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Thermodynamic properties of strongly coupled classical ions in the polarizing background of de-

generate electrons are analyzed by numerical experiments. The effect of finite electron temperature
is taken into account. The internal energy, the pressure, the pair-correlation function, and the struc-
ture factor of ions are obtained, and the effects of electronic screening on these quantities are clari-
fied.

I. INTRODUCTION

Properties of dense ionized matter have been investigat-
ed not only because of interest in them as a subject of sta-
tistical physics but also because of their importance in ap-
plications to liquid metals, molten salts, and dense matter
of astrophysical interest, and those related to the inertial
confinement fusion by intense laser irradiation.

In most of these dense ionized matter, ions (nuclei)
behave classically in the background of degenerate elec-
trons. When we neglect the electronic response to ionic
charges, the classical one-component plasma (OCP), the
classical system of charged particles in the rigid uniform
background, works as a useful model to analyze these
matters. The static and dynamic properties of the OCP
have been studied by a number of investigators' and these
results are extensively used in the OCP model of ionized
matters. The OCP also provides a useful reference system
for the variational or perturbative calculations in the cases
where interaction potentials have small deviations from
the pure Coulomb potential.

Though the OCP model explains many important
characteristics of dense ionized matter, there exists a
domain of physical parameters where one has to take into
account the polarization of electrons. Ionic charges are
screened by the induced charge of electrons and static and
dynamic properties of the system are thereby modified
from those of the OCP.

Various investigations have been done to analyze the ef-
fect of electronic screening. Monte Carlo numerical ex-
periments have been performed including the case of
ionic mixtures. Their results have been compared with
the variational calculations ' based on the knowledge of
the hard-sphere system or the OCP.

In the above investigations the response of electrons has
been described by the linear response theory and electrons
are assumed to be completely degenerate. Thus the zero-
temperature values of the random-phase approximation
(RPA) by l.indhard have been used as the dielectric
response function of electrons.

The framework of the linear response may be applicable
in the case of weak electronic screening. The polarizabili-
ty of electrons, however, depends on the temperature as
well as the density. In the case of strong ionic coupling,

II. MODEL AND METHOD OF NUMERICAL
EXPERIMENTS

A. Model Hamiltonian

We consider two-component plasmas composed of pro-
tons (the number density n; and the charge e) and elec-
trons (the number density n, =n; and the charge —e) in
thermodynamic equilibrium at the temperature T. Two-
component plasmas are characterized by two nondimen-
sional paraineters, the parameter I of the classical ions
and the parameter r, of the degenerate electrons, defined
respectively by

I =e /kttTa, (2.l)

r =a /ag (2.2)

Here a = (3/4trn; ) '/ is the ion-sphere radius,
a, =(3/4trn, )' =a, ati is the Bohr radius, and kti is the
Boltzmann constant. The combinations of the parameters
in our numerical experiments are shown in Table I.

The ratio r of the temperature T to the Fermi energy of
electrons EF R(3nn, ) /2m, ——(m, a.nd A' are the elec-

the temperature is much smaller than the Fermi energy of
electrons and the electrons can be regarded as completely
degenerate. When the coupling between ions is weak or
intermediate, however, the temperature has substantial ef-
fect on the polarizability of electrons, and the ratio of the
temperature to the Fermi energy of the electrons cannot
be neglected even in the case of weak electronic screening.

In addition to the assumption of the complete degenera-
cy of electrons, the accuracy of the pair-distribution func-
tion in previous numerical experiments has not been suffi-
cient to clarify the potential of mean force or the struc-
ture factor of ions. These quantities are necessary to cal-
culate the enhancement of the thermonuclear-reaction rate
or electronic-transport coefficients. The purpose of this
paper is to analyze the effect of electronic screening on
thermodynamic quantities and the pair-correlation func-
tion of ions by numerical experiments in which the tem-
perature of electrons is taken into account.
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TABLE I. Parameters of numerical experiments.

