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An asymptotic evaluation of the specific heat of an ideal relativistic Bose gas confined to a cu-

boidal enclosure (Ll )&Lz)&L3) is carried out, under periodic boundary conditions, taking into ac-
count the possibility of particle-antiparticle pair production in the system. Finite-size corrections to
the 'standard bulk behavior are calculated explicitly in the regions t )0 and t (0, where

t=(T T, )iT—„such that
~

t
~

&&1 and
~

L;t
~

))1. While for t)0 finite-size corrections turn out
to be exponential for all geometries, for t (0 this is true only in the case of a film; for other

geometries, such as a cuboid or a rectangular channel, these corrections conform to a power law in-

stead. Finally, we consider the situation in the core region, where
~

L;t
~

=O(1), and examine the
location t and the height cz of the specific-heat maximum; finite-size corrections in this region

turn out to be O (L &'), where L & denotes the shortest yide of the enclosure.

I. INTRODUCTION

In a recent paper, ' hereafter referred to as I, we present-
ed a tlieoretical analysis of the onset of Bose-Einstein con-
densation in a relativistic Bose gas confined to a cuboidal
enclosure of finite physical dimensions (Li XL2XL3),
taking into account the possibility of particle-antiparticle
pair production in the system. Through an extensive use
of the Poisson summation formula, we carried out an ex-
plicit evaluation of the summations over states appearing
in the problem, which enabled us to make a rigorous
study of the temperature dependence of the thermo-
geometric parameter y of the system in the case of a cubi-
cal enclosure under periodic boundary conditions. This,
in turn, led us to determine the growth of the condensate
fraction pulp as a smooth function of temperature from
T& T, down to T =0 K. Finite-size corrections to the
standard bulk results were obtained in explicit terms and
were shown to be consistent with the Fisher-Barber scal-
ing theory for such effects. Finally, the situation en-
countered in the case of special geometries, such as nar-
row channels and thin films, was also examined at some
length.

In the present paper we extend the aforementioned
analysis to a similar study of the specific heat of the sys-
tem at constant volume. Once again it turns out that the
inclusion of antiparticles into the problem renders the
analysis of the relativistic problem far more tractable than
it otherwise is, with the result that finite-size corrections
to the bulk behavior of the system can be derived in a
closed form. An important finding of the present investi-
gation is that the algebraic nature of these corrections de-
pends rather crucially on the geometry of the enclosure.
While for T) T„ the dependence on L&, where L&
denotes the shortest side of the container, is quite general-
ly exponential, the situation for T ~ T, is not so straight-
forward. Here, the asymptotic correction varies exponen-
tially only in the case of a film (for which L i z~ ao while

L3 is large but finite); for other geometries, it varies as a
power law L& in —the case,of a rectangular channel (for
which Li —mao while L23 are large but finite) and L & in
the case of a cuboid (for which L

& ~ 3 are all large and fin-
ite). These differences of behavior are clearly significant
in the context of the finite-size scaling formulation for
Bose systems.

Finally we examine the situation in the core region
(T=T, ) and determine precisely the location and the
height of the specific-heat maximum. We find that, apart
from the expected effect of changing the cusplike singu-
larity characteristic of the bulk system into a smooth
maximum, the finiteness of the enclosure results in
displacing the maximum towards higher temperatures and
reducing its height —both corrections being of order L & .
Remarkably enough, our theoretical findings are qualita-
tively the saine, irrespective of the severity of the relativis-
tic effects; the influence of the latter on the various physi-
cal results turns out to be only quantitative. For continui-
ty with our previous work we shall follow the notation of
I throughout this paper; in particular, we shall use units
such that A=c =k~ ——1.

