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Impurity effects in dendritic solidification
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We have performed a quantitative calculation of growth rates and tip radii for dendrites growing
in undercooled dilute solutions. Included in our calculations are the capillary corrections to the
steady-state Ivantsov needle-crystal solutions. Our results show good agreement with available ex-
perimental data and support the validity of the marginal-stability theory of dendritic growth.

I. INTRODUCTION

A stability theory of dendritic crystal growth recently
has achieved some success in explaining solidification
rates in undercooled samples of pure fluids. ' The theory
is based on the dynamical hypothesis that the natural
operating point of this nonlinear dissipative system lies at
or near its point of marginal stability against deforma-
tions of the leading tip of the dendrite. Some progress is
being made currently in developing a mathematical basis
for this conjecture, ' but its validity is still far from clear.

A sharp experimental test of some general aspects of
the stability hypothesis can be made by looking at den-
dritic growth in the presence of dilute impurities. The
point here is that chemical diffusivities are generally two
or more orders of magnitude smaller than thermal. Thus,
because the impurities rejected by an advancing solidifica-
tion front must diffuse away from this front to permit
further growth, it might be assumed that the presence of
impurities would decrease growth rates. The stability hy-
pothesis leads to just the opposite conclusion. Their small
chemical diffusivity causes the impurities to form a rela-
tively thin boundary layer in front of the solid. This
thinner-than-thermal boundary layer causes the liquid-
solid interface to be unstable at shorter length scales, and
this instability, in turn, leads to sharper, faster dendritic
structures. Effects of this kind have been seen experimen-
tally for many years, ' but only very recently has there
been a carefully controlled investigation of this
phenomenon.

The purpose of this paper is to present a quantitative
theory of this impurity effect. (A first version of this
theory was published in Ref. 5.) Unfortunately, it turns
out to -be very difficult, even within the framework of the
marginal-stability hypothesis, to carry out an exact calcu-
lation. We shall therefore have to make a number of ap-
proximations whose validity is not well understood.

(1) We assume that the steady-state growth forms
whose stability is to be examined are time-independent,
shape-preserving solutions of the thermal and chemical
diffusion equations subject to thermodynamic boundary
conditions at the solid-liquid interface. Recent theoretical
developments indicate that such solutions may not, in
fact, exist.

(2) We further assume that these steady-state solutions,
in the presence of finite capillarity, are given reasonably

accurately by an approximation of the kind first used for
pure substances by Temkin and developed in more detail
by Kotler and Tarshis, ' and Trivedi. " This is the ap-
proximation in which the steady-state shape of the den-
dritic tip is assumed to be a paraboloid of revolution, the
Gibbs- Thomson condition is imposed everywhere, but
heat conservation is imposed only at the tip. This kind of
approximation appears to be more accurate than the alter-
native in which the Gibbs- Thomson condition is relaxed, '

especially for our case in which both thermal and chemi-
cal fields must be considered. The choice of steady-state
approximation is not very important in most purely
thermal situations, where it turns out that the isothermal
Ivantsov solutions are adequate. When impurities are
added, however, the sharper curvatures that they induce
make capillarity relatively more important and both the
existence of steady-state solutions and the validity of ap-
proximation schemes become seriously questionable.

(3) Probably the most serious of our theoretical
compromises is our use of a spherical approximation '

for performing the stability calculation. The full stability
problem is extremely difficult even for the purely thermal
situation, where it has not yet been carried out quite satis-
factorily, . Rather than embark on a major computational
project for the impurity case, we have resorted to the de-
vice of approximating the tip of the dendrite by a sphere
which is growing radially at the dendritic tip velocity.
Given spherical symmetry, the stability spectrum can be
obtained easily by the methods of Mullins and Sekerka. '

This technique seems to give reasonable agreement with
experiment for purely thermal dendrites despite the fact
that it produces a very poor approximation to the stability

spectrum in a relatively tractable two-dimensional ana-
log. ' In three dimensions, agreement with experiment re-
quires' choosing a new parameter which may, with some-
what dubious justification, be identified as the order of
spherical harmonic whose symmetry is most favored by
the crystalline anisotropy. In what follows, we shall as-
sume that this approximation continues to make sense,
with the same value of the anisotropy parameter, under
conditions in which impurity effects are important.