Number of
particles

Number of
steps (105)

0.01

0.543
0.272
0.109
0.0S43
0.0109
0.0S43
0.0272
0.0109
0.00S 43
0.00S 43

64
64

128
128
2SO

64
64

128
128
64

2
2
1

1

O.S
2
2
1

1

2

«omc mass and the planck's constant) is given by

r=ka T/EF 2(4/9n——)~ (r, /l. )

=0 543(.r, /I ) (2.3)

=I [a/r —Ir/(r)], (2.4)

and is shown in Table I. The value of r becomes substan-
tial when r, is large and I is smaH; the maximum 0.543 is
attained for r, =1 and I =1 in the parameter range of our
experiments.

We restrict ourselves in the domain r, & I where the
response of electrons may be described by the linear-
response theory. Due to the large ion-electron mass ratio,
the potential due to the electronic charge induced around
an ion is given in terms of the static dielectric response
function e, (k, re=0) of electrons. The effective potential
U (r) between ions is thus given by

U (r) jkII T=e jkII Tr —I p(r)

U(0)+ U(&) (2.6)

Here U' ~ is the OCP part which comes from the
Coulomb interaction e /r between iona and U"' is the
ion-electron interaction energy given by

U"'= (e /2a) g—g(r;J) (2.7)

w1th
r-. =r —r

&J & J
The nonideal part of the pressure 4I' of the ion system

is given by the derivative (with respect to the volume V)
of the Helmholtz free energy related to the ion configura-
tion and is calculated as

p(r)=a(2Ir) 3 I de( 4Irjk')

X [1—1/c, (k,O)]exp(i k. r ) . (2.5)

The interaction energy U is a function of the coordi-
nates [ r; j of ions and is composed of two parts, U'0' and
U~", as

V(kP/k~t=(U)/3k~ty(I'/2)(ga(2m) ' Jdkf4w/k'[e, (k0)]')V(0/BV)e, (k0)exp((k r;, )j.
i,j

Hcl'c ( ) dcllotcs tllc statlstlcal Rvcl'Rgc Rnd

V(I)/I) V)c, (k, O) =[(r,/3)(B /Br, )+(2r/3)(B /Br)]c, (k, co=0;r„r) .

(2.8)

(2.9)

B. Dielectric response function of electrons

As for the dielectric response function of electrons, we mainly use the one in the random-phase approximation (RPA)
for finite temperatures given by

c,(k, co=0 r, r)=1+(2/Ir)(4/9Ir)'i r (k jk~) I dx f(x)ln
i

(x'i +k/2k+) j(x'i —k/2kF) i

with

f(x)= [exp[(x p')/r]+1 j—
I '=i /E~

where kr (3&n, )' is the Fe—r—mi wave number and (M is the chemical potential. Note that f(I' is a function of r.
For this dielectric response function, the derivatives appearing in (2.9) are calculated as
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r, (dldr, )e, =e, —1,
r(alar)e, =(2lm)(4/9m)'~ (klk ) f dx f(x)[1 f—(x)][(x I'—)Ir+(BI 'IB~)]

Xln
~

(x'~ +kl2kF)l(x' k—l2kF)
~

.

(2.11)

(2.12)

In Fig. 1 we plot the function Q(r) in comparison with
the Coulomb potential for some values of the parameters.
For r, =1, P(r) increases with the increase of I and ap-
proaches the limit of zero temperature which is slightly
above the values for I =5. For r, =0.1 and I ) 1, g(r) is
almost indistinguishable from the zero-temperature limit.

As is shown in Fig. 1, the finite-temperature effect de-
creases the electronic screening. This tendency appears
also in the long-wavelength asymptote of the dielectric
response function for r « 1

e, (k, co=0)=1+(4ne /k )(Bn, /dp)T, k «kr (2.13)

as

4~e2(dn, /dp)T ——kFT[1 —(m /12)r ], r&&1 (2.14)

where kFT (6nn, e——/EF) is the Fermi-Thomas wave
number.