II. FORMULATION OF THE PROBLEM

We consider an ideal Bose gas composed of N& parti-
cles and N2 antiparticles, each of mass m, confined to a
cuboidal enclosure of sides L j, I.2, and I-3. Since parti-
cles and antiparticles are supposed to be created in pairs,
the system is governed by the conservation of the number

Q (=Ni —Nz), rather than of the numbers Ni and Nz
separately; the conserved quantity Q may be looked upon
as a kind of generalized "charge. " In equilibrium, we
have'

N, =g (et"-&'—1)-',

Nz ——g (e~'+"' —1)
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where p= 1/T, e=(k +m ),while
~ p l

&m. Assum-

ing that, to begin with, iM&0, it readily follows that
X~ & %2 and hence Q & 0. In view of the conservation of
Q, p then stays positive under all circumstances. Without
loss of generality, we shall assume that this indeed is the

Under periodic boundary conditions, the eigenvalues k;
(i =1,2,3) of the wave vector k are given by

k;=(2n. /L;)n; (n; =0,+1,+2, . . . ) . (2)

The expression for the energy density u of fhe system
may, therefore, be written as

g cosh( jPp)
J =1

2 3 n.
1+ m2;

n;
exp —jpm 1+. m2, ,

(4)

Using the Poisson summation formula (PSF)

Pl ), tl 2 lf 3 =—oo

where

f (n ~, nz, n3) =

J f (n)e2mi( q n )d3

Eq. (4) takes the form

g cosh(jPp)
m p

.2 &3(pmz) E2(pmz)
pmj

Z3 Z2
(6)

~h~~~ K,(pmz) are the modified Bessel functions while

z=(J +il') " e'=p 'y(q), y(q)=(qiL &+q22L, ', +tI23L,')'".
The q =0 term in (6) yields the bulk result, viz. ,

Pl K3(pmj)
uii(p, p)=-

2 2 g cosh(jpp) pm
~2p2 j

K2(pmj)

j

while the remaining terms —those with q&0—-can be
simplified by replacing the summation over j by an in-
tegration. We hasten to add that, as demonstrated in I,
this corresponds to, first, replacing the summation over j
by a summation over l (with the help of PSF) and, then,
retaining the term with I =0 only. This introduces errors
O(e '

) or O(e ' ), where A.r (=v'2~P/m ) and
A,c (=1/m) denote, respectively, the mean thermal wave-
length and the Compton wavelength of the particles. As-
suming that, for all i, I.; &~A, z and A,c, these errors can be
ignored with impunity. The important thing to note is
that no errors of order (A, z /L; )" or (A,c/I. ; )" are commit-
ted if, for y(q)&0, the summation over j is replaced by
an integration.

Now, the integration encountered here is somewhat in-
volved but can be done exactly; see the Appendix. Using
Eq. (A6) and remembering that

' 1/2

ICy2(z) =
2Z

we obtain

u =uti(p, p)+ Hi(iM),p

l

where

H ( ) g' [ (~)] ne —(m2 —P2)—i~2y( q j

Thc primed summation herc in1plics that thc term with

q =0 is excluded; accordingly, y(q) &0. The correspond-
ing expression for the "charge density" p[—:Q/V=(Xi —Xz)/V] is given by Eq. (29) of I, viz. ,

p=pti(P, p)+ Hi(p),
2m

where

(12)

Nl
Pti(P, P, ) = z ~(P,lj, ),

W(P,p)=2 g (jPm) sinh(jPiu)Kz(jPm) .
'J=1

(14)

Combining (10) with (12), we obtain for the thermal ener-

gy density u of the system

u =—(u mp) =uti(P, p) — H&(p) . —p(m —p)
2mP
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where
4

u~(P, p) = [us(P, i2, ) —mp~(P, p)] =
2 Z(P, i2), (16)

with

BQ
cp

———p
Bp

m'P' dz
2~2 d p

(Pm) d8' (m —p )'
d p 1+Ho(p)

(22)

Z(P,p) =Z(P, m)— BZ

p=m8
(m —p)

21/2
+ (m —p)' '+O((m —p)') .pm'"

In view of the fact that

E3(jpm) K2(jpm)
Z(P, p)=2 g cosh(jPp, )

j=1 Jpm (Jpm)

E2j(pm)—sinh( jPp ) j pm

For p~m, the function Z (p,p) takes the form

(17)

(18)

where Z—=Z(p, m). Equation (22) should enable us to
study the leading finite-size corrections to the bulk specif-
ic heat of the system in different geometries, including the
rounding off of the bulk singularity into a smooth max-
imum.

