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Geometrical models of interface evolution. II. Numerical simulation
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We continue our study of local interface models for dendritic growth by presenting detailed nu-

merical simulations of the evolution of snowflake patterns. The local model we employ is quantita-

tively valid for early stages of the dendritic growth process and is qualitatively similar to the true
diffusion-controlled dynamics as far as single-tip behavior is concerned. We show that a critical
value of the crystal anisotropy must be exceeded before the system settles into stable tip and repeat-

ed side-branching behavior. Varying the anisotropy and measuring the dendrite velocity enables us

to get a quantitative picture of the tip dynamics. In addition, we study global features of the evolv-

ing patterns, and find exponential growth for the curve complexity, g=—[(arclength)/(area)'~ ]. Our
results are not consistent with a simple version of the marginal stability hypothesis of Langer and

Muller-Krumbhaar.

I. INTRODUCTION

Much interest has been shown recently in the question
of how nonlinear dynamical processes give rise to spatial
patterns. ' We have argued that a class of simple sys-
tems, local interface models, can offer real insight in iso-
lating those aspects of a growth process crucial to the re-

sulting shape. ' This knowledge in turn will affect the
methodology brought to bear on both the realistic partial
differential equations which govern the physical system of
interest and on experimental studies.

Many familiar examples of pattern formation can be
found in crystal growth, when a solid seed is immersed in

supercooled melt. The most striking phenomenon is the
snowflakelike shape produced in growth via emission of
dendritic branches, forming a complex yet highly ordered
pattern. The equations governing the evolution of the
pattern result from heat and/or concentration diffusion,
coupled through nonlinear boundary conditions to the po-
sition and velocity of the solid-liquid interface. It is this
problem which we choose to study using as our tool a lo-
cal interface model.

In a previous paper (hereinafter referred to as I) we
have introduced a simple class of dynamical systems
which reproduce some of the features of pattern forma-
tion. These local interface models reduce the nonlocal
dynamics of a two-phase system to a local evolution equa-
tion for the interface. In this paper we study the particu-
lar two-dimensional equation

K+Alc —BK + [1+ se(co8)m]
x 2 3 ~ K

dt Bs
L

constructed so as to incorporate the physics of the solidifi-
cation process. Equation (1) determines the time evolu-
tion of points x on a (closed) interface parametrized by its

arclength s, curvature tc, and orientation angle 8 (defined

by cos8=n y, where n is the curve normal). A and 8 are
physical parameters governing the growth. The term pro-
portional to e, not present in I, represents the effects of
crystalline anisotropy. The motivation for this equation
will be reviewed below. In I we showed that this equation
with e =0 reproduces the Mullins-Sekerka instability and
the Ivantsov needle-crystal solution of the heat-diffusion
problem. Together with our initial numerical studies, we
anticipated that the local model could reproduce many of
the qualitative features of dendritic growth. Also, our
model may be quantitatively valid during the early stages
of pattern formation at large Peclet number, when the
nonlocal effects have not yet become significant.

The principal result we wish to report in this current
work, based upon extensive further numerical simulations
of Eq. (1), is that the stable tip behavior and repeated
side-branching characteristic of dendritic growth requires
the presence of crystalline anisotropy, i.e., nonzero e.
This anisotropy has generally been assumed to be qualita-
tively unimportant, and so was ignored in most theoretical
treatments of the solidification problem. Without suffi-
cient anisotropy, dendritic tips split and stable growth
ceases. Our numerical studies show that for e greater
than or equal to some critical value e„depending on A,
B, and m, our model does exhibit persistent dendritic tips
and repeated side branching. This periodic side branching
is associated with a damped oscillatory behavior of the tip
velocity. The amount of damping decreases with decreas-
ing e, and for e less than e, the oscillations grow with
time. It is this instability which prevents dendritic
growth without crystalline anisotropy.

Other features of our model can be investigated through
numerical simulation. We have investigated the effect of
the parameters A and B on the pattern morphology. The
parameter A corresponds to the degree of undercooling,
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and its variation can offer insight into the effect in the
physical system of nonzero Peclet number. This is impor-
tant because most simulations of the heat diffusion equa-
tion assume the limit of zero undercooling. Another issue
is the sensitivity of our results to small changes in initial
conditions. While the general structure of the pattern is
relatively insensitive to such changes, the detailed shapes
tend to diverge as soon as enough modes of the system are
excited. This implies that the patterns formed by our sys-
tem are not fixed points in any simple sense.

