarization-sensitive second Bragg peaks. ' Moreover,
the observation that the first four peaks of BP I are all po-
larization sensitive' eliminates any sc (including, of
course, 0 ) structure for this phase. This conclusion is
based upon general optical selection rules and not upon
particular model calculations. These calculations, howev-
er, allow us, in addition, to compare theoretical polycrys-
talline Bragg intensities with those found experimentally

by Meiboom and Sammon, ' as given in Table I of Ref.
10. Their data were taken by measuring the nonscattered
or transmitted intensity as a function of incident beam
wavelength A, . In this configuration, there is a series of
steps (reductions) in the transmitted intensity with de-

creasing A,, each step occurring when the Bragg condition
for backscattering at a given o is satisfied. For a poly-
crystalline sample and nonpolarized incident flux Io, the
change in the total scattered intensity at each Bragg back-
scattering in the weak scattering (thin sample) limit is+ '
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TABLE H. Comparison of observed and calculated relative Bragg intensities.

Reflection
~umber

Observed'
BP I BP II Q2 OS

Calculated
0, 08 O8 O5

Calculated'
O' (O'+j 0 (0 )

1

0.54
0.20

& 0.05

1

0.29
& 0.05
& 0.05

1

0.42
0
0

1

0
0.05

(0)

1

0.30
(0)
(Oj

1

(0)
0.35
0.06

1

0.79
0.42

(0)

1

0.30
0
0

1

0
(0)
0.05

1

0.01
0.13

(0)

1

0.53
0.22

(0)

'From Ref. 10, Table I.
bLandau-theory calculation; from Eq. (18) of this paper. The values given are, to within +5%, independent of t and ~. The rotation
(0) indicates values below 0.01.
'Disclination-theory calculation; from Ref. 10, Table I.

bc'T(u2)/~eT(~1) =A..—,le22(~2)/A, .-1622(~1)

=az e2(02)/0 i ez(a, ) . (18)

In principle, however, (18) cannot be compared directly to
the results of Meiboom et al. ' ' for several reasons.
These include, first, the strong Bragg scattering observed.
This indicates that the thin sample limit is inappropriate
and that the sam le thickness should be taken into ac-
count explicitly. ' That is, if the sample is regarded as
segmented into a smaller number of layers, a nonnegligi-
ble portion of the incident beam is scattered in each layer
and this significantly affects the amplitude and state of
polarization of the beam incident upon succeeding layers.
Second, as the incident wavelength is decreased and the
second and succeeding backscattering thresholds are
reached, the beain is simultaneously Bragg reflected by all
the longer wavelengths as well as the new one. This
changes the characteristics of the effective incident beam.
Third, while only one circularly polarized component of
the incident beam is Bragg scattered, both components are
affected by wavelength-dependent anomalous scattering
and dcpolarizatian effects as a consequence of the
nonideal nature of the medium. This results in a
wavelength-dependent change in incident-beam properties.
Finally, multiple scattering of a single Bragg reflection
could affect the observed intensities.

An approximate way af taking the first two of the
above factors into account is described in Appendix C.
The other effects, however, which can also be substantial
rsee Ref. 4(c) and footnote 18 of Ref. 10], are much mare
difficult to estimate. We therefore give, in Table II, the
calculated relative intensities for the case of a thin scatter-

er, as obtained using (18). We also give, for comparison,
the experimental intensity ratios quoted by Meiboom
et al. together with their calculated intensities. The
latter are based upon disclination models for the Bp, to-
gether with computer solutions of Maxwell's equations to
obtain scattering intensities. This approach, af course, is
quite different from the one presented here and, in princi-
ple, takes sample thickness into account.

From Table II we see that the very different theoretical
models results in very similar predictions for the relative
scattering intensities of the cubic phases. This similarity
is even greater (see Appendix C) when thickness correc-
tions are taken into account. Further, our theoretical re-
sults for 0 and 0, correlate with those for BP II and BP
I, respectively. To a lesser degree, 0 intensities are com-
patible with those of BP II. No correlation is obtained
with any of the other theoretical structures. This then
supports the phase diagram results of Sec. IV A.