The RPA dielectric response function does not include
the local-field correction. In Fig. 2 we show the values of
the function P(r) for r, = 1 at zero temperature calculated
by the RPA dielectric response function and those given
by the dielectric response functions with local-field
corrections due to Hubbard and Ichimaru and Utsumi.
Both local-field corrections give almost the same values
which are about 4%%uo larger than the RPA values near

I

r=0. The local-field correction increases the screening at
zero temperature.

As is shown in Figs. 1 and 2, the finiteness of the tem-
perature and the local-field correction at zero temperature
have the effects in the opposite directions on the electron-
ic screening. For r, =l and I'=1, the former effect is
more than two times larger than the latter. Though it
may happen that the local-field correction has a compar-
able or larger effect than the finiteness of the temperature
for large values of I, little is known about the local-field
correction at finite temperatures. We therefore adopt the
RPA dielectric response function in our experiments.

Since the relativistic effect becomes important for small
values of r„we use the relativistic expression of the RPA
dielectric response function due to Jancovici' for
r, =0.01; the finiteness of the temperature can be neglect-
ed in this case.

C. Method of numerical experiments

We impose the periodic boundary conditions of simple-
cubic symmetry on our system and evaluate U for the unit
cell of volume Vo containing No independent particles.
The Coulomb interactions between particles and their
periodic images are evaluated by the Ewald's procedure as

U' '=(e /2) g g erfc(G
~
r,J —1

~

)/
~
r,j—1

~

+(e l2Vo) g (4n. /g )exp( g /4G )(p-p—- No) [No(N—o —1)/2]ne IG Vo+NoUo
g (+0)

(2.15)

p = +exp( ig r;)—

and

erfc(x) =(2/n'~ ) f dt exp( t ) . —
1,5— V=1

S

1.5—

0, 5

0, 5

0
0 3 P/Q 4

0
0 t.Za 4

Fl&. 1. Screening of ion interaction by electrons g(r)

FIG. 2. Effect of zero-temperature local-field correction on
g(r) in comparison with finite-temperature effect. H (Hubbard)
and IU (Ichimaru and Utsumi) (H is slightly above IU) curves
are calculated with local-field corrections in Refs. 8 and 9,
respectively.
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Here 1 and g belong to the simple-cubic lattice and its reciprocal lattice, respectively; Uo is the Madelung energy (per
particle) of the simple-cubic lattice; G is an arbitrary constant.

Similar lattice sums related to g(r) are given by a slowly converging series in the Fourier space. We convert this series
into the sum of two rapidly converging ones in real and Fourier spaces: We add and subtract a function which has a
simple form in the real space and, at the same time, has the same asymptotic behavior as the original series in the
Fourier space. Thus U"' is rewritten as

U"'=(e'/2V&) g (4m/g')p p I [e,(g, &)] ' 1—+A (r,kFg')(g'+B'kF)
g (~0)

—A(r, e kF)(16B ) 'gg(1+Bkz
~

r,z
—1

~
)exp( BkF—

~ r;z —1
~

)+ANo(2vre r, )/kl;VoB (2.16)

where A =(16/3~)(4/9m)'/ and B is an arbitrary con-
stant. The interaction energy per unit cell is given by
( U' '+ U"') and we determine the values of G and B to
minimize the computational time.

Thermodynamic equilibrium of our two-component
plasma is simulated by the standard Monte Carlo method
of Metropolis et al." The range of the pair correlation
increases with the value of I and we need to increase the
number of independent particles for larger 1. For the
values of I of interest, however, a relatively small number
of independent particles may be sufficient. Since much
more computational time is needed than the case of sim-
ple Coulomb potential, we have to perform experiments
with a relatively small number of independent particles.
The number of independent particles used in our experi-
ments and the number of Monte Carlo steps (after dis-
carded initial steps) are tabulated in Table I.

energy is given in Table II and the relative deviation from
the OCP value' is plotted in Fig. 3. The values obtained
by earlier numerical experiments and the results of the
variational calculations are also shown in Fig. 3. When
r, =0.1, our results are consistent with variational calcula-
tions for I )2; earlier experiments give smaller values
for I )2.

