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A new approach is developed to solve the integral Boltzmann equation for the evolving velocity
distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target.
The theory is applicable to arbitrarily strong electric fields, any ion- to neutral-mass ratio greater
than unity, and is not limited to spatially isotropic gas targets. A hard-sphere collision model is
used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for
applications where precollision radial velocities are negligible, as is the case for ion-beam extraction
from high-pressure sources and drift tubes operated with strong electric fields.

I. INTRODUCTION

The dynamic flow of charged particles through a neu-
tral gas has received considerable attention in both
collision-dominated and collision-free transport systems.
In collision-dominated flows the high collision frequency
immediately casts the charged and neutral particles into a
state of local equilibrium, from which transport properties
may be calculated. An applied external electric field per-
turbs the charged particles from equilibrium and, if this
perturbation is slight, techniques similar to the
Chapman-Enskog method may be employed. ' In
collision-free systems, the charged-particle distribution is
altered only by relatively long-range electrostatic forces
and theoretical solutions are based on the equations of La-
place or Poisson.

Many practical situations involve the transition between
the two aforementioned charged-particle flow regimes.
One example, which involves this entire transition, is the
coupling of high-pressure ion sources to high-vacuum
mass spectrometers. The combined influence of electric
fields and ion-molecule collisions, in the pressure transi-
tion region, can result in an ion velocity distribution that
is unacceptable for efficient mass analysis. Here the ion
distribution evolves continuously from a thermally equili-
brated "Maxwellian, " at the source, into a collision-free,
paraxial ion beam at the spectrometer. In order to quanti-
tatively describe this type of ion transport one must aban-
don familiar concepts such as drift velocity and ion tem-
perature, conveniently permitted in "quasiequilibrium" ki-
netic theory, and deal with a multidimensional ion-
distribution function.

Two types of transition-ion transport can be defined.
Isotropic transition ion flow results from the evolution of
a localized ion source (e.g., point or infinite-plane source)
through spatially isotropic neutral number densities and
electric fields. Anisotropic transition (or just transition)
ion flow includes spatial variations of ion source, neutral
density, and electric field and is the class to which the
aforementioned example belongs.

The "linear" Boltzmann equation provides a theoretical
framework for this type of transport problem' but
mathematical complexities, imposed primarily by the

many dimensions required, have prevented application to
transition problems and limited application to isotropic
transition problems. The linear form is derived from the
full Boltzmann equation when the ion (test particle) num-
ber density is much less than that of the neutrals (field
particles). In this case the ion distribution function can be
determined by considering only ion-neutral collisions.
This "test-particle" assumption has been widely employed
in studies involving neutron transport in reactors and ion
transport in neutral gases, as first noted by Pidduck. In
this case the collision integral is separable into an effective
collision frequency and an integral involving a scattering
kernel.

Unfortunately, the scattering kernel, for a realistic ion-
molecule collisiori, is too complicated to be applied in
evaluation of the velocity distribution function even in
nontransition systems. Macroscopic properties (e.g., drift
velocity), have been calculated for arbitrary field
strengths, mass ratios, and a variety of collisional models
using moment methods ' but these methods do not pro-
vide velocity distributions and are thereby of no use in
transition systems.

The linear Boltzmann equation may be transformed
into an integral equation " which is more amenable to
computer solutions. This form has been used by Boffi
et al. ,

' ' for a one-velocity dimensional analysis of elec-
tron conductivity in a neutral gas. The scattering is as-
sumed isotropic in the laboratory frame, as appropriate
for electron-atom collisions. Isotropic transition transport
is considered by the use of an infinite-plane electron
source. An extension of that analysis, for equal-mass ions
and neutrals, has been proposed however, isotropic
scattering, in the laboratory frame, is again assumed as is
not the case for ion-molecule collisions. The method of
successive collisions' ' can, in principle, describe
transition-ion transport; however, computational difficul-
ties are encountered when a large number of mean free
paths are considered.