=v 2+4(0.) go'~ 4(o), (19)

C. Bragg refIection wavelengths: The red shift

Another experimentally accessib1e quantity is the shift
of the primary BP Bragg peak with respect to that of the
C phase. The physical origin of this shift was discussed
previously' "and, since it results in an expansion of the
lattice, was termed the "red shift. " Within the Landau-
theory framework, it is closely connected to the Bragg in-
tensities. %'hen only m =2 amplitudes need be con-
sidered, (6) may be rewritten in the simpler form

r =v 2 g o'"e,'(o) g oe', (~)

TABX.E III. Comparison of observed and calculated shifts of the fundamental Bragg back-reAection wavelength of the cubic
phases relative to that of the helicoidal phase.

Observed
BP I BP II 0 o'

Calculated'
Os O8 O8 02 O5

Calculated
0' (0'+) oc (0 )

1.27'
1.4O"

1.10' 1.12 1.03 1.29 1.18 1.20 1.20 1.35

'Landau-theory calculation, ' this paper. The values given are essentially independent of t and a.
Disclination-theory calculation; from Ref. 10, Table II. The values quoted are for the case of equal Frank constants.

'From Ref. 13 on cholesterol derivatives.
dFrom Ref. 14 on biphenyls.
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D. Latent heats

Using high-resolution differential scanning calorimetry,
Stegemeyer and Bergmann' have measured the relative la-
tent heats of cholesteric nonanoate and myristate associat-
ed with the I—+BP II, BP II~BP I, and BP I~C phase
transitions. Since all these transitions occur in an ex-
tremely narrow temperature range, the latent heat ratios
are essentially equal to those of the changes in entropy.
These are related to the Landau free energies by

AS,b
——16

dfb

dt

df,
dt t=t b

(20)

where the prefactor has been fixed so that bSrc(a =0)=1.
The entropy changes associated with the different phase

transitions occurring in the phase diagram (Fig. 3) are
shown graphically in Fig. 7. In particular, we note that

Mlo2/Mo2o, —21 and Sosc/Mo&os —5. While the
C C C

latter ratio is compatible with experiment, ' the former is
low by at least a factor of 5. As pointed out previously,
one possible reason for this discrepancy is the use of Lan-
dau (i.e., mean-field) theory, in which fluctuation contri-
butions to the entropy changes are neglected. These are
likely to be much greater at an I~BP than at a BP~C
transition, since the former is order-disorder in character
while the latter is between two ordered phases. Thus
quantitative comparisons of theoreti. cal latent heat ratios
involving an order-disorder transition obtained using Lan-

'
&SIC

O.5—

/-MESIO'

where 4(o) is the intensity of the o. Bragg peak for a
polycrystalline specimen. Noting that the relative wave-

length shift is r ' for bcc structures and (r/v 2) ' for sc
ones, we obtain the values given in Table III. Also given
are experimental values obtained on cholestrol deriva-

tives and biphenyl compounds, and the equivalent
theoretical results of Meiboom et al. ' Note that the
latter are obtained by a procedure quite different from
that given here and do not have a direct connection with

the Bragg intensities. Coinparison of the values for 05
makes this clear.

From the table we see that our 0 and 0, theoretical

values are in good agreement with those on the cholesterol
derivatives and somewhat poorer agreement with those on
the biphenyls. Here also the data are con.sistent with an
assignment of the 0' structure to BP II and the 0, one to
BP I.

dau theory with experiment are difficult. Quantitatively
the results in Fig. 8 are in agreement with the assignment
BP II~0, BP I~O, . The alternate assignment BP
I~Oh would, however, be equally valid.

p(BP II)/p(C) =0.41+0.05,

p(BP I)/p(C) =0.24+0.05 . (21)

However, this ratio is strongly sensitive to the relative
temperatures at which the BP and C-phase reflections are
measured. Assuming that the C-phase peak is measured
at the BP-C phase boundary, the theoretical Darwin
width ratios of the five cubic structures discussed in Secs.
II and III lie in the respective ranges:

0.31 &pi(1;0 )/W3p2(2, C) &0.54,

0.21&pi(2;0 )/v 6p2(2, C) &0.25,

0.23 &pi(2;0, )/V 6pi(2, C) &0.24,

0.24&pi(2;Ob)/v 6pq(2, C) &0.26,

0.27 & p2 ( 2;0, ) /v'6p2(2, C) & 0.32 .