(4) Finally, we continue to make a number of technical
approximations which have been made in previous
theories and which seem to be of secondary importance.
See especially the discussion preceding Eq. (3.18). We do
not include crystalline anisotropy except via the anisotro-
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py parameter mentioned above. We neglect convective ef-
fects in the fluid. In fact, the latter effects do turn out to
be important in our analysis of the experimental data and
we shall return to this question in Sec. V.

Despite all of the above deficiencies, our theory does
produce a good fit to existing experimental data, especial-
ly for the initial rise of the dendritic growth velocity as a
function of impurity concentration. This fit is obtained
without adjustable parameters, and discrepancies appear
to be explicable as convection effects. We believe that this
agreement is the firmest evidence to date for the basic va-
lidity of the stability theory of dendritic growth.

6=pi. e Ei(pL )

where E&(pL ) is the standard exponential function

(2.2)

compared to do that we can neglect capillary corrections
and assume the interface to be isothermal, the heat-flow
problem is exactly soluble. (We shall discuss approximate
corrections to the isothermal limit in Sec. III.) The
steady-state motion of the dendrite is given by the
Ivantsov solution for an isothermal, cylindrically sym-
metric, paraboloidal needle crystal. The result of interest
here is

II. STABILITY THEORY FOR PURE SUBSTANCES

eEi(pi)= J 4'
PI y

(2.3)

In this section the stability theory of dendritic growth is
reviewed briefly. In the pure thermal case, the dendritic
growth of a solid in an undercooled melt is governed by
the rate at which the latent heat generated at the liquid-
solid boundary can be conducted away from the interface.
The temperature at the interface differs from the melting
temperature and is given by the Gibbs-Thomson relation

yE
M M L

(2.l)

where E is the interface curvature, L is the latent heat per
unit volume, and y is the solid-liquid surface tension.
The growth of the dendritic system is controlled by the
undercooling of the melt, TM —T, where TM is the
melting temperature and T is the temperature in the
liquid far from the solidification boundary. One usually
defines a dimensionless undercooling b,

and pL is the thermal Peclet number

27Tp

where A,, is the stability length

(2.4)

pv
pL

—— ——pV.
2(x

Note that pL =pI (b, ) is uniquely determined for a given
undercooling 6 and that consequently we have a family of
allowed steady-state forms of growth where for a given
state the growth speed is inversely proportional to the tip
radius.

In order to obtain a second relation between tip radius
and growth speed we now look at the stability of the tip.
In particular, we define a dimensionless stability parame-
ter

TM Too

L /cp

A,, = 2m +2ado/v .

The parameter o. can also be written as

(2.&)

where cz is the specific heat per unit volume. Similarly, a
dimensionless tip radius p and growth velocity V can be
written as

and

V=vdo/2a,

where do is the capillary length

dp ——T~yc~ /L

a is the thermal diffusion constant for the liquid, and p
and v are the actual tip radius and tip velocity of the den-
drite. The whole problem of mode selection is now to
predict which tip radius and growth velocity the dendritic
system will choose at a given undercooling. This question
of mode selection for the dendrite can be answered in two
steps. First we determine the family of possible steady-
state forms of growth, the so-called "needle crystals, "

by
solving a heat-flow problem in which the moving inter-
face is a heat source, and next we look at the stability of
the needle tip and determine the uniquely selected member
of the family of growth rates by identifying the point of
marginal stability.