A qualitative deficiency of this local model is the ab-
sence of any interaction between different parts of the in-
terface. Since the governing equation (1) is local, indi-
vidual dendritic tips and side branches grow independent-
ly, and inevitably curve overlap occurs. The model lacks
the realistic competition between tips, which results from
the necessity of diffusing latent heat away during growth.
Thus once overlap occurs, the model is only applicable to
the growth near the tips, well away from the intersection
region.

An important issue in the study of pattern formation is
the complexity of the evolving structure. One can define
a simple measure of the global complexity of the pattern g
as the ratio of the interface's arclength to the square root
of its enclosed area. We find that g grows exponentially
with time, a reflection of the lack of tip competition.
Computational difficulties result because as the interface
grows increasingly complex, more and more interpolation
points are required. This difficulty is endemic to any lo-
cal model of growth, whether or not it contains additional
field variables on the interface.

The most important claim made throughout this work
is that our model captures many of the essential features
of dendritic growth. We expect that our major result, the
necessity of a minimum anisotropy to support stable
growth (by which we mean the existence of a dendritic tip
which propagates at constant velocity), should be true in
the real physical system. A recent numerical simulation'
of a realistic model of solidification, involving diffusing
temperature fields, has verified the necessity of anisotro-
py. The many qualitative similarities between the results
reported here and those of the realistic simulation support
our assertion that our local model can serve as an excel-
lent testing ground on which to extend our understanding
of this problem.

The outline of this paper is as follows. In Sec. II we
will review some of the ideas that lead to Eq. (1) and al-
low its reformulation as a differential equation for 0(s).
We then describe our numerical algorithm. Section III
focuses on the tip behavior and in particular on the oscil-
latory nature of the side-branch emission process. Section
IV discusses global properties of the model, such as the
behavior of the complexity. Section V deals with other is-
sues such as the value of the critical anisotropy as a func-
tion of m as well as the effects of changing A or 8. We
show that the side-branch versus tip-splitting choice can
be traced phenomenologically to the strength of the 2mth
Fourier mode. Finally, Sec. VI summarizes the important
lessons of this study, compares our work to other ap-
proaches in the literature, and gives suggestions for future
work.

II. LOCAL GROWTH MODEL

where both 0 and s may be taken to depend on some
time-independent parametrization of the curve.

We find it convenient to introduce a relative arclength
parametrization a—=s/sT, where sT is the total arclength
of the curve. Using

d a - a+a
dt Bt Ba

we can rewrite (3) as

B0(a) 1 BF(0)
ST BA

a 1

sTa(a) f—IAAF(0)da' —a f IAAF(0)da'

BsT 1

Bt
=sT daaF 0

(4a)

(4b)

where ~= ( I/sT )(B0/Ba).
Let us recall the physical significance of the corn-

ponents of (1). The fact that for small curvature the
growth rate decreases as I~ is due to the fact that in dif-
fusive growth the radius r(t)-v't at large times. The
term in 8 represents a minimum bubble size; for large
enough curvature, the solid recedes under the influence of
its surface tension. This is also the origin of the term
d ir/ds . One of the most important effects of surface
tension is to act as a short-distance cutoff on the oscilla-
tion spectrum. It thereby establishes a physical length
scale for the solidifying system, which we have taken to
equal one. Our oscillation spectrum around a circle of ra-
dius r, for e =0; then takes the characteristic form

6„=5„(n —1) 1+
~ , 1 2W 38 n,

'
p 2 2 4

for a perturbation of the form 5„cos(2mns/sT). Finally,
the term in 3 corresponds to nonzero undercooling. In-
creasing 3 increases the growth rate and, as we shall see
later, the sharpness of the pattern. We have allowed for
the crystalline anisotropy of the solid with the factor
I+ecos(m0), where e is the strength of the anisotropy

In this section we review some results of our earlier pa-
per on local evolution equations. We then discuss our nu-
merical integration algorithm and explain how it was test-
ed.