(22)

I I

-0.6 -04 —02 0.0 02 04 0.6
FREQUENCY

v= 1.0
t =1.0

oc

-0.6 -0,4 -02 0.0 02 0.4 06
FREQUENCY

K'= 10
i= 1.0

E. Fourier amplitude ratios: Darwin widths

An alternate method of determining relative Fourier
amplitudes, based upon Darwin width measurements, has
been given by Marcus. ' Based upon his data, we found
for the primary BP reflections

aS

»0'0'
C

lO 20
-0,6 -0.4 -0.2 Q.O Q2 0.4 0,6

FREQUENCY

FICx. 7. Entropy changes AS associated with the different
phase transitions as a function of the chirality parameter ~.

FIG. 8. Theoretical NMR. spectra of the (aj O„Ob,O„(b)
O~, O„(c)O, O phases showing the effect of quadrupolar

splitting.
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Note that these ranges are for lr values of physical interest
and take into account (except for Ob) the 2% energy
differences shown in Fig. 4(c). For Ob, the entire width
of the 0 phase regions shown in Fig. 2 was used.

Comparing (21) with (22), we see that the experimental
results are indicative for a sc structure for BP II and a bcc
one for BP I. More detailed measurements will be needed
in order to differentiate among the different bcc struc-
tures by this technique.

F. NMR quadrupolar splittings

The theory of NMR quadrupolar splitting of deuterated
cholesteric liquid crystals has been given by us else-
where. ' We showed that the I-phase NMR resonance
line is split when p,j&0 by a frequency difference propor-
tional to

co(xo, [aj)= ga„p;Jaj,, (23)
l,J

where xo is the site of the deuterated nucleus and a~; is
the direction cosine between the applied magnetic field

direction g and the i axis of the p;J coordinate frame. Us-
ing (23), the theoretical spectrum can be found by calcu-
lating the percentage of deuterium nuclei whose quadru-
polar splittings lie between co and (co+6,co). The follow-
ing procedure was used:

(a) A single unit cell of the 0, 0, 0„0b,and 0,
structures was sampled using a grid.

(b) The deuterium nuclei were assumed to be uniformly
distributed. Molecular diffusion, which may be impor-
tant, was not taken into account.

(c) Polycrystalline samples were simulated by averaging
over all orientations IaI of p;J with respect to g using an
appropriate grid.

(d) For each cubic structure, p;J(r) was determined
from the appropriate free-energy minimization and Eqs.
(3) and (4) (with e replaced by p).

(e) The co scale was subdivided and the number of grid
points having splittings in each subdivision was calculat-
ed. Each spectrum was symmetrized about co=0 and, for
comparison purposes, the area of each was normalized to
unity.

(f) The above procedure was repeated using finer and
finer grids until amplitude changes in the calculated spec-
tra were less than 4%.

Samulskii and Luz and by Yaniv et aI. All these spec-
tra have strong similarities to those of Fig. 8(b). No at-
tempt was made to distinguish between BP-I and BP-II
spectra and our theoretical results indicate that this may
be difficult.

G. Morphology

While the Landau-theory calculations presented here
cannot be directly applied to morphology studies, it is
nevertheless useful to briefly compare the conclusions
reached. Onusseit and Stegerneyer and Marcus have
shown that under controlled conditions BP II grows in the
form of square platelets. This is associated with a four-
fold (100) symmetry axis normal to the plane of the
platelets. When BP II—+BP I, crosshatching is observed
within the platelets due to the formation of two equivalent
sets of I 110I planes normal to the observation direction.
These results are all consistent with sc and bcc structures
for BP II and BP I, respectively, and thus in general
agreement with the Landau-theory results. Another in-
teresting point is the observation" ' ' that BP II (un-
like BP I) cannot be supercooled. This indicates that the
structures of these two phases are not greatly different
and would support the more specific assignment BP
II~0 and BP I~O, .