For r, =l and I )2, our results are consistent with
both variational calculations and earlier experiments.
For r, = 1 and I = 1, the decrease of the interaction ener-

gy is smaller, as expected, than earlier numerical experi-
ments4 which neglected the effect of incomplete degenera-
cy of electrons: For the same density, screening of elec-
trons becomes weaker with the increase of the tempera-
ture.

B. Pressure

III. RESULTS

A. Interaction energy

When the electrons screen ionic charges, the internal
energy ( U) decreases due to negative interaction energy
between ions and electrons. The value of the interaction

The nonideal part of the pressure of the ionic system
b,P is given in Table II and the relative deviation from the
OCP value' is plotted in Figs. 4(a) and 4(b), where the re-
sults of earlier experiments and those of variational cal-
culations are also shown. For r, =0.1 the deviation is

TABLE II. Interaction energy and pressure. (Values for the
OCP are taken from Ref. 12.)

0, 3—

10

50

1

0.1

0
1

0.1

0.01
0
1

0.1

0
1

0.1

0
1

0

(U)/NoksT
—0.715+0.003
—0.599+0.002
—0.572
—1.574+0.001
—1.355+0.003
—1.336+0.003
—1.320
—4.219+0.001
—3.809+0.001
—3.757
—8.746+0.003
—8.082+0.007
—7.998

—45.965+0.035
—43.102

VAP/Npkg T

—0.223 +0.001
—0.189+0.001
—0.191
—0.463+0.002
—0.435+0.002
—0.441+0.001
—0.440
—1.233+0.003
—1.240+0.002
—1.252
—2.608+0.001
—2.654+0.005
—2.666

—14.304+0.022
—14.367

0.2—

0, 1—

x 9

x, x

10 ' 100
f

FIGr. 3. (( U) —( U)ocp)/( U)ocp. Present results {open
squares) are compared with earlier experiments (dots, Ref. 4)
and variational calculations (&, Ref. 5). Upper group is for
r, =l and lower one is for r, =0.1. D is present result for
r, =0.01. Note that ( U )ocp is negative.
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0, 1

-0,1—

-0, 2—

O. l

-0, 1

-0, 2—

I

(a.)

x g x 'k Y

I

10 100
I

10 100

X
0 x x

0

cept for 5(I (10, variational calculations give larger
values; the difference is most remarkable for I (2.

When the density increases, I increases and r, and ~
decrease. The increase of I decreases the ionic interaction
energy and therefore makes a negative contribution to the
pressure. The decrease of ~ increases the electronic
screening and also decreases the pressure. The decrease of
r„on the other hand, decreases the electronic screening
and increases the pressure. The first effect and the second
and third effects are expressed by the first and the second
terms on the right-hand side of (2.8), respectively. The
behavior of the pressure is the result of competition be-
tween these effects.

As we see in Fig. 3, the decrease of the interaction ener-

gy due to finite-temperature electronic screening for r, = 1

and I =1 is smaller than the zero-temperature case; this
effect of finite temperature gives a positive contribution to
the deviation of pressure through the first term of (2.8}.
Negative deviations of the pressure for r, = 1 and I (2 in
our experiments indicate that the finiteness of the tem-
perature significantly affects the second term of (2.8) in
the negative direction.

It has been known ' that the local-field correction at
zero temperature also has a large effect on the deviation
of the pressure. Thus the deviation of the pressure of an
ionic system is very sensitive to both the finite-
temperature effect and the local-field correction in the
electronic dielectric response function. Our results
without local-field correction may provide a boundary
condition to analyze the effect of local-field correction at
finite temperature.