Velocity distribution functions can be determined using
Monte Carlo numerical simulations ' which provide a
standard for evaluation of various theoretical approaches.
However, since a great deal of physical insight is lost and
a large amount of computer time is consumed, another
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II. GENERAL THEORY

The ion distribution function f(x, v, t) is governed by
the Boltzmann equation '

(x, v, t) +Q(x, v, t) . (1)

coll

F is an externally applied conservative force, Q( x, v, t ) is
an externally applied ion source, and f(x, v, t)dx dv is
the number of ions within element d x =dx dy dz, centered
at x, with velocity within element dv, centered at v.
(Bf/Bt)„» is the collision integral and, if ion-ion col-
lisions may be neglected, can be expressed as'

E v'~v v' v' —vv v, 2

where, for hard-sphere collisions

K[v ' v) =S f Fo( v p)5(A)5(8)d vpd v o

is the scattering kernel and

v(v')=S f Fp(v p)5(A)5(B)dv dov dvo (4)

is the effective collision frequency. Subscript 0 denotes
neutral and primes indicate precollision conditions. For
brevity f(v ) and Fp(vp) replace f(x, v, t) and Fp(xp vp t)
for ion and neutral velocity distribution functions, respec-
tively. %%en ion-ion collisions are negligible, the neutral
distribution Fp(v p) is unaltered by ion-neutral collisions.
Also

S=—,'cr (m+mo) mmo, (5)

5(A) =5(m v+movo —m v ' —mov o), (6)

approach would be preferable.
In this paper a new approach is presented, based on the

integral Boltzmann equation, which is applicable to arbi-
trarily strong electric fields, spatially anisotropic neutral
gas targets, and any ion- to neutral-mass ratio greater
than unity. A hard-sphere collision model is used since
relative velocities are sufficiently high to remove the dom-
inance of polarization, or induced dipole forces. Inelasti-
city is also considered.

The paper is divided into three sections. Section I
presents the general theoretical formulation of the integral
Boltzmann equation and collisional model. Section II ap-
plies the formalism of Sec. I to configurations resulting in
highly nonthermal ion distributions. In Sec. III two
specific configurations are studied demonstrating both
isotropic and anisotropic transition flow. One configura-
tion is the acceleration of a nearly thermal ion source
through a spatially isotropic, low-density neutral target, as
encountered in a low-pressure, strong-field drift tube. The
second is the acceleration of a thermal ion source through
a high-pressure-ratio, free jet expansion. This is encoun-
tered when ions are formed at high pressure and enter a
vacuum with neutrals through an orifice.

where
X6[x(r),v(r)],

G(x, v) = f X[x,v '~v]f(x, v ')d v '+Q(x, v),

v(r) = v Fr/m, —

x(r) = x —vr+ Fr /(2m ) .

(10)

G [x (r), v (r) ] represents all possible events (source
creation or collision) that occur at time r that would re-
sult in the population of the phase-space element d x d v

at x, v. The exponential is an attenuation factor to ac-
count for subsequent collisions as those test particles
move along their trajectories from x(r), v(r) to x, v. The
integration over ~ is a summation over all possible past
tiines that can effect f( x, v ).

Various collision models have been used in moment
method calculations where the velocity distribution is not
determined. The most widely used interaction corre-
sponds to the inverse fifth-power force law. These
"Maxwell molecules" represent the induced dipole polari-
zation force between ions and molecules and result in con-
stant mean free time scattering. As the relative velocity
increases, the influence of polarization decreases and
hard-sphere collisions, characterized by a constant mean
free path, become dominant. At the relative energies in-
volved in this study, polarization can be neglected. When
an ion is forced through its parent gas, the symmetry of
charge affinities allows a resonance charge transfer to
occur. In this case each collision effectively stops the ion
and leaves a neutral with the entire initial energy. This
has been treated but is of little concern here where large
charge-affinity differences will be assumed. Hard-sphere
collisions, which have already been introduced in Eqs. (2)
and (3},but with a provision for inelasticity would be a
suitable collisional model.