V. DISCUSSION

In this paper we have further developed the Landau
theory of phase transitions in cholesterics by systematical-
ly including the effect of higher harmonics in the struc-
ture factor of the free energy. The most important result
of this procedure is the appearance of new cubic phases,
as summarized in Table IV. Encouragingly, no new struc-
tures are introduced by the forth harmonic, strongly indi-
cating that we have succeeded in identifying all cubic
phases composed of m =2 harmonics only.

A' striking result of our calculations is the extremely
small free-energy differences between the various cubic
structures. The 0,-0 (BP I—BP II) boundary, in partic-
ular, can shift considerably (see Fig. 4). Thus higher-
order terms in the free-energy density, while negligible in
other respects, could have a significant effect on the loca-
tion of the BP I—BP II phase boundary. This could also
be the result of small m&2 components of the order pa-
rameter. Figure 3 should be regarded accordingly.

Some typical theoretical spectra, obtained using the
above procedure, are shown in Fig. 8. First, in Fig. 8(a),
we compare those of the three 0 structures. Both the 0b
and 0, spectra consist of well-split doublets and are quite
distinct from that of 0, . The 0 spectrum [Fig. 8(b)] is
also a doublet, with features quite similar to those of 0,
and 0, . Finally [Fig. 8(c)], we see that the 0 spectrum
is distinctly different from that of 0 and the other
phases shown in Fig. 8(b). Although Fig. 8 gives the spec-
tra of the five cubic phases at only one point in the phase
diagram, the essential features of each are in fact indepen-
dent of the particular point chosen.

Experimental BP NMR spectra have been reported by

One'
No. of harmonics

Two Three or four'

Equilibrium
structures

'Ref. 12.
~Refs. 2 and 4.
'This paper.

o'
o' o'

0'
O', O.'
05 Oc

TABLE IV. Possible cubic structures which are local minima
of the Landau free-energy functional as the number of spatial
harmonics in the order parameter is increased.
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In general, the identification 0 ~ BP II, 0,~ BP I is
in accord with the experimental data of Meiboom and

- Sammon' and Stegemeyer and Bergmann' on cholesterol
derivatives and mixtures. Quantitatively, this is particu-
larly true of the relative intensities and red shift, as shown
in Tables II and III. Unfortunately, relative intensity data
on other compounds are still lacking. In particular, re-

sults on. biphenyl mixtures' ' are less conclusive than
those on the cholestegens (see, e.g, Table III) and may not
be consistent with the above assignment. Even with
respect to the cholesteryl alkanoates there is not complete
agreement. Nicastro and Keyes' claim that several of
these compounds (valerate, hexanoate, heptanoate, and
nonanoate), whose x values put them in the relatively nar-
row part of the BP region, do not appear to exhibit a
second Bragg back-reflection in the lower section of the
Bp segment. This could possibly indicate that a Ob struc-
ture has been observed. Note that it is in. this part of the
phase diagram that our calculations (see Table I for
lr= 0.9) indicate that fo2 fos ~

/f -2 is as small as
b

0.04—0.05. Thus it is here particularl. y that small energy
corrections might result in an Ob phase becoming thermo-
dynamically stable. Further studies would certainly be
useful, as these results (for the case of cholesteryl
nonanoate) differ sharply from those of Meiboom and
Sammon. '- We also note that the results of Nicastro and
Keyes' on cholesteryl propionate and butyrate are con-
sistent with O, as well as 0 symmetry.

Yet another feature of our theoretical results is their
convergence with those of Meiboom et al. ' (see Tables II
and III). These two models begin from opposite points of
view: The Landau theory is essentially an expansion into
the ordered phase from the order-disorder phase boun-
dary. Within a mean-field framework the necessity to
take harmonics [and, in principle, terms of higher order
than these given in (2)] into consideration arises from the
first-order nature of the transition. When the transition is
weakly first order (as is the case in cholesterics ), then a
relatively small number of harmonics suffices to obtain
physically realistic results. The disclination theory S, io o„
the other hand, is basically a zero temperature model in
which the order parameter —except in "tubes" located in
the immediate vicinity of line disclinations —is con-
strained to be uniaxial and of constant magnitude. A
temperature scale is introduced ad hoc by regarding the
tubes as being in the disordered phase and using the quad-
ratic term in the Landau expansion to approximate the
free-energy density. Outside the tubes the total elastic
(Frank) energy is minimized numerically within a unit
cell. That results based upon such disparate models are
similar, provides, in a sense, external support for the va-