The key idea introduced in I is that many features of
dendritic growth could be reproduced by assuming local
curve evolution dynamics. The basic quantities entering
into a local description are the arclength s, the curvature
1~(s), and 0(s) (the angle between the curve normal n and a
fixed direction, taken as the y axis). If we denote the
right-hand side of (1) by F(0), then we showed in I that
this equation could be written in the equivalent form

ar
Bs

Ss= ~s'F Os' ds',
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mode analysis to be a valid approximation. The combina-
tion of these checks assures us that the behavior of the in-
terface is indeed being correctly determined by our numer-
ical procedure.

III. DENDRITIC GROWTH

The first issue our model can address is the conditions
necessary for dendritic patterns. We wish to know which
parameters of the model, and by implication which physi-
cal mechanisms, control stable tip growth and repeated
side branching. We find that a minimum value of the
crystalline anisotropy is required.

In Fig. 2 we show the time evolution of a seed along

with a time sequence of curvature plots. This figure cor-
responds to 2=1, B=—4, N=200, the initial condi-
tions ro ——10 and 6=0.1, and zero anisotropy. Notice
that as time increases, the curvature peak at s =0 (corre-
sponding to the primary tip) decreases and eventually
splits into two peaks (only one shown). This peak then
also splits, giving rise to a spatial pattern totally unlike a
dendritic crystal. We have investigated a wide set of ini-
tial conditions and values of A and 8, and it is always the
case that @=0gives rise to tips which split.

Next we study the effects of anisotropy. Figure 3
shows a time sequence with finite @=0.085, but still
below e„ the critical anisotropy needed for tip stabiliza-
tion. This simulation was done with A =4, 8=1.5 and
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crating side branches indefinitely. Notice that the side
branches themselves are stable and give rise to tertiary
structure. For example, the first side branch develops a
characteristic shoulder at t = 11 and by t = 12 has emitted
two new curvature peaks. At t=15, the full structure
corresponds to five secondary tips (initial side branches),
the first of which has given rise to two tertiary tips,
whereas the second has gone through one cycle (one terti-
ary tip) and, in fact, the beginnings of a fourth-level struc-
ture (at s —80) is just beginning to emerge. Recall that
this is just the case we have checked by also running at
400 points (see Fig. 1), so this detail is real and not a nu-
merical error.

The shape of the dendrite tips in the late stages of
growth in Fig. 4(b) resembles our model's analog of the
Ivantsov needle crystal. In I we showed that in the ab-
sence of the 8 v/Bs term, Eq. (1) has uniformly translat-
ing solutions which away from the tip rapidly approach
straight lines parallel to the growth direction. [For exam-
ple, if A =B=e=0, the solution is y=plogcos(x/p),
with tip curvature I/p. ] This general shape is seen to be a
feature of the dendrite in Fig. 4(b) in the region between
the main tip and the first side branch. In fact, ignoring
the side branches, the baseline structure of the entire den-
drite shares the feature of being almost exactly parallel to
the propagation direction. It seems likely that the zero
surface-tension steady-state shape is in some sense deter-
mining the true dendrite shape.

In Fig. 5 we plot the tip velocity as a.function of time
for a sequence of cases with increasing anisotropy. The
oscillatory behavior exhibited is directly connected to the
side-branch emission process. This can be verified by not-
ing that each minimum in the tip velocity corresponds
precisely to the point where the curvature shoulder
develops into a new curvature maximum. When the an-

isotropy is subcritical, the oscillations in the tip velocity
increase in amplitude and eventually cause a breakdown in
the cyclic behavior. As e is increased, the growth rate de-

creases, allowing for more branches before the collapse.
Finally, at e, =0.15, the growth ceases. Above this value
the oscillations decrease in amplitude and the velocity set-
tles down to a constant value v =2.6.

The growing side branches also exhibit oscillatory
behavior, roughly in phase with the principal dendrite. In
Fig. 6 we show the main and first- and second-operation
side-branch tip velocities as a function of time for the
critical anisotropy case discussed above.

The one theoretical framework which proposes to ex-

plain the behavior of the tip is the marginal stability hy-
pothesis of Langer and Miiller-Krumbhaar. ' '" Accord-
ing to this suggestion the tip velocity is determined by the
requirement that it is the smallest value such that pertur-
bations about the tip are stable. We see, however, that
this description is not in accord with the behavior of our
model. In particular, for a&e„our system is manifestly
unstable. The tip is not maintained in the time develop-
ment of the system because it cannot "outrun" the side-
branch modes propagating along the steady-state profile.
In other words, the selected velocity is obviously less than
what is needed to stabilize the tip, which thereafter splits
apart.