For many ion-neutral problems, ions have undergone
considerable acceleration and have speeds much greater
than neutrals. In this case, the neutral distribution ap-
pears frozen to incident ions and a stationary distribution
will apply

Fo(vo)=N(x)5(vo) . (12)

The neutrals will be allowed to recoil, to conserve
momentum and energy, and to maintain scattering aniso-

5(8}=5(mu +mpuo —mu —mpuo),

where o. is the sum of ion and neutral radii and m, mp are
the ion and neutral masses, respectively. 5 is the Dirac 5
function. K[v'~v] may be regarded as a partial col-
lision frequency since IC[v'~v]dv' is the number of
collisions, per unit time, of test particles with initial veloc-
ities between v ' and v '+d v ' that are scattered into ve-
locities between v and v+d v.

Equation (1) can be converted into an integral equation
by using a change of variable to change the substantial
derivative into a total derivative and integrating. Thus for
a constant force F and steady-state solutions '

00

f[x,v]= f dr exp —f v[x(r'), v(r')]dr'
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tropy. N(x) is the physical space number density of tar-
get molecules since

f Fo(vo)dvo ——N(x) . (13)

Most ion-molecule collisions are not elastic because of
the many internal degrees of freedom in organic molecules
of interest. It is convenient to introduce a parameter p
that will help explain the effect of this inelasticity. Since
for stationary targets the entire initial energy is that of the
incident ion, let p represent the fraction of this incident
energy remaining in translational motion of the ion and
neutral after the collision. That is to say (1—p) times the
incident ion energy is converted into internal vibration,
rotation, or electronic excitation. Integration of Eq. (3)
results in

f,[x,u„,u, ]= f dre "Q[x(r),u„(r),v„],

f, [x,u„,u„]= f dre "fE[x(r},v„'~v(r)]

(18)

A constant electric Geld (E) is applied in the x direc-
tion and an infinite-plane ion source, with velocity distri-
bution Q(u„,v„), is applied at x =0. These source ions ac-
celerate in the positive x direction and experience col-
lisions with the neutrals of number density N(x). Col-
lisions occur at the frequency v(x, v„,v„) and result in ve-

locities given by E[x,u„'~v„,u, ]. For this application
Eq. (8) can be expressed as

f[x,u„,u„]=f, [x,v„,u, ]+f, [x,v„,v„],
where

o N(1+r)K[v '—+v j=
2 B

&(f[x(r), v ']d v ',
7

exp[ —I(r)] =exp acr f—N[ x( r')]u(r')dr'

(19)

(20)

X& v —v'
1+r

p(1+r) r-—v
(1+r )2

(14)

B=[p(1+r) r]'~— (15)

B is a normalization constant to compensate for the addi-

tion of p, and will be discussed later in this section, and

the mass ratio r=mlmo. With p=1, or for perfectly
elastic collisions, this kernel is equivalent to one developed

by Whipple. ' The parameter p describes inelasticity by
allowing the absorption of a fixed amount of energy re-

gardless of the collisional impact parameter. This will be
referred to as symmetric inelasticity. In actuality a head

on collision would be more inelastic than a grazing col-
lision. Another parameter, e, is introduced later to
describe this asymmetric inelasticity.

The normalization constant B, and the collision fre-

quency v( v ) can be determined from Eq. (4):

f, represents ions directly from the source, depleted by the
attenuation factor, Eq. (20). f, represents the contribu-
tion to f from all collisions.

Restriction of the source to the x=0 plane and the
problem to a semi-infinite region places restriction on the
limits of integration of r in Eq. (19}. The time
represents the time for which an ion must accelerate be-
tween its last collision and its appearance as part of
f(x,u„,u„). The distance x(r) is the corresponding dis-

tance through which the ion traveled. No ion can be al-
lowed to contribute to f(x,u„,u, ) if x(r) places its last
collision on the negative x side of the source. Rather than
include this effect explicitly in the limit of r integration,
multiplication of f[ (x )r, v„', 'u] by a nondimensional unit

step function will eliminate such a contribution. The r in-

tegral in Eq. (19) can be evaluated by making use of the 5
function.

