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Lennard-Jones triple-point conductivity via weak external fields
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We have performed a nonequilibrium molecular-dynamics (NEMDj computation of thermal con-
ductivity for a simple dense fluid near the triple point using the differential NEMD method and a
translationally invariant algorithm recently proposed by Evans. We have simulated a set of thermal
gradients in the range 75.8 K/cm to 2.54& 10' K/cm. Our Inain conclusion concerns the response

of the energy current at K= 0, which is linear in the range indicated. To check the efficiency of the
present NEMD technique we have compared the nonequilibrium results with our own and
Levesque's equilibrium Green-Kubo results. The agreement found is remarkable.

I. INTRODUCTION

The hydrodynamic transport coefficients can be ob-
tained from simulations in two ways, either by equilibri-
um molecular-dynamics experiments by using the stan-
dard Green-Kubo relations or by nonequilibrium
molecular-dynamics (NEMD) simulation. The success of
the NEMD approach rests on the possibility it offers to
study directly the response induced by a suitable perturba-
tion and the validity of the linear phenomenological laws.

Moreover, it is generally agreed that NEMD techniques
are more efficient in terms of computer time. For the
particular case of thermal conductivity the design of a
thermal perturbation has proved to be more difficult, and

up to now three techniques have been used.
The first two' consist of models in which suitable

boundary conditions allow the simulation of stationary
nonequilibrium states. A thermal gradient is realized in
the first by setting up two "fluid walls" at different tem-
peratures at opposite boundaries of the molecular-
dynamics (MD) box in the direction of the heat flux. In
the second the contact between the fluid and two heat
reservoirs at different temperatures is obtained through
stochastic boundary conditions on the velocity distribu-
tion.

In the differential method the response induced by the
perturbing field is computed as the difference between the
energy current measured in two separate phase-space tra-
jectories, namely the perturbed (external field switched on)
and unperturbed (no external field) trajectories.

Each of these techniques has disadvantages. In the first
two the thermal gradients simulated are much larger than
the experimental gradients. This is necessary in order to
obtain a satisfactory signal-to-noise ratio. Moreover, wall
effects are unavoidable. On the other hand, in the realiza-
tion of the differential method as stated in Ref. 3, it ap-
pears to be impossible to take the required zero-wave-
vector limit in the observable of interest.

Recently, Evans has proposed a translationally invari-
ant NEMD algorithm which allows the calculation of the
thermal conductivity for a system with periodic boundary
conditions. The method has been tested on a dense

Lennard-Jones fluid subjected to non-Hamiltonian pertur-
bations equivalent to very large "nonphysical" thermal
gradients. The system is maintained in a steady state by
removing heat thanks to an appropriate rescaling of the
second moment of the velocity. Evans finds a reasonable
extrapolation to zero perturbation of the observed thermal
conductivity while the last increases with the "thermal
gradient": a phenomenon without any obvious physical
explanation. Similar ideas have been independently
developed by Dixon and Gillan, who proposed the use of
similar non-Hamiltonian perturbation in conjunction with
the differential technique. However, they did not study
the dependence of the calculated thermal conductivity on
the strength of perturbation and, for the single perturba-
tion studied, they found a disappointing lack of agreement
with their own Green-Kubo result.

In this work we present a NEMD computation of the
thermal conductivity for the same thermodynamic state
considered in Ref. 4. We simulate a set of "small"
thermal gradients by using the algorithm proposed by
Evans but adopting the differential method. The main re-
sult of our computer experiment is that we find statistical
linearity for gradients in the range 75.8 K/cm to
2.54X10 K/cm. We did not use larger perturbations to
avoid any detectable heating of the system. Indeed, for
the largest gradient studied, the difference between the to-
tal energy of the perturbed and unperturbed system was
less than one part over 10 . Our range includes the lower
part of the range studied by Evans. Our results do not
support Evans's finding that "thermal conductivity" in-
creases with increasing field. We have no simple explana-
tion for this discrepancy because the most relevant differ-
ence in the two methods is the presence in Evans's pro-
cedure of the "velocity rescaling, " a seemingly irrelevant
detail. However, both extrapolations at zero field are in
good agreement with published experimental results; the
difference between the two results could well come from
the fact that our system has N= 256 particles and a-cutoff
radius r, =3.5o. while Evans's system has %=108 parti-
cles and r, =2.5o..