One might suppose that the predictions of the marginal
stability hypothesis are only valid in the stable tip regime,
for large enough anisotropy. One could then compare the
measured velocity with the velocity predicted by this ap-
proach. A simple modification of the calculation present-
ed in I shows the predicted velocity to be U —1.6(1+@),
independent of A and B.' This does not agree with the
above data, and, . as we shall discuss in Sec. V, the velocity
does depend strongly on 3 and B. Thus a better analysis
of the tip behavior is necessary. The availability of our
simple model will clearly aid in th&s process.

IV. GLOBAL PROPERTIES

In this section we investigate several global features of
the patterns which emerge from our local geometrical
equation. We examine some time-dependent measures of
the evolving pattern related to arclength, enclosed area,
and Fourier analysis of the shape.

A distinguishing feature of dendritic growth is the
complexity of the boundary patterns which emerge. To
quantify this property, it is useful to consider the enclosed
area a, as well as the arclength of the curve. We then de-

fine the complexity g as the ratio sT/Va. Increasing g
corresponds to the development of more structure in the
curve as it grows. In Fig. , 7 we have plotted sT, a, and g
for a typical evolution. Aside from some oscillations,
both sT and a grow approximately exponentially in time
and asymptotically g is nearly pure exponential. The
same behavior is found for all cases we have studied.

There is a simple explanation for the exponential
growth law. As we mentioned previously, any local model
does not take into account competition between different
parts of the interface. In consequence, each tip gives rise
to a series of new tips at some fixed rate and each new tip
in turn undergoes the same process, spawning a new set of
branches. It is easy to see that the number of "distinct"
pieces of the pattern is growing exponentially. Since there
is no inhibition to the growth of any of these separate
pieces, they cascade to give an exponentially increasing
complexity. In a local model the interface will inevitably
overlap itself after a sufficiently long time.

In any real physical system the secondary branches will

be further away from the heat reservoir (or any other driv-

ing effect) than the primary tip. This means that the
growth rate of the side branches should not be comparable
to that of the primary branch —in the language, of our
model the effective parameters governing the side-branch
evolution should be different than that giving the original
dendritic growth. If one performs a simulation based on a
nonlocal equation, one would expect to see only power-law
time dependence for these objects.

A related phenomenon can be seen by considering a
Fourier mode decomposition of ~(a). In Fig. 8 we present
such an analysis for a case with @=0.10 & e, . The abscis-
sa is the mnth Fourier component around the circle
(m =4 in this case), with the distribution always normal-
ized by ~o ——1. Note the steadily increasing number of
modes which are "activated" in the course of time. This
is unlike what occurs in more familiar pattern selection
problems, such as Rayleigh-Bernard convection. ' In
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parison of a run with zero anisotropy and a run with 15%%uo

anisotropy is shown in Fig. 9; at least at this time, the rel-
ative amplitude of the n =2 mode is clearly different in
the two cases. The importance of this result is the fact
that one may be able to replace the full evolution equation
by a mode truncation theme if one is only interested in es-
timating the critical anisotropy. This idea is developed in
detail in the Appendix.

Lastly, one might ask if the patterns resulting from our
model are "chaotic, " in the sense of having strong sensi-
tivity to initial conditions. A quantitative estimate can be
given in terms of the separation between two patterns, de-
fined as the area which is enclosed by one interface which
is outside the other. Explicitly, if 0; is the interior region
in pattern C;, i =1,2, we define A=Area( V), (V&0& and
VEA2) or (V&02 and VFA&). We then slightly vary
the initial conditions and plot 6 as a function of time.
The results are shown in Figs. 10, where we have changed
the initial deformation 5 from 3.6 to 3.5 and 3.7 to gen-
erate second patterns. For t up to 6, 6 oscillates but does
not grow and at later times 6 grows rapidly, approaching
exponential separation. This again occurs for all cases we
have examined.
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10
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10

Time

10 12
I

14 16

V. VARIATION OF PARAMETERS

In the previous sections we have focused on general
features of the patterns which emerge from our geometri-
cal dynamics. The results presented so far are valid in-
dependent of the values of the parameters 3 and B, the
crystalline symmetry rn, and the initial conditions ro, 6.
We now discuss how variation of these quantities alters
the pattern's behavior.