Let

K[x (r), u„' ~v„(r),v„]=o. N[x(r)](1+r )5[g(r)]/2,
(16)v(x, v)=~o N(x)u=X, v=-

where k is the mean free path and X, is the macroscopic
cross section.

where

(21)

III. APPLICATION OF INTEGRAL EQUATION

Exact solutions of the integral transport equation, for a
transition problem with anisotropic scattering, would in-

volve six velocity variables (three precollision and three
postcollision) and one position variable. Some loss of gen-
erality is essential. Considerable simplification results if
the axial component of precollision velocity is much
larger than the transverse v,'. Each collision can then be
described approximately by one precollision, v' and two
postcollision, v and v„velocity components.

This approach is ideal for applications in which the ion
trajectories are paraxial such as for large mass ratios,
strong fields, or axially decreasing target-number density.
Provided that on the average, v„' /v„' is less than approxi-
mately 0.2, where a small-angle approximation is reason-
able, an accurate distribution of axial velocities is expect-
ed. One does expect, however, to underestimate the radial
diffusion.

g(r) =(yr/2)'+(u, 'ya u„y)r+v' 2u—„u„'a+u„''b—,

y =2F/m =2eE/m,

a =r/(1+r), b=(r —1)/(r+1) .

The roots of g(r) are

r=2[v„—v„'a+[(u„') (a b) —u„]' j/—y .

(22}

(23)

These roots can be understood from Fig. 1 where the mass
ratio r =1 and the initial velocity is u„'. Any final veloci-
ty must lie somewhere on the surface of the solid sphere.
An ion can populate the distribution at point P from ei-
ther of two possible collisions, A or B. For
u„(B)&u„(A) & v„(P), the ion at A must accelerate for a
time ~q, and the ion at B for a time ~q, to populate
f(x,u„,u„).

For point Q, only collision B can serve to populate f.
In this case the time ~z predicted by the negative root in
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r/=2[v —v„'a —[v' (a —b) —v„]'~ J/y,
r„=2[v„—v„'c+[v„' (c —d) —v„]'i I/y .

(26)

(27)

6—

O

4
O

Singularity Discontinuity
This discontinuous approximation of the kernel sphere

has a smaller surface area than the exact sphere and hence
is in violation of the principle of detail balance. The
probability density on the discontinuous kernel must be
increased by multiplying the reverse kernel, Eq. (24), by

2+e(1+r )

2 —e(1+r )

0
0 2 4 6 8 l0

Vx (arb. unit)

FIG. 1. Scattering kernel for r = 1 (a =1/2, b =0) for exact
hard-sphere collision (solid line) and nonsingular discontinuous
model (dashed line). Initial ion velocity U„' = 10 and a=0.2.

The two constants, A and B, and inelasticity parameters e
and p, can be used simultaneously to describe a fairly gen-
eral model of an inelastic collision. e and 2 describe a
spherically asymmetric energy absorption, and p and 8
describe a symmetric absorption. Equation (19) is then
factored into forward and reverse contributions:

f.[x v. v, 1=fr[x,v. v, l+f, [x,v. ,v, ], (29)

Eq. (23) becomes negative and is then outside the limits of
r integration in Eq. (19).

For the point R, no collision (for v„' as shown) can con-
tribute. In this case both ~~ and ~~ are negative.

The point S has a radial component greater than any
possible outcome of the collision from v„', thus no contri-
bution is possible. In fact, for r= 1, no contribution is
possible unless v„&v„'/2. If this is not maintained the
square root in Eq. (23) becomes imaginary and no real
contribution is obtained.

The integration over the quadratic 5 function requires
the derivative of the quadratic, evaluated at the roots, to
be nonzero. When the radical in Eq. (23) is 0, the in-
tegrand becomes singular as shown in Fig. 1. This singu-
larity can be eliminated by replacing the continuous ker-
nel, shown as the solid curve, by a discontinuous approxi-
mation (dotted line). Since head-on collisions should be
less elastic than grazing collisions, the most straightfor-
ward removal of the singularity is to translate the wide
angle scattering, or reverse collision, portion of the kernel
sphere by some small fraction e of the initial ion velocity
v„'. The singularity may then be avoided in a fashion that
approximates an asymmetric inelasticity. Restriction of
the limits of v integration in Eq. (19) confines the contri-
butions to the distribution to be from the appropriate por-
tion of the discontinuous kernel.