FIG 4. (a) —(hP —~Pocp)/~Pocp «r r, =0.1 and 0.01.
Symbols are the same as in Fig. 3. Note that APocp is negative.
(b) The same as (a) for r, = 1.

positive and our results are consistent with variational cal-
culations. Our results are also similar to earlier experi-
ments except for small values of I .

When r, = 1, the deviation is positive for I )5 but is
negative for I (2. Our results systematically differ from
those of earlier experiments, not only for small I for
which the finite-temperature effect is significant but also
for large I for which that effect is apparently small. Ex-

C. Pair-correlation function

As is shown in Sec. II, the short-range repulsion be-
tween ions is reduced by the screening effect of electrons.
The pair-distribution function g(r) therefore increases in
the short-range domain. This tendency has already been
shown by earlier numerical experiments but the precise
values have not been analyzed. We now analyze the
behavior of the pair-correlation function in detail.

In Figs. 5(a)—5(e) we show the nonideal part H(r) of
the potential of the mean force defined by

g(r)=exp[ e lk&Tr +—H(r) j =exp[ —I alr+H(r) j,
(3.1}

TABLE III. Coefficients of fitting function for H (r)/I .

Cp C& Cp

Range of r
min. max.

10

50

1

0.1

1

0.1

1

0.1

1

0.1

1

1.487
1.110
1.630
1.275
1.634
1.271
1.677
1.300
1.572

—0.747
—0.342
—0.930
—0.502
—0.866
—0.419
—0.911
—0.443
—0.799

0.127
0.013
0.188
0.056
0.148
0.013
0.161
0.019
0.133

0.34
0.31
0.27
0.56
0.37
0.49
0.57
0.73
0.91

1.79
1.76
1.82
1.82
1.83
1.79
1.79
1.79
1.83
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I I I i I I I I
I

I I I I i I I I I I I I I
J
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I
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r)

1,5— 1;5—

0.5— 0, 5

p; I I I I t I I ! ! I I I I I I I I I I

0 I"/(I.
p

I I

0
I I I I I ! I I ! ! I I I ! I I I

1,5—

I I I I I
I I I I

I
I I I I [ I I I I

(c)
(r3

1,5

. I I I I j I I I I
I

I I I I i I I I I

0,5— +X+@ 0.5

p
I !

0

I ! I I I ! I I I I I I I I I I I 0 I I

0

I I 1 I I I I I I ! I I I I I I I

r3-

1,5—

I I I I ( I I I I
I

I I I I i I I I I

(e)—
I I I I i I I I I

I
I I I I [ I I I I

r3

1,5—

0.5— 0, 5—

0
l I ! I I I I I I I I I I I I

p
I I

0

I I I ! I I I I I I I I I I I I I

FICx. 5. (a) H(r)/I for I =1 with r, =1 (+ ) and 0.1 ( &(). OCP values (dots) are taken from Ref. 13. Solid lines are interpola-
tions (3.3) with coefficients given in Table III. (b) The same as (a) for I =2. OCP values are taken from Ref. 14. (c) The same as (a)
for I =5. OCP values given by (3.2) are shown by broken line. (d) The same as (c) for I =10. (e) The same as (c) for I =50. (fl
0(r)/I for r, = 1 with I =S ( + ), 10 (dots), and 50 ( X ). Solid line is interpolation for I =5.

in comparison with the values for the OCP. ' ' In the
case of the OCP, , the nonideal part of the potential of the
mean force is known to follow a simple scaling, '

distance but is slightly convex.
We have fitted quadratic functions of distance

H(r)/I =co+cIr/a+c2r /a (3.3)
H(r)/I =1.25 —0.39r/a (3.2)

for 0.4(r/a &1.8 and 4&I &160. As we see in these
figures, H(r) in our case is almost a linear function of

for H(r), as shown in Figs. 5(a)—5(e), with the coeffi-
cients given in Table III. In Fig. 5(f) we see that, for
r, =l and 5(I (50, H(r)/I' can be approximately ex-
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D. Structure factor