If we assume that the tip radius is sufficiently large

1 1
o

p V ppl. (b, )
(2.6)

p(&) = 1

o"pl (&)

(2.7)

(2.8)

The simplest way to evaluate o.* analytically is to ap-
proximate the tip of the dendrite by a solid sphere of ra-
dius p growing at radial velocity v in an undercooled melt.
The analysis for the growing sphere has been described in

'I

A stability analysis of the tip of the dendrite shows that
capillary forces stabilize the tip whenever o. exceeds some
critical value cr* Conseq. uently, for a given undercooling
b, , it follows from Eq. (2.6) that only dendrites which
have a tip radius smaller than I/a*pL(b, ) will grow
stably. At this stage it is clear that the linear-stability
analysis of the tip allows us to restrict the family of
steady-state growth forms [p& I/o*pL(b)], but has not
succeeded in selecting a single mode of growth. To carry
the analysis further one conjectures that the nonlinear
sidebranching activity near the tip drives the dendrite to a
natural operating mode at or near the point of marginal
stability (o =o.*). The growth speed and tip radius are
now uniquely determined for a given undercooling 6:
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FIG. 1. Growth velocity vs supercooling for pure succinoni-
trile. Solid line shows the results of the stability theory, and the
experimental results of Glicksman, Schaefer, and Ayers (Ref.
15) and Huang and Glicksman (Ref. 16) are indicated by circles.

one of the original papers by Mullins and Sekerka. ' They
use a quasistationary approximation and find that a defor-
mation proportional to the spherical harmonic of order l
will grow with an amplification rate co~, where

v(l —1) 2ado (l + 1)(l +2)
cubi

= 1—
P p v

in the case of thermal diffusion. The growth of the den-
dritic system is therefore governed by both heat diffusion
and chemical diffusion away from the interface. In order
to determine the selected tip radius and growth velocity
we apply the same techniques used in Sec. II for the pure
thermal case. First we solve a coupled heat-flow and
chemical diffusion problem in which the moving pa-
raboloidal tip is a source of both latent heat and impuri-
ties, and next we perform a stability analysis of the tip in
the spherical approximation and determine the point of
marginal stability. We now turn to the first part of this
calculation.

Let us consider a two-component system for which the
phase diagram has the form shown in Fig. 2. For sim-

plicity we assume zero solubility of impurities in the solid.
We work in parabolic coordinates (see Fig. 3),
g=(r —z)/p and ri=(r +z)/p, where r is the radial dis-
tance from the origin 0 and p is the radius of curvature at
the tip of the paraboloidal interface. The interface is a
paraboloid of revolution (about the z axis) at g= 1. The
chemical field in the liquid and the thermal fields are
represented by C(ri, g) and T;(ri, g), respectively, i =L,S
where L, and S correspond to the liquid and the solid,
respectively. It is also convenient to define the dimension-
less temperature field

T;(ri, g) T„—
U;(g,g)=, i=L,S .

L /cq

The steady-state thermal and chemical fields obey dif-
fusion equations in a frame moving at velocity v with the
dendrite

lA' Cp
X 1+

(l + 1)ac~
(2.9)

a2 a a2
+(I+gp) +g, +(1—gp):-(q, g) =o,

aq, ari ag

Here, the primed quantities refer to properties of the solid
phase, unprimed to the liquid. At the point of marginal
stability, cr=o, a perturbation of the tip neither grows
nor decays, ~~ ——0, and therefore we obtain

(3.1)

where =(g,g) denotes either C(ri, g) or U;(rl, g), i =L,S
and the p's are Peclet numbers:

1 j la cp„=—,(I + 1)(l +2) 1+
CT (l + 1)ac~

(2.10)

pL ——pv/2a,

thermal field in the liquid;

For succinonitrile with the choice l =6 corresponding to
cubic symmetry, and a'c~ =ac, we have cr*=—0.0192.
Combining the above value of o with the expressions for
the dimensionless growth speed and tip radius in Eqs.
(2.7) and (2.8), we obtain a quantitative prediction of the
selected mode of growth at a given undercooling. A com-
parison between theory and experiment is shown for the
growth velocity as a function of undercooling in Fig. 1.