In Sec. II we recall Evans's extension of linear-response
theory to describe noncanonical systems where the motion
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is not derivable from a Hamiltonian. In Sec. III we give
details of the calculations and we describe how to imple-
ment the differential technique in the computer experi-
ment. Section IV contains our results and an assessment
of the efficiency of the NEMD method through compar-
ison of the calculated thermal conductivity with that ob-
tained in the generated equilibrium run, Some concluding
remarks are collected in Sec. V.

II. NONCANONICAL LINEAR-RESPONSE THEORY

Consider an equilibrium system characterized by a
Hamiltonian Ho ——Hp([ q;, p; j; t iv ). Then, for i = 1,N,

Bp"(&) Bp"(r)q;+ .p,.
Bq; Bp;

—p X B ' B«+ 'Pl
Bq; Bp;

(2.6)

Now we define the "perturbed" and "unperturbed" Liou-
ville operators through their action on a dynamic variable
&=&(Iq p j =i, iv):

N
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(2.1)
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This system is subject to an external time-dependent per-
turbation F(t), with

N
iLoB= g BB

qto+ 'Pto
Bq; Bp;

The linearized Liouville equation is

(2.8)

q; = +F(t) C;,
m

p;=F;+F(t) D;,

(2.3)
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where i &T. =i (L —Lo), and we assume
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where C; =C ( I q;, p; j; i iv) and D; =D;( I q;, p; j;, iv)
are phase-space functions of suitable tensorial nature.

Let us assume the general case in which

N ~~o N N I~o
and po ——e / dq dp e ' is the canonical equili-

brium distribution function. The formal solution of (2.9)
is

N
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If p~(t)=p+(t
I Iq;, p;j; & iv) is the N-particle phase-

space distribution function, we have the following Liou-
ville equation: Hence,

N
N y
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Therefore, in the general noncanonical case, there is an extra term contributing to bp (t) which is not proportional to p.
In the thermal case the "ad hoc" forms for (2.3) and (2.4) are

Plql=
m

N
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N N

E; —g Ei/N I F(t)+ —, g FJq,z F(t)
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(2.15)

where I is the unit tensor of rank two and
2

PlE=-- +-
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J+l

Notice that if the unperturbed system is translationally invariant and P(t =0)= g,. p;(t =0)= 0, then the total momen-

tum is conserved and equal to zero. Substituting (2.15) and (2.14) in (2.13) we finally get
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In the center-of-mass reference frame, for which P(t) = g,. p;(t) =0, Eq. (2.16) becomes

hp (t)= f e '
ppo

.I.F(t) E;+ —,
m i=1 j=l

J+i

.F1
.[q,j F(t)]

m
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The linear response of the energy current can now be calculated in the usual way by averaging over bp (t). We find

( J (K=O)), =p f (J (K=O, O}J (K=O, t —t'))OF(t')dt'.

Choosing F(t) =(O, O,F, )e(t), where
r

0, t&0e(t)=,', (2.19)

as is done in Ref. (4), we find for the thermal conductivity

I

run, we also perturb the system at regular intervals in
time. Below we describe the prescription to be used for
the case at hand.

The form of F(t) chosen to generate the perturbed tra-
jectories is

k= lim
f~oo

(J, (K=O}),
Fz TV

F(t) = F5(t) .
(2.20)

Inserting (3.1) in (2.14) and (2.15) we have

(3.1)

where V and T are respectively the volume and the equili-
brium temperature of the system. However, in the linear

region other choices of F(t) are possible. A particularly
simple choice is to set F(t) =(O,O, F, )5(t) [5(t) is the Dirac
5 function); this is the one adopted and discussed in the
following sections.