Thus for forward collisions Eqs. (22) and (23) still ap-

ply, but for reverse collisions

K„[x(r),v„'~v„(r),v„]=o.N(x(r))(1+.r)5(g„(r))/2,

where, if restricted to only asymmetric inelasticity (p = 1),

f/[x, v„,v„]=o 2T+1
2

N(x(r/) )efX
"i

I gj «/) I

Xf( (xyr) y v '
)U(x ( rg ) /L )d v ',

(30)

f„[x,v„,v, ]= o A
2

N(x(r„))e
X

Xf(x (r„),v ') U(x (r„)/I, )d v ',

(31)

from Eqs. (22) and (25),

gf ( f ) —y vf /2+v„'ya —v„y

g„'(r, )=y r„/2+v„'yc —v„y .

(32)

(33)

The appropriate limits of v ' integration are presented
in the Appendix. If v„*,v,

* are upper limits and v is the
lower limit,

(24) f dv'=2m- f v„'dv„' f, dv„' . (34)

where

g„(r)=(yrl2) +(v„'yc vy)r+v 2v„v'—c+v„''d, —

c = r/(1+r ) +e,
d =[rl(1+r)+e] (1+r)—(25)

The appropriate roots, or collision times of Eqs. (23) and
(25) are

The attenuation factor, Eq. (20), can be integrated directly
when N(x) is constant but for other N(x) numerical in-
tegration is necessary.

Any convenient ion-source velocity distribution
Q(v„,v„) may be used. To maintain simplicity and gen-
erality ihe ellipsoidal distribution is ideal:

1/2
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I

where Px and P„can be interpreted as inverse characteris-
tic temperatures, up is the average axial velocity, and 5(x )

restricts the source to the effective source plane. Qp is the
flux of ions crossing the effective source plane per second,
per unit area. The source contribution may be evaluated
from Eq. (18):

x(ry) depends not only on u„' but on u„and u„. This in-
terdependence defies solution by integral transform
methods, even in algebraically less complicated equa-
tions.

Advantage must be taken of the fact that the distribu-
tion function evolves, from a known source distribution at
x =0, in a continuous manner along the positive x axis.
For a mass ratio of greater than unity, there can be no
contribution to the distribution at x from any point down-
stream of x. The entire region of solution can then be
subdivided into slabs of increasing x, and the solution
within each slab will depend only on the distribution
within the current slab, and all upstream slabs. If the x
increments are small, the distribution function at any slab
can be approximated by the distribution function at the
previous slab. An iterative procedure may then be em-
ployed to refine this approximation.

The integration over v„' and v,
' with variable limits

presents an arduous task for a computer if a conventional
numerical integration routine is used. This problem can
be overcome by using the rather powerful Gaussian quad-

rature abscissa corresponds to an
istribution function. The distribu-
ch point by summing many contri-
points:

g p pl/2
fs[x~ux~ur] =

3/z 2 ]/2(u„—yx )

—p v —p [u (~0)—vo] I(70)f~ X Z (36)

where

rp ——2[u —(v„—yx )' ]/y . (37)

The problem of obtaining the distribution function has
been reduced to that of solving an integral equation con-
taining three contributions:

f[x vx v. ]=fs[x vx vr]+ff[»vx vr]+fr[»vx v. ]

Equation (38) most closely resembles a Volterra equation, rature. ' Each quad24, 25

of the second kind, and is inhomogeneous because of the upstream value of the d

f, term. The main problem is that in fI (and f„), the tion is determined at ea
value of f(x(ry)) must be known [or f(x(rr)}] where butions from upstream

I

J
f[x,v. ,v, ]=f,[x,u. ,u, l+~~'(r+1) g gH H, ~(g;)Z(g, )Wx(r/J ))

I gj(re) I

Xf[x(re) u u ]U(x(Sf'')/L')+A[ (r„)] . (39)

The term [ . (~„)] is identical to the previous term ex-
cept r„replaces r/. W(g), Z(g) transform the u„', u„' in-
tegrations into the interval —1 to +1. The quadrature
abscissa are g;,gj and the weighting coefficients H;,HJ.
A description of the computer program is presented in
Ref. 19.