We shall now examine the asymptotic behavior of c& in
the vicinity of the bulk critical point P=P, which is
determined by the condition

W(p„m) = (23)

III. ASYMPTOTIC ANALYSIS OF THE SPECIFIC HEAT

az(p, &)
Bp

P dW
m dP

[see Eq. (13)]. For p close to p„Eq. (20) reduces to

[(m —p, ) —Hi()M)]= t,2 2 1/2 (p, m)2

dP
(24)

where W [=W(P,m)] is given by (14), Eqs. (15)—(18)
yield the desired expression

r

u=
'

Z(p, m)+P( —~} d~
m dP

T TC

C

p, —p
(~t

~

«I).

(m 2 p2)3/2 Hq(p)
+ 1—

42rp (m 2 p2)1/2

+O((m' —p')') . (19)

m m (m '—p2)'/2
p= W(P, m) — 1—

277 2m'P (m —p, )

In the same vein, Eqs. (12)—(14) give [see also Eq. (31)
of I]

At the same time, Eq. (22) takes the form

Cp=
2

dz d'Z
dp

' '
dp

(P m} dR' (m —p )'

dp, 1+Ho(p)

dz
dP

(25)

We shall now consider the regions t & 0 and t & 0
separately.

(a) t ~0, L;~no. In this case, the quantity m —lu is
of order unity and the functions H„(p) tend to zero ex-

ponentially; see Eq. (11). Equation (24) then gives

+O(m —p, } . (20)
2

(m —p, )
(p~m)

7T

whence

Bp Pm dW (m —p )'/

BP m dP 1+Ho(p)

whence

(21)

It can be shown that despite their apparent structure,
which involves the quantity (m —

JM
}'/, the functions u

and p are smooth, analytic functions of the variable p; see,
for instance, Chaba and Pathria, especially the identity
embodied in Eq. (63) of their paper.

To determine the specific heat of the system at constant
volume, we need to know the quantity (Bp/Bp)&, which
can be obtained from Eq. (20). To leading order in
m —p, we have2 2

m 4p,' dZ d Z
dp, ' dp2

-2 az
dP

6 3

(p, m) —Lt+O(te ),
2~4

where L & denotes the shortest side of the container.
(b) t&0, L;~ao. In this case, the quantity m —p

tends to zero, and the functions H„(p) diverge, in a
manner which depends crucially on the geometry of the
container. The various possibilities of interest are covered
adequately by considering the following three cases.

(i) A cuboid, for which L &, L2, and L3 are all large and
comparable to one another. Here
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( m 2 ~2 ) 1/2y( ~q )

Hi(p)= f d'q
y(q)

H(((M)=2 g
q3 ——1

—(m —p) qL

and

4m.

LiL2L3(m —
(M )

H ( ) f e
—(m2 —P2)~/2y( q )d3q

8m

LLL(m —(M)

(28}

(29)

2 —(m 2 —&2)1/2I.
3ln(1 —e ')

L3

in[(m —p )'/ L3]
L3

(36a)

(36b)

Equations (24) and (25) then give

4m

(P,m)'i dW/dPI(, L L L
I
t

I

and, hence,

(30)
q3 ——1

(m 2 p2)1/21
=2(e ' —1) (37a)

m4p,'
2&

1

L )L2L3t

dZ d2Z

dp, ' dp2
dZ
dP

(31}

2

(
2 2)1/2L

(37b)

2 2 1
m —p = exp2L3

(Pm)' dW
7T

(38)

Using the approximations (36b) and (37b)„we obtain from
Eqs. (24) and (25)

(m 2 p2)1/2y( q )

H, (p)=f d q
y(q)

2m.

L L (m2 p2)(/2
(32)

(ii) A rectangular channel, for which Li = 00 while L2
and L3 are both large and comparable to each other. The
functions H„(((4) now involve summations over q2 and q3
only, so that asymptotically

dZ d Z
dp ~ dp2

(p, m)' dW
4n' dP

dW
)& exp

dZ
dP

(39)

and

H (p)=f e ' "' r(q'd q

2'
L,L,(m' —(M2)

'

with the result that

4m.4

(p, m) (dw jdp), (L2L3)2t2

(33)

(34)

dZ d Z
dP c

dZ
dP

(p, m)6
t (t &0)

2m-4
(40)

is exponential for all geometries, this is generally not true
for t &0. Here, the corresponding correction to the bulk
result,