A qualitative indication of the possible change can be
obtained by comparing Figs. 4 and 11. These two systems
differ only in the value of B, respectively, 2 and 1.5 ~ The
effect of this change is that the primary tip, which is the
highest curvature peak, is slowed relative to side-branch
growth and the side branches are therefore more prom-
inent. Because increasing B decreases the tip velocity, it
is reasonable to expect that e, would be greater than the
corresponding value at 8=1.5. The velocity plot [Fig.
ll(b)] clearly indicates that for this higher value of 8,
dendrite stability has not yet been achieved. The value of
the tip velocity is decreased considerably as compared to
Fig. 5(c), and the frequency of the oscillations has also de-
creased. If we decrease B to 1, the opposite behavior
occurs. e, is now less than 0.15, the velocity increases,
and the side-branch emission rate also increases.

We proceed analogously with the parameter A. If we
increase 3 to 5 with other parameters fixed, the average
tip velocity goes from 2.6 to 4.2. By the same reasoning
as above, we now expect the value of e we have used is
greater than the critical value at this 3, and this is found
to be the case. If 3 is decreased to 1, one finds the reverse
behavior. In general, the sensitivity to the value of 2 is
much greater than the sensitivity to B.

It is premature to say much about which if any quanti-
tative features of dendritic growth might be universal, in
the sense of being independent of most of the physical pa-
rameters. While our simulations at fixed e with varying
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A and B give rise to different values for the tip-velocity
and side-branch emission rate, there may be other quanti-
ties relevant to dendritic growth that are parameter in-

dependent. Alternatively, perhaps one must change the
value of e to be the same distance from the critical value
before a meaningful comparison can be made. We hope
to return to this question in the future.

A different issue is the effect of changing the initial
conditions while keeping A and B fixed. We ran simula-
tions with our standard set of parameters (those of Fig. 4)
and varied the initial radius from 4 to 12. The tip veloci-
ty, oscillation frequency, and the critical value of e were
unchanged, but the amplitude of the oscillation varied
with ro. Generally speaking, the closer the initial tip
velocity was to the final average, the smaller the ampli-
tude. Of course, the spatial pattern which emerges varies
significantly from case to case, in line with the earlier dis-
cussion of the "chaotic" nature of the long time evolution
of our equations. This point underlines again the range of
usefulness of a local model —it will only model correctly
local behavior such as tip oscillations, whereas the actual

pattern will depend in detail upon exactly what the start-
ing configuration was.

Up to now we have considered the m=4 case, corre-
sponding to cubic symmetry, and we now consider how
the critical anisotropy changes with m. We find a
dramatic variation, e, -0.4—0.5 for m =5 and
e, -0.7—0.8 for m =6. This result may be an artifact of
a local model. Linear stability analyses take the generic
form, for a perturbation 5„-cos(n8),

5„-5„m'n'( l —X,m 'n')

in the local model and.

in the diffusion equation. For mode numbers n in the
unstable region where 6„&0, local models predict more
rapid instability as a function of m which may require in-
creased e for stabilization of the tip. The numerical value
of the critical anisotropy is surely model dependent.
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VI. DISCUSSION

We have provided evidence based on numerical simula-
tions that our local growth model gives rise to interesting
phenomena in the course of its time evolution. Specifical-
ly, we have introduced the critical anisotropy as well as
the pattern complexity as a way of characterizing some of
these numerical results. We hope to apply these concepts
to more realistic diffusion-controlled processes and sort
out which aspects of dendritic growth are insensitive to
the specific evolution equation used and are therefore
universal features of this type of pattern formation.

Much of the preceding discussion has dealt with the
qualitative and phenomenological behavior of the dendri-
tic tip. The next step is to formulate a theory which
predicts such quantities as the tip velocity and side-branch
spacing. For the first time, any such theory can be com-

pared directly to precise computer simulations. It may or
may not be appropriate to incorporate some form of the
marginal stability hypothesis, which to date has only been
established for some one-dimensional partial differential
equations. ' As we have pointed out, a comparison of our
results with the simplest version of this hypothesis show it
to be incorrect.