III. STEADY-STATE THEORY WITH IMPURITIES

ps =pv/2a',

thermal field in the solid; and

F L~gU~OUS =P

%'e now turn to a situation where a small amount of
impurities is added to the undercooled melt. For a given
temperature of the solid-liquid interface, the concentra-
tion of impurities is usually much greater in the melt than
in the solid. As a result of this discontinuity in solute
concentration there will be a buildup of impurities in
front of the interface which is analogous to the latent heat

I

L+S
I

c~ Cb

FIG. 2. Schematic phase diagram for dilute solutions. Tb
and Cb are the interface temperature and solute concentration,
respectively. T„and C are the temperature and solute con-
centration far from the interface; 6, is the effective undercool-
ing for a solute concentration C„.
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(3.9)
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FIG. 3. Parabolic coordinate system.

Finally, a single relation between Peclet number, effective
undercooling, and solute concentration is obtained by sub-
stituting the above expressions for the interface tempera-
ture and concentration, Eqs. (3.9) and (3.10), in the
Gibbs-Thomson relation [Eq. (3.2)],

TM T
Qo &I.pc„—=pl EI(PI )el. /cq

pc ——pv/2D,

PC pcEI(pc)e '
+

1 pcEI (—pc)e
(3.11)

chemical field.
Here, D is the diffusion constant of impurities in the

liquid. These diffusion fields are subject to four boundary
conditions at the interface.

(1) The Gibbs-Thomson relation couples the thermal
and chemical fields at the interface

Us(l, g)=UI. (l,g) .

(3) Heat is conserved at the interface:

(3.3)

PI. = p'
~'9

(3.4)

U(l, g)+P[C(l, g) —C ]
=&, —(do/p)[(2+/)/( I+/)' '], (32)

where do is the capillary length, b,, is the effective under-
cooling for a solution of concentration C, p is the slope
of the liquidus, and the g-dependent term in brackets is
the curvature of the paraboloidal interface.

(2) The temperature is continuous across the interface:

This relation is the generalization of Eq. (2.2) for the pure
thermal case to the case of dilute solutions and character-
izes a family of tip radii and growth rates.

We now calculate how Eq. (3.11) is modified when
capillary forces are included (do&0). As we mentioned
earlier in the Introduction, several authors in the past
have made the assumption that the dendrite remains a
perfect paraboloid when capillary forces are present and
then compensated for this assumption by imposing the
continuity relations (3.4) or (3.5) only at /=0. These cal-
culations were carried out for, a single diffusion field,
thermal or chemical. However, in the present case, we
have two coupled diffusion fields and accordingly two
continuity relations (3.4) and (3.5). If we impose the two
continuity conditions only at /=0, the problem we are
left with is underconstrained in that there is not enough
information to determine the diffusion fields uniquely.
On the other hand, if we impose the two continuity condi-
tions for all values of g, the problem is overconstrained in
that the boundary conditions are not consistent with the
assumption of a paraboloidal tip. In order to resolve this

where P =a'c~/ac~.
(4) Impurities are conserved at the interface:

Pcc(l,g) =- ac
8 g=1

(3.5)

dilemma we note that both fields are diffusing away from
the same interface and that consequently the velocity v,
implicit in the Peclet numbers on the left-hand sides, is
identical in Eqs. (3.4) and (3.5). If we eliminate this ve-

locity between the two continuity conditions, we obtain an
equality which must hold for all values of g,

When capillary forces are neglected (do ——0), we simply
recover the steady-state Ivantsov solutions 8Ug 8UL

g=1 ~ I g=1

1 BC Pc
C( 1 g) Bg I PL(Tb T )EI (Pl-&)

UI (ri, g ) = Ui (g) =
l. /cp E, PL

Tb Too
Us( I)~g) = Us =

I./Cp

(3.6)