The structure factor S(k) of ions defined by

n; [g (r) —1]= (2m. ) f d k [S(k) —1]exp(i k r ) (3.4)

plays an important role in calculating the electronic-
transport coefficients of these systems. We have comput-
ed the average of the right-hand side of

S(k)= (p p ) /Xo (3.5)

which is equivalent to (3.4). Interpolating the values thus
obtained for discrete wave numbers determined by the
periodic boundary conditions, we have obtained the values
of the structure factor shown in Figs. 6(a)—6(d) and Table
IV for r, = 1. For r, =0.1 and 0.01, it has not been possi-
ble to find meaningful deviations of the values of S(k)
from the OCP values.

We see that the structure factor of our two-component
plasma is roughly simulated by the structure factor of the
OCP with reduced value of the parameter I'. The
behavior around k=0, however, significantly differs from
the OCP values proportional to k .

pressed by a single function, for example, by the fitting
function for I'= 5. Comparing with OCP values
co(OCP), ci(OCP), and c2(OCP) (=0), we find that these
results are roughly expressed as co-co(OCP)+0.4r„
ci-ci(OCP) —0.5r„and c2-0.15r, . We note that the
above short-range behavior of H (r) cannot be fitted to the
OCP pair-distribution function with I" ( &I ): Though
the scaling of I has been successful in variational calcula-
tions ' of the effect of electronic screening, it gives a term
proportional to (I —I )/r in H(r) which is inconsistent
with experimental results.

TABLE IV. Ionic structure factor for r, = 1.

ka

0.8
1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
8.2
8.6
9.0
9.4

0.57
0.64
0.70
0.77
0.82
0.86
0.89
0.91
0.94
0.96
0.97
0.98
0.99
0.99
1.00
1.00

I =2

0.41
0.48
0.56
0.66
0.74
0.81
0.86
0.90
0.94
0.96
0.98
0.99
0.99
1.00
1.00

r=5
0.20
0.23
0.30
0.38
0.49
0.62
0.75
0.84
0.90
0.96
0.99
1.00
1.01
1.02
1.03
1.03
1.02
1.01
1.00
0.99
0.99
1.00
1.00

r=10
0.12
0.14
0.20
0.28
0.37
0.50
0.65
0.82
0.94
1.02
1.06
1.07
1.06
1.04
1.02
1.01
1.00
0.99
0.99
0.99
1.00
1.00
1.00

The long-range behavior of the structure factor is relat-
ed to the compressibility of the system. As is shown in
the Appendix, the structure factor of ions for our model
of two-component plasmas in the long-wavelength limit is
given by

S(k)=[(k /k) /e, (k, co=0)+(BP/Bn;) /k T]
(3.6)

I I I I I I I I
f

I I I I I I I

5(k)-
I I I I I I I

I
I

)
I I I I I

I I

p
i I i I i I & I i I s I i I i I

0 5 {1
p

I I i I ~ I i I i I i I i I i I

0 5

I '
I

' I ' I '
(

'
I

'
I ' I

(c) 5(k)-
I I I I I

I I
I

I
]

I
I

I
I I I I

(CI)

p
I I I I I I 1 I I 1 I I I I I I I

0 5 kIj.

FIG. 6. (a) Ionic structure factor for r, =1 and I =1. Solid line starting from ka=0 is the long-wavelength limit given by (3.6).
(b) The same as (a) for r, =l and I =2. Broken line is OCP values (Ref. 5). (c) The same as (a) for r, =1 and I =5. (d) The same as
(b) for r, =l and I =10.
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Here kD (——4rrn;e /kz T)' is the Debye wave number, 5p'„"'exp(ik r), (Al)

(3.7)

and (Bn;/BP)T/n; is the isothermal compressibility of the
ion system. Thus the structure factor becomes finite at
k=0 due to screening by electrons.

The values of (3.6) are also shown in Figs. 6(a)—6(d)
and we see that experimental results are consistent with
these values. The isothermal compressibility has been ob-
tained by differentiating an expression which interpolates
the values of P for 1 ( I & 50.