We thus observe that while, for t&0, the finite-size
correction to the bulk result,

m4p,'
(C~)ii =

2+2

and

m 4p,'
2772

dZ dZ
dP, ' dp'

2m.2

(p, m)'
~

d W/d p ~, (L2L3)'
~

t
~

'

dz
dP

(35)

(iii) A film, for which Li 2 ——ao while L3 is large. The
functions H„(((4) now involve summations over q3 only
and can be expressed in a closed form:

(cp)s = m'P' dz
2n2 dP ' dp'

—2
dZ
dP

(t &0) (41)

depends crucially on the geometry of the enclosure. It is
only in the case of a film that the relevant correction
turns out to be exponential in nature, as was indeed found
previously by Barber and by Barber and Fisher in their
analysis of the thermodynamic properties of an ideal, non-
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relativistic Bose film. In other geometries, such as the cu-
boid or the rectangular channel, the relevant corrections
are found to depend on L; through a power law instead.
This, in turn, affects their t dependence as well for, in the
spirit of the scaling theory for finite-size effects, ' one ex-

pects these corrections to be of the form

L 'f(L t) . (42)

p= 8'(P, m) — ln(2sinhy),
L3

(43)

where y is the thermogeometric parameter appropriate to
the system, ' viz. ,

It is gratifying to note that all our results, viz. , Eqs. (27),
(31), (35), and (39), are consistent with this expectation.

At this stage we would like to point out that, in the spe-
cial case of a film geometry, Eqs. (36a) and (37a) enable us
to derive our final results in a closed form which holds
over a considerable range of temperatures —in fact, from
T) T, down to T =0 K. Using (36a) in conjunction with
(20), we obtain

T/Tc

FIG. 1. The nonre1ativistic variation of c~(T)l[c~(T, )]b„1k
with T/T, for a film of thickness L3 such that p' L3 ——50; for
comparison, the bulk limit p' L3—+ oo is also displayed. Reduc-
tion in the height of the maximum and its shift towards higher
temperatures are clearly seen.

Z(P, m)= 4P
15m

y
1

(m 2 p2)1/2L

It follows that

(44) =2"—
W(p, m)= p (49)

y (P) =sinh '
—,
'

exp
m pL3

[8'(p, m) —8'(p„m)]
P, m =(m /3p)'/

with the result that

(45)

Equations (22) and (37a) then give

(pm) dW
P 3 dp y tanhy . (46)

3

Z(P, m) =—3 m.

2m'

' I/2

p
—5/2

2

1/2
7T

g
3

p 3/2

2m
I

2/3
1 3 m

p, m= 2%2 p

W(p, m)= (47)

As a check we observe that in the nonrelativistic limit,
where

mPpL3
y (P) =sinh ' —'exp

m
1— p,

(50a)

and

4m 3p
P 5 3

' 1/2
C

p
16m

y tanhy .
9P L3

(50b)

The leading term in (50b) is in agreement with the corre-
sponding bulk result of Haber and Weldon" who intro-
duced the possibility of particle-antiparticle pair produc-
tion into this problem, while the finite-size correction to
the relativistic bulk result is derived here for the first
time. The variation of c& with T, near T =T„ is shown
in Figs. 1 and 2.

Eqs. (45) and (46) reduce to

rrPpL3
y (P) =sinh '

—,
'

exp 1—
' 3/2

C
(48a)

and cp (T)

3/2
15 g(5/2) Pc
4 g(3/2) P

9[/(3/2) ]'m
2 y tanhy, 48b

which agree with the corresponding results of Pathria'
who first studied the problem of Bose-Einstein condensa-
tion in ideal Bose films using the concept of the thermo--
geometric parameter y. In the extreme relativistic limit,
on the other hand,

0.9B5
0.994

T/Tc

FIG. 2. Same as in Fig. 1, except that now p/m =100,
which makes this case essentially extreme relativistic.
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IV. THE SPECIFIC-HEAT MAXIMUM f (y) = (coth y+y csch y)/(coth y ) (55)

The regions (a) and (b) studied in the preceding section
correspond to the limiting situations (m p,—)' L & ~ oo

and ( m p—)'/ L & ~0, respectively. In between (a) and
(b) lies a "core region, " characterized by the condition
(m p—)' L& ——O(1), which marks the onset of the
phase transition in the system. It is not difficult to see
that the bulk critical point (t =0) lies in this region for,
according to Eq. (20) or (24).