lidity of each one. Note further that in the Landau
framework the order-parameter field is everywhere analyt-
ic as it is simply the Fourier sum of analytic components.
We believe this to be the actual physical situation in BP.
The nonanalyticity which occurs in disclination models is
an unavoidable consequence of using a director represen-
tation and is not an intrinsic feature of the problem. It is
rather the price that must be paid in order to describe the
five-dimensional order parameter by a vectorlike object
(the director). Note, for example, that in the director rep-

resentation one cannot distinguish between negative and

positive order parameters; i.e, , between those cases in

which rodlike molecules favor being oriented in a plane
rather than along a unique axis. For example, in the 0
structure we believe that the molecules are, in the neigh-

borhood of (111)axes, predominately oriented perpendic-

ular to these directions. This should be an observable ef-

fect. In a director model, on the other hand, there is no

way to distinguish this type of behavior for that occurring

along the 0 (100) axes, where the molecules prefer to
locally align along these directions. Overall, we believe

the Landau approach to be more convenient computation-

ally and to lend itself naturally to a wider range of
theoretical results for comparison with experiment.

By restricting our analysis to m =2 Fourier com-

ponents we automatically avoided any consideration of
the structure groups T' (P23), T (I23), and T (I2&3),
which are subgroups of O, 0, and 0, respectively. In

principle one could distinguish between a given group and

its respective subgroup by light scattering studies. In

practice, however, this is likely to be difficult ' due to
the very small Fourier amplitudes expected for m&2
components. Thus the structures discussed in this paper
are expected to be the experimentally relevant on.es. How-

ever, we note that contributions from m&2 Fourier com-
ponents and also those from higher-order terms in the
Landau free energy can be obtained straightforwardly by

utilizing the methods discussed in Sec. II.
Finally, it is clear that amorphous BP III deserves fur-

ther study and analysis. As noted in the preceding sec-
tion, Landau theory provides a basis for carrying out such
an analysis which would, we believe, complement the
study of spatially ordered phases presented here.
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APPENDIX A

We here determined the symmetry-allowed values of
the phases $2(hkl) for the 0 space group when
a =h +k +l takes the values 2, 4, 6, and 8. We set our
coordinate-frame origin on the threefold symmetry axis

[111],at its intersection with the twofold symmetry axes

[110], [011], and [101]. [This is the point ( —, —, —, ) of the

crystallographic unit cell with point symmetry 32.] Then
all other phases are related to the set $2(110), $2(110),
$2(200), $2(112), $2(112), $2(112), $2(112), Qg(220), and
Pz(220) by the threefold permutation symmetry. We shall
calculate the effect of other symmetry elements of the
space group on a component
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p2(o )e ' [Mz(hkl) ]exp[iq(hx +ky + lz)],i $2(hkl)
(A 1)

of the order parameter as given in (3) and (4). To do this
it is necessary to express the [M2(hkl)] in the coordinate
frame of the unit cell. This can be done conveniently us-

ing a dyatic notation and writing [we suppress the (hkl)
indices]

[110]. It immediately follows that $2(110)+m/2
= —gz(110) or, gi(110)=—~/2 when gi(110)=0 and
+w/2 when gz(110)=m.

Turning to $2(200) we define local vectors f='y, g=z,
and g=x. Rotating by m. about [110],x~ —y, y~ —x,
and z —+ —z. Then

u =y+iz~ (x—+iz) =exp( —im. /2)(z —ix)
[Mz] )r=u up,

with

(A2)
and

pqexp[i1i z(200)] [M2(200)]exp(2ix)
u =(/+i ri)/V 2 . (A3)

Here g and ri are real unit vectors, taken such that g,
g, and g=(hx+ky+lz)/o'~ form a local right-handed

coordinate system.
Consider first $2(110). The associated local unit vec-

tors are g=z, ri=(x —y}/~2, and g=(x+y)/v 2. Ro-
tating by n. about [110], x~ —y, y —+ —x, and z~ —z.
Thus P~ —

{M and [Mz]~[Mz]*. The function (Al)
with (hkl)=(110) goes to )u2exp(i/2)[Mz]*exp[ iq(—x
+y) ] which, by symmetry, must be equal to
the complex-conjugate function p2exp( —i/2)[M2]'
X exp[ iq (x—+y)]. Thus Pz(110)=0 or m..