IV. CONCLUSION

We have investigated thermodynamic properties of
two-component plasmas, the mixture of classical iona and
completely or partially degenerate electrons, in compar-
ison with those of one-component plasmas. It has been
found that the pressure of an ionic system is substantially
affected by the incompleteness of degeneracy. We have
computed the potential of mean force and obtained an ap-
proximate scaling for H(r). The structure factor of ions
has also been obtained and is shown to be consistent with
the long-wavelength behavior determined by the compres-
sibility.
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APPENDIX

When we introduce into our system the static external-
ion density

the force (per unit volume) experienced by ions is given by

i—k[4' /k e, (k, O)]5p'-"'exp(ik r) . (A2)

Here e, (k, O) is the static dielectric response function of
electrons and we implicitly take the real part of all quanti-
ties. For long wavelengths, this force is balanced by the
pressure gradient as

—[(kD IR) /e, (k, O)]5p'-„*'=[(BP/Bn; ) T/T]5p (A3)

S(k)=(k/kD) e, (k,O)tl —[e(k, to=0)] '] . (A5)

Combining this relation with (A3) and (A4), we have (3.6).
It should be noted that (3.6) gives the long-wavelength
behaviqr of the structure factor in the system of ions
described by the model Hamiltonian (2.6) and is therefore
different from the compressibility sum rule of the two-
component system. ' Setting e, (k, O)=1 in (3.6), we have
the known result for the OCP which has been obtained'
by another method.

where P is given by (3.7) and 5p is the induced density
k

of ions.
We note that the pressure of ion system P is defined as

the volume derivative of the Helmholtz free energy with
the charge neutrality condition satisfied throughout the
change of the volume. Thus the induced ion density in
(A3) is related to the external charge density (Al) by

5p-= I [e(k, to =0)] ' —
1 I

(5p'-"' —5p-), (A4)

where e(k, co=0) is the static dielectric response function
of the ion system. The second term on the right-hand side
is the compensating background charge density which is
added in order to maintain the charge neutrality; both
5p'-"' and this compensating background charge density

k

work as the source of the external field (5p'-"' —5p-) to
k k

the ion system.
The structure factor of ions is related to the static

dielectric response function of the ion system by the
fluctuation-dissipation theorem. Since the interaction po-
tential between ion density and external ion density is
4n.e2/k e, (k, O) in our case, the fluctuation-dissipation
theorem now reads

M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980); S.
Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

W. B. Hubbard and W. L. Slattery, Astrophys. J. 168, 131
(1971).

W. B. Hubbard, Astrophys. J. 176, 525 (1972).
4H. E. DeWitt and W. B. Hubbard, Astrophys. J. 205, 295

(1976).
5S. Galam and J. P. Hansen, Phys. Rev. A 14, 816 (1976).
H. Iyetomi, K. Utsumi, and S. Ichimaru, J. Phys. Soc. Jpn. 50,

3769 (1981).
7J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, No.

8 (1954).
J. Hubbard, Proc. R. Soc. London, Ser. A 243, 336 (1957).

9S. Ichimaru and K. Utsumi, Phys. Rev. B 24, 7385 (1981).
B.Jancovici, Nuovo Cimento 25, 428 (1962).

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev.
A 26, 2255 (1982).
S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45,
2102 (1966).

"J.P. Hansen, Phys. Rev. A 8, 3096 (1973).
H. E. DeWitt, H. C. Graboske, and M. S. Cooper, Astrophys.
J. 181, 439 (1973); N. Itoh, H. Totsuji, and S. Ichimaru, ibid.
218, 477 (1978).

i6M. Watabe and M. Hasegawa, in The Properties of Liquid
Metals (Proceedings of the Second International Conference,
Tokyo, 1972), edited by S. Takeuchi (Taylor and Francis,
London, 1973), p. 113.
P. Viellefosse and J. P. Hansen, Phys. Rev. A 12, 1106 (1975).