IV. APPLICATIONS

A. Uniform target —isotropic transition transport

When .a low-energy ion source is accelerated through a
spatially isotropic neutral gas target, the mean free path A,

can be used as a distance unit. The electric field and posi-
tion appear only in combinations of EA, and x/A, , respec-
tively, in Eq. (39). Solutions thereby depend only on
E, =El, (volts per mean free path), and the number of
mean free paths, or average number of collisions, z =x/A, .
The cross section o. defines A, but is not required for solu-
tions in terms of E, and z.

The assumption of negligible precollision radial velocity
(u„) results in underestimating the radial diffusion of ions
and a poor approximation to the radial distribution.
However, for large mass ratios, where the axial velocity
(u„') is much greater than u„', neglecting v„' does not sig-
nificantly alter the distribution of postcollision axial ve-

I

locities. In such cases, the axial distributions should be
quite accurate.

Results are presented for protonated dimethyl-sulfoxide
ions (DMSOH+) and a nitrogen-gas target. These ions
(m=79) can be easily formed using an atmospheric-
pressure chemical-ionization ion source, as demonstrated
in experimental corroboration of these predictions. ' Re-
sults are also presented for potassium ions (m =39.1 amu)
because the many previously published drift-tube investi-
gations of potassium or argon (m =39.9) ions.

Figure 2 shows the axial velocity distribution evolution,
for a mass 79-amu ion and 28-amu neutral, with E, =8 V
per mean free path. The source distribution, with a rela-
tive height of 192, accelerates and is attenuated by col-
lisions, forming a thermalized distribution at lower ener-

gy. After 3.2 mean free paths the source height is at-
tenuated by exp( —3.2) to a relative height of 8.0. After
8.0 mean free paths, and 64-V potential difference, very
few source ions have not collided and subsequent changes
in the distribution are insignificant. In all cases the
source evolves directly into the terminal distribution, with
no intermediate distribution. The distribution at any posi-
tion can be described by the superposition of source, and
thermalized contributions.

Two factors which most strongly influence the velocity
distribution are the mass ratio and electric field strength.
Terminal axial velocity distributions for E, =8 V, ion
mass m =39.1 amu (potassium) and various mass ratios
are presented in Fig. 3. For r=1 the distribution should
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t(x, vx'"I' 0) transition, the ion-flow regime changes from collision
dominated to collision free in as little as 1 cm. The im-
portance of an applied electric field increases as the col-
lision dominance decreases and the resultant distribution
of ion velocities will determine how efficiently these ions
may be analyzed by a mass spectrometer.

An infinite-plane gas target is used'with density defined
as on the centerline of a free jet expansion, where for a di-
atomic gas

N(x)/No ——0.089(D/x ) (40)

I I I

2 4 6 8 IO

AX IAL VELOCITY (km/sec)

l2

FIG. 2. Axial velocity distribution evolution through uniform

gas target. m =79 amu, r =2.82, E,=8 V.

extend to negative axial velocity; however, neglecting the
precollision radial velocity removes this possibility. Some
error in the shape of the low-energy tail is also expected
for r =2 and 3. The magnitude of this error can be es-
timated by comparing drift velocities with those obtained
by Monte Carlo methods. ' For mass ratio r=1 the
predicted drift velocity was in excess by 16%. For higher
mass ratios the agreement improved such that for r=3
the excess was 6.9%.

Although unable to predict axial and radial distribu-
tions, for isotropic targets, this procedure can provide the
essential features of the transition from an arbitrary
source to a terminal distribution (Fig. 2). A reasonable
approximation to the axial distribution is obtained for
mass ratios greater than approximately 2.

Asymmetric-inelasticity, as introduced via parameter e,
has little influence on the distribution function in compar-
ison to the mass ratio and electric field strength. Sym-
metric inelasticity p would have less effect and therefore
was not investigated.