[Hi(}M)/(m' —p')'"]~ =o= 1

and hence, by (11),

[(m p)'—L&], o
——O(1) .

(51)

(52)

It turns out that the specific heat of the system possesses a
smooth maximum which also lies in the core region. To
see this, we maximize c&, as given by Eq. (25), with the
help of the formula (21) for (B}u/BP)&, which leads to the
condition

1+Ho(t2*)+(m t2' )'/ H—}(P')
[I+Ho( *)]'

m'[P, (d2Z/dP'), —2
i
dZ/dP i, ]

g,"m
~

dW/dP ~,
(53)

where }u* is the value of p at the location of the max-
imum, i.e., at t =t, say. Now, the right-hand side of Eq.
(53) is seen to be 0 (1), ranging from the value of 0.788. . .
in the nonrelativistic limit to the value 0.675 in the ex-

treme relativistic limit. Accordingly, the quantity
[(m p' )' L&]—would also be O(1), with the result
that, for a precise evaluation of }M*, the functions Ho(}M)
and H ~(JLt), which appear on the left-hand side of (53)
and depend crucially on the geometry of the enclosure,
will have to be computed numerically.

In the case of a film geometry, however, the expression
on the left-hand side of (53) can be written down in more
familiar terms. Noting that the function H &(}M) in this
case is given by
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APPENDIX

We wish to evaluate the integrals

&.[y (j'+0'}'"]
J„(x,y;g) = f cosh(jx) dj0 (j2+$2)v/2

(A 1)

&.[y (j'+k')'"]
L ( yx;g)= f j cosh(jx) 2 2,/20 (j2+g2)v/2

8 J (x,y;g}
Bx yg

(A2)

For this we employ the integral representation13

the corresponding value of y" turns out to be 0.854. . . in
the nonrelativistic case and 0.738. . . in the extreme rela-
tivistic case. In passing, we note the formal similarity be-
tween Eqs. (53) and (55) on one hand and the correspond-
ing nonrelativistic results derived earlier by Greenspoon
and Pathria' and by Pathria' on the other; cf. their Eqs.
(27) and (30), respectively.

Once }u' is determined, Eq. (24) enables us to derive t'
and Eq. (25} cz. Quite generally, t* turns out to be posi-
tive, which implies a shift towards higher temperatures,
while cz turns out to be smaller than the bulk (c&)„
which implies a reduction in the height of the maximum;
it is easily seen that both these effects are O(L &'). As
L&~oo, the whole of the core region gets submerged
into a singularity at t =0 and the specific-heat maximum
turns into a cusp singularity characteristic of the bulk sys-
tem.

00 (m 2 2)1/2
H &(}M)=2 g q3L3e

™~ } ~3~3 =
2 L3 csch y,

q3 ——1 (54)

where y is defined in (44), and recalling Eq. (37a) for
Ho(p), we obtain for this expression the functional form

00 Z
X (az) = exp ——'a t+

2 2

whereby (Al) takes the form

t ' dt,

(A3)

J,(x,y;g)= —,
' f f cosh(jx)exp ——y t+ 12+$2

0 0 2
t- -'dt dj .

The integration over j is now straightforward; using the formula'
' 1/2

0
cosh(aj)e 2 dj =—— e'

2 b

we get

J (x,y;g')= —,
'

2y

1/2

f 00 1 x ygexp —— y — t+
0 ', 2 y
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J„(x,y;g) =

We now use the representation (A3) in reverse and obtain the desired result
1/2

2 2 v/2 —(1/4)(y X ) ~ [g( 2 x2)1/2]
2 V (1/2') y

It follows that
' 1/2

(xyg)C I
(y2x2)v/2(3/4)I([g(y2x2)1'/2]

+gx 2(y 2 x 2 )v/2 ( 5/4)I( [g(y 2 x 2
)1/2] (A5)

whence
' 1/2

g3 2( 2 X2)v/2 —(3/4)
yl. „+)(x,y;g) —J„(x,y;g) =

(yg)"
+v—(3/2) [Py '—x ') '"]. (A6)
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