The pattern in Fig. 2 resembles certain biological
cells indeed, one might mode1 the growth of a cell in a
nutrient bath by Eq. (l) with e=O. Circular growth
would have the, concentration analog of the thermal
Mullins-Sekerka instability, an outward bump on the in-
terface (cell wall), seeing a higher nutrient concentration
and growing faster, counterbalanced by surface tension
tending to keep the wall compact. This is an interesting
area for future study.

Let us contrast our model and its numerical irnplemen-
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tation with several other approaches to growth processes.
First, there are models in which an object grows by the
random aggregation of particles (or clusters) undergoing
dlffUs1vc motion. Thc best kIlown of thcsc 1s dlffUs1on-
llmltcd aggl'cgatloll (DLA), Illtloduccd by Wltfcll alld
Sander. '. This system gives rise to fractal, disorderly pat-
terns by screening the inner parts of the structure by the
furthest dendritic arms. This model also has the attrac-
tive feature of being easy to simulate. From our point of
view, though, this model cannot hope to explain the or-
derliness and symmetry which grace dendritic patterns in
many solidification experiments. Our model builds in the
local mechanisms that allow for such order, albeit at the
cost of neglecting the global competition present in DLA.

Another possibility is to use cellular automata to
model crystal growth. The advantages of this method is
Rgain onc of coIIlpUtatlonal fac111ty. The d1sadvantRgcs
are, we feel, quite serious. One loses the ability to investi-
gate questions such as the effect of crystal anisotropy,
inasmuch as the entire growth procedure is always aniso-

tropic. Furthermore, since cellular models are intrinsical-
ly discrete, it is difficult to obtain a useful continuum
description {this is true of DLA as well). Two-
dimensional dendritic growth is a system that can be stud-
ied by more standard computational techniques, and we
therefore believe our approach to be more useful.

Finally, one can augment the simple geometrical
dynamics of Eq. (1) by additional fields which incorporate
other physical mechanisms. An example is the
boundary-layer model recently introduced by Ben-Jacob
et al. This model is still a local model in the sense of not
including the competitive effects that are present in DLA
or in the true heat-diffusion equations. It can therefore
never be completely realistic inasmuch as this effect is ob-
v1ously 1InportaIlt. HowcvcI', 1t 1s much InoI'c CUInbcl-
some to implement numerically, simply because of the ex-
tra variables. %'e believe that since that model is only
marginally closer to the true physics than the simple evo-
lution of Eq. (1), it does not justify the extra computation-
al complexity.

As noted in the Introduction, reliable numerical compu-
tatlolls llavc I'ccclltly been pclf01111cd fol tllc fll'st tlIIlc 011

a realistic diffusion model of dendritic growth. ' We are
thus able to compare the behavior of our simple model
directly to that of a more physical (and computationally
much more expensive) simulation. The crucial point is
that the results of Ref. 10 show that the idea of a critical
anisotropy is not just a property of local models, but that
it carries over to the full diffusion dynamics. We can
therefore confidently predict that any system undergoing
domain growth will eventually give rise to disorderly, tip-
splitting behavior in the absence of any symmetry break-
lllg {such as sufflclclltly lalgc clysta11111c alllsotropy) 111 tllc
cvolUtlon cquat1011s.

Two other points of comparison should be noted. The
profiles seen in the diffusion-equation simulations appear
qualitatively different from those seen here, This differ-
ence is presumably attributable to the differing steady-
state dendrite shapes present in the two systems. In par-
ticular, the diffusion equation gives rise to parabolic den-
drite solutions, a fact clearly reflected in Fig. 2 of Ref. 10.
Finally, the complexity measure g obeys the power law

g —Ir as a result of the nonlocal competition between tips.
This is consistent with the discussion of Sec. IV.

In conclusion, we have demonstrated that our model is
a valuable tool for elucidating the nature of pattern-
formation mechanisms. Our model represents an effective
compromise between simplicity and physical principles,
allowing us to identify the crucial features of solidifica-
tion. The obvious next step is to use the results here to
develop a quantitative understanding of dendritic tip
behavior.

APPENDIX

In th1s RppcIld1x wc dcr1vc a IIlodc tr'Urlcat1on schc111c
for our local equation and show how this might be used to
predict the order of magnitude of the critical anisotropy.
There are many complicated global evolution laws which
are not currently amenable to computer simulation which

might be treated by such a mode truncation. If one could
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develop an approximate signal for tip splitting from the

Hefts early stage evolution wheo the mode approach 1s Ie11-

able, behavior of these more complicated systems could be
estimated.