I.O—

f(v„= 0)

05-

0—
0 5 IO l5

AXIAL VELOCITY (km/sec)

FIG. 3. Axial velocity distributions for various mass ratios
and a uniform target; m =39.1 amu, E,=8 V.

B. Free jet target —Anisotropic transition transport

In a free jet expansion the neutral number density de-
creases as the inverse square of distance from the orifice.
If ions are introduced into vacuum through this pressure

The high-pressure neutral number density is No and the
orifice diameter is D. The low-energy ion source is ap-
plied a small distance xo downstream from x =0 and ac-
celerated, by an electric field of strength E, to any down-
stream point. Results are strongly dependent on ion-
molecule hard-sphere collision cross sections, mass ratios,
and electric field strengths.

Comparison with experiment is possible using
DMSOH+ ions and a nitrogen-gas expansion. Results'
show excellent agreement for an ion-molecule cross sec-
tion 0.=3.6 A.

Figures 4(a)—4(d) show the evolving source (a) ac-
celerated (E=100 V/cm) through a nitrogen free jet ex-
pansion where Xo——3.26)&10' cm and a=0.00508
cm. The ion source is located at xo ——0.025 cm where the
ion-molecule mean free path is 0.0027 cm. Collisions
dominate up to (b), 0.0130 cm from xo. The source is
rapidly attenuated by collisions in which the precollision
radial velocity is not negligible, resulting in the maxima
(marked "+") displaced from the U„axis. Further from
the source the mean free path increases and the axial elec-
tric field results in highly paraxial trajectories. At (c),
0.220 cm from source, and (d), 0.379 cm from the source,
the mean free paths are 0.256 and 0.696 cm, respectively.
Neglecting initial radial velocities is a valid assumption
here and both axial and radial distributions should be
quite accurate.

The increments opposite U„,U, axes represent l-eV ener-

gy increments and the asymmetric inelasticity parameter
used was @=0.2. The flux of ions crossing the source
plane is Qo ——10' cm s

V. CONCLUSIONS

The integral Boltzmann equation has been solved to
determine the evolving velocity distribution of a source of
ions, electrostatically accelerated through a spatially an-
isotropic neutral gas target. The method is ideally suited
to configurations resulting in highly paraxial ion trajec-
tories, and is applicable to a wide range of problems, such
as ion-beam extraction from high-pressure sources and
ion-beam scattering by background molecules.

Experiments' show excellent agreement between
predicted and measured axial distributions despite assum-
ing negligible precollision radial velocities. This assump-
tion results in underestimating the radial diffusion of ions
in all cases but a good approximation of the radial distri-
bution is obtained for configurations resulting in highly
paraxial trajectories, such as ion extraction from free jet
expansions. The effects of mass ratio, electric ' field
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A lower limit to U„' can be established since no ion can
contribute to f(x,v„,u„) if v„ is greater than v„~ (Fig. 5):

axis. The equation of this line is

u„=v, Ia/u+[(a —b)/u —1]'~~j . (A6)
u„=u„/u . (A3)

v„'= Iv, a —[(u„a)'—u b]' j/b

and for r=1,
v„'=u /v„.

(A4)

(A5)

No forward contribution is possible from any point be-
tween the line of discontinuities (LD) (Fig. 5), and the u„

Other upper and lower u„' limits, which differ for for-
ward and reverse collisions, restrict integration to ap-
propriate ~ intervals.

(i) Forward collisions F.or any point (v„,v„) and in-
creasing v„', the value of rf in Eq. (26) can become nega-
tive. This upper limit is, for r ) 1,

v„=u„d'"/s . (A7)

In the region between LD and the U axis the lower limit
to v„' is given by Eq. (A3) but to ensure positivity of r„
[Eq. (27)] an upper limit is

v„'= Iu„c+[(u„c) —u d]'i j/d .

Between LT and LD the upper limit is unchanged but the
lower limit, Eq. (A3), must be replaced by

u„= tv„c —[(u„c) —u d]'i j/d . (A9)

(ii) &euerse collisions. No reverse contribution is possi-
ble between the line of tangents (LT) and the u, axis. The
equation of line LT is
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