To determine 1iz(110) we first define the local vectors
g= —z, ri = —(x +y )/~2, and g= ( —x +y )/W2. There
is a symmetry element of the space group which consists
of a twofold rotation about the axis [x,—,', ——,

' ], defined

with respect to our origin. It takes x~x, y —+ —y, and
z —+ —z. Also the origin (000) is translated to the point
(0, —,', ——,'). The function (Al), which initially has the
form {Mz(o )exp[&'gz(110)][M2(110)]exp[&q( —x +y)], is
transformed to pz(o )exp[i 112(110)] [M2(110)]*exp[iq( —x

y) im—/2]—T. his, . by symmetry invariance, must be
equal to the function associated with the wave vector or

1it2(112)=1i2(112)=0; gz(112)= —$2(112)= —m /2,

~pzexp[igz(200) —in.] [Mz(020) ]'exp( 2—iy)

=p2exp[ —if(020) ][M2 (020)]*exp( 2i—y) .
Thus gz(200) —m = —$2(020) = —it 2(200) and 1i z(200)
=+n /2.

Consider next $2(112). Defining g=( —x —y —z)/v 3,
ri=(x —y)/W2, and g=(x+y+2z)/W6 and rotating by

about [110], it is straightforward to show that
1i2(112)=0 or m.. The phase $2(112} [with g=(x+y
+z)/W3, g=( —x+y)/V2, g=( —x —y —2z)/V6] is,
by a twofold rotation about [—,', ——,',z], found to be equal
to $2(112). Similarly, the phases 1iz(112) about $2(112)
[with g=( —x+y+z)/v 3, ri=( —x —y)/W2, g=(x —j
+2z)/1 6 and g=(x —y+z)/v 3, ri =(x+y)/V 2,
=(—x+y+2z)/v 6, respectively] are found by a n. rota-
tion about [110] to satisfy 1i2(112)=—fi(112). Further,
the former, by a m' rotation about [x,—,', ——,

' ], must be

equal to m!2 if $2—(112)=0 and +n/2 if $2(112)=n..
We thus have the two possible sets of values:

TABLE V. Symmetry-allowed phase angles for the low-lying m =2 Fourier components of the 0,
0', and 0 structure factors. All others may be obtained by cyclic permutation. The first of the two

given values is that corresponding to the local minimum of the Landau free energy except as noted

below.

Structure

02 $2(100)
$2(100)=gp(110)

Phases g (hkl) Symmetry-allowed values

0' 1(2( 110)=$2(T10)
$2(112)=g~(112)=$2(112)= il p(112)
$2(220) = fp(220)

0;n-

0;m
0-~b

08 $2(110)= —1(jp(110)—2 n

$2(200)

$2(112)=Qp(112) = —$2(112)—~ sr= 1(j2(112)—2
m.

$2(220) =1(~(220)+ vr

0'm"
1 1

77p

0;m

0 m'

'Both angles give equal free energies. See Ref. 6.
In some cases this angle should be used (see Table I).

'This choice corresponds to the 0, and Ob structures.
"This choice corresponds to the 0, structure.
'In some cases this angle should be used for 0, (see Table I).
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APPENDIX 8

In the theoretical analysis carried out in Sec. II, a scaled
and dimensionless form of the Landau free-energy func-
tional was used. This was particularly conven. ient since
the term in (2) proportional to cz did not contribute for
the structures studied. For experimental purposes, howev-

er, a formulation in terms of directly measurable quanti-
ties may be more useful. This is given here.