Plq;=
N N

p;= g F,,+ E, gE /N —I F5(t)
j=l 1=1
J+l

(3.2)

III. MODEL AND COMPUTER EXPERIMENT

We consider a system of 256 particles enclosed in a
cube A interacting through a two-body potential of
Lennard-Jones type. We cut the potential at a distance
R, =3.35o-, our units are o for length, e for energy, and
r=(mo /48e}' for time (o.=3.405 A, e=119.8k~,
&=3.112X10 ' sec for argon). Throughout the numeri-
cal experiment we maintain periodic boundary conditions
in all directions. We studied the thermal response of the
fluid near its triple point: po =0.8442, king T/e=0 721 as.
a function of the perturbation. To implement the dif-
ferential method the paths of the particles in perturbed
and unperturbed trajectories are followed simultaneously
and the time variation of the response is calculated as the
difference in the relevant dynamical variable. This yields
the mechanical response. The statistical response is ob-
tained by averaging the mechanical response over a cer-
tain number of such pairs of trajectories. Therefore, in
addition to carrying out a normal molecular-dynamics

N

+ —,
' g F~jq~j F5(t)

j=l
j+i

N N

g F;kq,.k F5(t) .
k=1 j=l
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In solving Eq. (3.3) we use the central-difference algo-
rithm of Verlet. 6 At t=O, however, the perturbation ap-
pears as an impulsive force; to take into account the pres-
erice of a 5 filnction, some modification of the algorithm
is needed. Following the general procedure described in
Ref. 3 the initial velocity value is changed as follows:
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while the coordinates are unchanged.
For the applied field F(t) = (0,0 F, )5(t) the relation be-

tween the energy current (J, (K=0) ), and the autocorre-
lation (J, (K=O)J, (K=O, t) )0 is

TABLE I. Strengths of external perturbation F and
equivalent thermal gradients used in this work and/or in Ref. 4.
To obtain F in cgs from F in Verlet's units multiply by the fac-
tor 9.14X 10 . Temperature T=0.721.

C (t)=(J, (K=O)), /(J, (K=O)), (3.6)

and the thermal conductivity by

A, =E f CE(t)dt=E f ' C~(t)dr, (3.7)

where E = (J, (K= 0) ), 0/F, TV and tz is the time cor-
responding to the plateau value of the integral. This value
is easily found for this particular autocorrelation function.
In Table I we list the perturbations we studied together
with the thermal gradients to which they are equivalent.
The equivalence is obtained via Fourier's law identifying
V, T/T and F, =F, /h, where h is the time step used
( h =0.032).

(J, (K=O)), =PF, (J, (K=O)J, (K=O, t))0 . (3.5)

Thus the decay of the autocorrelation function CE(t) is
given by

F [(m/48@)'i ]

9.57 X
9.57 x
9.57X
9.57X
9.57 X
1.6 x

X
6.4 x
9.6 x

12.8 x
1.6 x
1.92 x

10—10 a

1P—9a

1Q
—7 a

10—5a

lp —4a

lp —3b

10-"
lp —3 c

10-3c

lp —3 c

1Q
—2 c

10—2c

aOur values.
Common values.

'Values of Ref. 4.

VT (e/kgb. )

2.155X10 '
2.155x 10-'
2.155 X 10
2.155x 10—'
2.155 X 10—'
0.036
0.072
0.144
0.216
0.288
0.36
0.433

VT (K/cm)

75.8
7.58 X 10
7.58 X 104

7.58 x 10'
7.58 x 10'
1.27 x 10
2.54 x 10'
5.08 X 10
7.62x10'
1.02 x 10
1.27 X 10'
1.52 X 10

IV. RESULTS

A. Thermal conductivity

Some results obtained after averaging the dynamical
response over 84 pairs of trajectories are shown in Fig.
1(a) for a perturbation value F=9.57&& 10 . In Fig. 1(b)
we plot, the normalized integrals of the response
I(t)= f CE(t')dt' used to evaluate the thermal conduc-

. 0
tivity via Eq. (3.7). The decay of CE(t) to zero is almost
monotonical and its negative values are an indication of
the statistical noise. This has been confirmed by comput-

ing, for the same value F, a second group of 84 segments.
The dynamical response of the second group was comput-
ed for a longer time to estimate the level of the noise with
increasing time. For all perturbations listed in Table I the
statistical linearity of the response is verified up to the
fourth figure. The values of thermal conductivity ob-
tained in our computations are affected by an error givent

by the combined error on E and I = CE(t)dt:
0

bE bI
E I (4.1)

b,E =op/~N, , (4.2)

Neglecting the contribution of the standard deviation on
temperature we have
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FIG. 1. (a) C&(t). Normalized dynamical response of the energy current. F=9.57 X 10 . Solid curve: average of the first 84
segments. Dashed curve: average of the second 84 segments. (b) I (t). Integral of the normalized dynamical response of the energy
current. F=9.57X10 . Solid curve: average of the first 84 segments. Dashed curve: average of the second 84 segments.
T=0.721, p=0.8442.
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where oq is the standard deviation of the heat current and

X, the number of segments. To estimate M we computed
the standard error of the integral of the relaxation profile
to time tz.