We approximate the curvature by the four-mode trun-

cation
3

a = g k„cos(2mna),

along with a similar decomposition for 8(a). Substituting
into the evolution equation (4a) and (4b) identifying the
coefficients of different Fourier components, we can
derive evolution equations for the four unknown coeffi-
cients ko, k1, k2, k3.

At e=O we can perform the computation analytically
to find (with sT ——2n. /ko)

ko+ ' +A(ko+ lkokl+-.'klk2)+8(k04+3k02k21+3kok21kz+-', k41+-,'k31k3)
2

k~= —(3kokt+ Sk~+ 2kokik2+ Skik3) —~(«ok' +", kok', —+ ,'k,'k, k-, + ,'k, k', k—,+ ,'„'k',k, —)

8(5ko—ki+5kokik2+ ". kok )k—3+—", kok )+—", kok', k, + —,
' k', + —,", k', k, )

+ [k&+»(k.k, + ,'k, k, )+-38(k,'k, +k,k, k, + ,'k', + ,'k-', k, )-
ST

+(kok)+3kok)k2+ —,k )+—', k,k3)]—

k2= —(3koki+ —koki+ —'kok~k3+ —", k)k2) —&(4kok2+ —', kok f+k,'k, k, +7k,k', k, + —,'k", + —,'k', k, )

—8(5kok2+ 7k ok ) k2+ —", kok )k3+ 17kok, k2+ —", kok, + —,
' kok, k3+ —,",k~k2 )

2

[4k~+22(4kok2+k )+2k, k3) ~38(4kok2+2kok )+4koktk3+2k)k2)
Sy

+(4kok2+ —,
'

kok (+7kok, k3+ —", k fk2)] — 2~™ 16k',
ST

L

0

k3 ———(3kok3+ —", kok)k2+ —', k, + —", k tk3) A(4kok3+ —", kok, k2+ —",—kok )+—", kok fk3+ —,", k )k2)

—8(5kok3+ 15kok, kg+ —", kok ) + —", kok )k3+ —', kok (k2+ —'„' k ) +—„k(k3 )

[ 9k3+2A(9kok3+ —', k)k2)+38(9kok3+9kok)k2+ —,
' k )+ —,

' k )k3)

+(9kok3+7kok, k2+ —', k ) +—",' k )k3)]— 8lk3 .
ST

At nonzero anisotropy each of the above equations is sup-
plemented by a term on the ri.ght-hand side proportional
to e. These terms were evaluated by MACSYMA with a
given set of value for the k„, . . . . Although we cannot
present an analytic formula, we can still integrate the
above equat1on by caH1ng this determ1nat1on as a subrou-
tine during the numerical implementation of the time evo-
lution of this mode truncated system.

We noted in Sec. IV that the relative suppression of the
n=2 mode was indicative of tip splitting, at least forI=4. In the following tables we demonstrate that our
mode truncat1on scheme 1s capable of y1eld1ng this type of
information for the case shown in Fig. 10. For e=0 [Eq.
(1)],

0.1

0.0945
0.0878
0.079

0.1

0.141
0.186
0.225

0.I
0.095
0.088
0.079

O. I
0.142
.0.187
0.23

and for e =0 (mode scheme)

0
0.001
0.002

—0.006

0
—0.001
—0.007
—0.02

0
—0.002
—0.005
—0.015
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3
6
9

k0

0.1

0.094
0.087
0.068

0.1

0.146
0.192
0.221

0
0.0S
0.1S9
0.26

0
0.03
0.10
0.11

and for @=0.15 (mode scheme)

Now we increase the value of e to 0.1S and find, from Eq.
(1), 0 0.1 0.1 0 0

3 0.094 0.147 0.0S 0.03
6 0.087 0.196 0.17 0.09
9 0.076 0.231 0.36 0.1S

Although the accuracy is somewhat degraded, the differ-
ence between these tables and the zero anisotropy case is
clear. If this method survives further investigation, it will
be possible to easily estimate the anisotropy necessary to
yield stable dendrites in our local model, and perhaps this
approach could predict critical anisotropies for physically
relevant rnet3llurgical systems.
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