Three of the scaled quantities introduced in (7) satisfy
this requirement. The first, q~, is the usual cholesteric
wave vector and is related to the Bragg back-reflection
wavelength in air by Ac' =4m ,n/qc, where n is the index
of refraction. The other two, gR and t, are the correlation
length for a racemic (qc ——0) mixture on the isotropic-
racemic phase boundary Tz and the difference in tern-

perature between this boundary and Tz, which is obtained

by extrapolating the disordered-phase correlation-length
divergence to infinity. That is,

t =( T TR)/(TR ——TR)=—(T —T )R/b, T R. (81)

Defining e~~, ei as the experimentally accessible dielectric
constants parallel and perpendicular to the nematic axis
for the racemic mixture, it is straightforward to show that

(82)

We therefore choose as our normalized order parameter

6tJ CJJ /b 'E (83)

noting that p,j——W6etj/4. Finally, a measurable unit of
energy or energy density is needed. Two possible choices
are the racemic Frank elastic energy coefficient and the
latent heat associated with the isotropic-racemic phase
transition. For the former, we note that for the case of a
locally uniaxial system the elastic energy density term in

(2) becomes

$2(112)=pz(112)=n; $2(112)= —$2(112)=+a/2 .

Finally, we turn to the phases 1(J2(220) and itJ2(220). Us-
ing the same basis vectors and symmetry operations em-

ployed for gz(110) and 1(2(T10), respectively, we find that
$2(220)=0 or ~ and that $2(220)=$2(220)+m. This
completes our determination of the symmetry-allowed
phases for the four lowest-lying wave vectors of 0 . The
symmetry-allowed relevant phases for 0, 0, and 0
structures are summarized in Table V.

L =TR(dF/dT)T T

=T (P /36y )[8( ,'tp—, )/dT]

=(p /576y )(TR/hTR) . (86)

or
A =K/2'
A =3LbTR/TR .

(88)

The quantities qc, gR, TR, TR, K, and L are all experi-
mentally accessible and both expressions in (88) yield ap-
proximately equal values for A. Note particularly that
the norinalized free energy F/(A/v) is a universal func-
tion of v and t.

APPENDIX C

A nonpolarized incident beam may be regarded as corn-
posed of right- and left-hand circularly polarized corn-
ponents of equal magnitude. As essentially only one of
those is Bragg scattered in cubic cholesteric Bp, let us
consider a beam i with 100% relevant polarization. As-
suming that multiple scattering is negligible, the relative
intensity of the polarized transmitted beam at a Bragg
backscattering wavelength k for a sample of thickness D
will be

i (o;D)/i (o;0)=e (Cl)

where, from (17) and (18), a(o ) is proportional to
o' eJ(o). Thus the relative step in the polarized beam in-
tensity is

i (o;0) (o;D)—.

i (o',D)
(C2)

and is simply proportional to a(o ) as D~0. In general,

a(o 2) o 2 e2(a2) in[i (o2 ,D) /i (o 2', 0)]
a(o i ) g ,'J2g~~(g, ) in[i (o, ;D) /i (o i,0) ]

(C3)

Relative to the total unpolarized intensity Io transmitted
in the disordered phase, we have

Defining a normalized length p =r /gR and volume
v = V/gR and using (2), (Bl)—(83), and either (85) or
(86), the following expression for the average Landau
free-energy density is obtained:

F =(A/v) f dpi' ,' (e,J —2Jre;J—t&;n&p t+&i~j t)

—3e;jeqtei; + ,' (e,J—) ], (87)
with all derivatives now with respect to normalized coor-
dinates and

2c, d i
—,'(p /3——6y—')gRp (Jt;,i)', (84)

i (o;l) =I(o;I)/Io —0.5; l =O,D . (C4)

where n is the director. Using jJ,(T =TR)= —,, we have

for the corresponding Frank constant

K=(P /96y )gR . (85)

Since the three Frank constants are not equal, the ap-
propriate one to use in (85) is that for twist, as this is the
dominant contribution to the elastic energy in cholesteric
systems.

The alternate choice, latent heat, is given by

Here, I (cr;0) and I (o-,D) are the (in general, partially cir-
cularly polarized) transmitted intensities measured at
wavelengths slightly greater and less than A, , respectively.
Using (C3) and (C4) the observed intensity ratios can be
compared with the calculated @~2(o.J)/ez(o. i) ratios. In
general, however, the measured intensities would have to
be corrected for multiple scattering and wavelength-
dependent anomalous scattering and depolarization before
a quantitative comparison could be made. "'
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