~GKI GK

where

Ko+=([J (K=O)] ) /3T V

(4.4)

(4.5)

iI, J (K=O, t)

J, (K=O, O)
(4.3)

( J (K=O) J (K=O, r))0

([J (K=O)] )

The upper time limit tz is the value corresponding to the
maximum of I(t). Due to the strict linearity of our re-
sults the errors on the values of iL obtained for different

perturbation s are identical. For the perturbation
E=9.57&10 we obtained the best precision by com-
puting two independent sets of 84 segments each. This
gives a reduction of v 2 of the combined error. Therefore,
we can assign to our A, 's the error computed for this value

of F. The resulting error is of the order of 2.6%.
In Fig. 2 we compare our data with those of Evans. It

can be easily seen that they do not support any depen-
dence of A, on F. Finally, in Table II for completeness we
list our numerical results for A, together with all other pre-
viously obtained by equilibrium and nonequilibrium MD.
Some experimental data ' are also collected. It is ap-
parent that the agreement is remarkable.

B. Green-Kubo formula: equilibrium results

To compare NEMD results with equilibrium results we
have computed, starting from our equilibrium trajectory,
the thermal conductivity via the Green-Kubo formula:

(4.6)

From Fig. 3 it is clear that the comparison between CE(t),
CF. (t) and I(t), I (t) is quite satisfactory. ~o is
given by a, /QNz, where XI is the number of the in-

dependent equilibrium configurations. As can be ob-
served in Fig. 3(a) the autocorrelation of the energy
current approaches zero after about 100 time steps; there-
fore it appears reasonable to assume that it is the decorre-
lation time. I is obtained by integrating the average of
Cs (t) over two independent runs, each one lasting
16384 time steps. M is the related standard error.
The plateau value t~ is the maximum of I (t) to 300
time steps. We found A, =0.993+0.07 to be compared
with the values of Levesque, 9

A, = 1.02+0.06 and
1.03+0.04. The equilibrium result is practically identical
to the NEMD result and both are in better agreement
with the values found by Levesque than the extrapolated
data of Evans (see Table II).

1.0 6

1.0 2

/expt2~
0.9 8

0.94

F(10 )

3.2 6.4 9.6
F(10 )

12.8

FIG. 2. Thermal conductivity k as a function of the strength of perturbation. (D) Equilibrium result; (L) NEMD results
(%=256 particles, r, =3.5o.); (S) Data from Ref. 4 (%=108 particles, r, =2.5o.); (0) Extrapolated datum from Ref. 4; (0 ) Data
from Ref. 9; expt1 and expt2 are experimental results from. Refs. 7 and 8, respectively; the dashed line extrapolates our NEMD re-
sults.
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TABLE II. Results for thermal conductivity. ' Comparison between present results and results from equilibrium and nonequilibri-

um molecular-dynamics method. The experimental results are also reported. T, temperature; N~, number of particles; F, strength of
perturbation; N, number of time steps; E, K, t~ are defined in Eqs. (3.7) and (4.5); A, , thermal conductivity; DM, nonequilibrium
results by differential method; EV, Evans s results (Ref. 4); FWM, fluid-wall method (Ref. l); EQ, our equilibrium result; LEQ,
Levesque equilibrium results (Ref. 9); expt, experimental data (Refs. 7 and 8). p=0.8442.

T
(e/kg )

0.721
0.721
0.721
0.721
0.721
0.721
0.721
0.721
0.721

256
256
256
256
256
256
256
256
256

F
[( m /48@)'r ]

9.57 X 10-"
9.57 X 10-'
9.57 X 10-'
9.57 X 10-'
9.57 X 10-'
9.57 X 10
9.57 X 10
1.6 X10-'
3.2 X10-'

10080 (84X 120)'
10080 (84X 120)
10080 (84X 120)
10080 (84X 120)
12600 (84X 150)

(b)
10080 (84X 120)
10080 (84X 120)
10080 (84X 120)

E+hK
(48@kg/mo. )

1.373+0.02
1.373+0.2
1.373+0.02
1.373+0.02
1.385+0.02
1.379+0.014
1.373+0.02
1.373+0.02
1.373+0.02

tp

83
83
83
83

117
101
83
83
83

A, +6k
[( ks /cr )(48@/m cr') 'r2]

0.992+0.033
0.992+0.033
0.992+0.933
0.992+0.033
1.028+0.04
0.994+0.026
0.992+0.033
0.992+0.033
0.992+0.033

Source

DM
DM
DM
DM
DM
DM
DM
DM
DM

0.722
0.722
0.723
0.725
0.727
0.729

0.722

0.721
0.715
0.722
0.722

108
108
108
108
108
108
108

216

256
256
864
108

1.6 X10
3.2 X10-'
6.4 X10-'
9.6 X10-'

12.8 X10-'
1.6 X10
1.92 X 10

6.4 X10-4

100000
48 000
26000
35 000
48 000
39000

32000

32 768
64 000
139000

Extrapolated

~GK+gg GK

1.337+0.062 105
280
280

0.955+0.07
0.969+0.006
0.99 +0.01
1.010+0.014
1.042+0.012
1.058+0.012
1.088+0.022

0.95 +0.06

0.993+0.07
1.02 +0.06
1.03 +0.04
0.944

EV
EV
EV
EV
EV
EV
EV

FWM

EQ
LEQ
LEQ
EV

0.7095'
0.720

'The first number in parentheses is the number of segments, the second the length of the segment.
"Average of the two preceding.
'p =0.8443.

p =0.841.
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expt
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CE (t)
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0.2
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—0.2 I
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~ g~ 0032
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I
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I
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48~ 1

~g~ 0032

FIG. 3. (a) C, (t) (solid curve). Normalized dynamical response of the energy current. We show the average of the two results for
F=9.57 X 10, Fig. 1(a). CF (t) (dashed curve). Normalized equilibrium autocorrelation function of the energy current. (b) I (t)
(solid curve). Integral of the normalized dynamical response of the energy current. We show the average of the two results for
F=9.57 X 10, Fig. 1(b). I (t) (dashed curve). Integral of the normalized equilibrium autocorrelation function of the energy
current. T=0.721, p =0.8442.
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V. CONCLUSIONS

We have implemented a NEMD computation of
thermal conductivity in the framework of the differential
method for a dense fluid near the triple point. By adopt-
ing the translationally invariant algorithm proposed by
Evans we simulated a set of thermal gradients ranging
from 75.8 K/cm to 2.54X10 K/cm for a Lennard-Jones
system subjected to periodic boundary conditions. The
aim of our work was to investigate the linearity of the
response and, consequently, to test the nonlinearity found
by Evans. Our results do not evidence any dependence of
thermal conductivity on the external perturbation over all
the range studied and do not support the findings of
Evans which indicate an increasing value of "thermal con-
ductivity" with increasing external field.

There are two differences between our simulation and
that of Evans. First of all, due to the use of small pertur-
bations we do not have to rescale the velocities at each
time step. This is surely a safer procedure because recent-
ly Nose' has shown that the rescaling is not consistent
with a dynamical canonical ensemble. Second, we studied
the dynamical response of the system to a 6-like perturba-
tion (not to a 8-like perturbation). Mathematically the

two forms are equivalent only in the linear regime. In the
nonlinear region the former can be used in the investiga-
tion of the nonlinear relaxation, while only the latter per-
mits studying the dependence of A, on the applied thermal
gradient. This difference is, however, unimportant be-
cause the translationally invariant algorithm proposed by
Evans gives the thermal conductivity only in the linear re-
gime while the nonlinear response is not tied to the
thermal transport.

Evans's method works remarkably well and we found a
very good agreement between NEMD, equilibrium
Green-Kubo, and experimental results. We believe the
method can have a variety of useful applications. We
hope in particular to study the coupling of concentration
fluctuations with thermal currents in liquid mixtures.
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