(3.12)
(3.7)

This relation together with the Gibbs-Thomson relation
(3.2) now allows us to determine the thermal and chemical
fields everywhere in space. Then finally a single relation
between Peclet number, effective undercooling, and solute
concentration similar to Eq. (3.11) can be obtained by im-

posing any of the two equivalent continuity relations only
at /=0. We emphasize that the two relations are now
equivalent because we already have used Eq. (3.12) to
determine the diffusion fields. We choose to impose the
impurity conservation condition at g'=0,

The interface temperature and concentration, Tb and Cb,
respectively, can now be determined by substituting Eqs.
(3.6)—(3.8) in the two continuity relations Eqs. (3.4) and
(3.5),

(cb c.)EI(pc~)-
c(z,g) —C„=C'(q)—c„=

EI pc
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BC(vy, 0)
an

(3.13)

In order to carry out the calculation analytically, we
have to make two further approximations. The first ap-
proximation aims at removing a mathematical complica-
tion encountered in Eq. (3.12). In its present form this re-
lation is nonlinear in the chemical field and cannot be
used practically to determine the diffusion fields. Howev-
er, to remove this difficulty, we can linearize Eq. (3.12)
about the zeroth-order Ivantsov solutions. Typically the
tip radius is several orders of magnitude larger than the
capillary length, and, consequently, the concentration and
temperature fields at the interface are not much different
from the uniform Ivantsov results.

We define reduced fields U (g, g) and C'(g, g) such
that

1 aC Pc aU
C, a~ „, p, a

(3.14)

U (g,g) = U;(rI, g) —U; (g), i =S,L
c'(q, g) =c(q, g) —c'(q) .

Then we linearize (3.12) and obtain, after separating the
g-dependent and g-independent parts of the equality, two
relations:

the error might not be so serious. Short of resorting to a
very much harder numerical procedure, however, we have
not been able so far to estimate the accuracy of this ap-
proximation, and simply must list it as another source of
uncertainty. The diffusion equations now have the form

a a a a
, +(1+qp) +g, + =(q,g)=0,

a7f Bey Qg'2 8

(3.18)

where p and:- are defined as before.
The calculation now proceeds as follows. First we solve

the modified diffusion equation (3.18) by separation of
variables and express the reduced diffusion fields as super-
positions of special functions. Next we impose the two
linear boundary conditions (3.17) and (3.15) together with
the continuity of temperature across the interface to deter-
mine the diffusion fields everywhere in space. Then we
impose the continuity equation (3.,13) at /=0 and obtain a
single relation between the following quantities:
13C„,pl, ps, pc, and Cb. Finally, we express Cb as a
function of 6„f3C, pc, and pz via Eqs. (3.14) and
(3.16) and we obtain a single relation between

f3C pL, ps and pc.
The details of the calculation are rather technical and

are shown in the Appendix. We quote only the final re-
sult

1 BC'(g, g)
cb ag

C'( l, g) BC

Cb I g= 1
2 a

p f3C pcEi(pc)e 2ado
pEl( ( p)Le + 5, (3.19)

1 —pc Ei(pc)e '
pc a UI'.

pL,

, aU,'
f3 — . (3.15)

I q=1

We note that the separation of Eq. (3.12) into g-dependent
and g-independent parts is possible here because the capil-
lary corrections vanish as g~ ce and therefore (3,14) and
(3.15) must hold independently. Equation (3.15) is linear
in the reduced diffusion fields and can be used straight-
forwardly with Eq. (3.2) to determine these fields. When
expressed in terms of the reduced fields and, again, after
separating the g-dependent and g-independent parts of the
equality, Eq. (3.2) becomes

Tb T~
L /C~

+f3(Cb —C ) =6, , (3.16)

do
Ul ( l,g)+pC'( l, g) =— 2+/

( I+/)
(3.17)

A second approximation, identical to one made by
Kotler and Tarshis' for the pure thermal case, is that we
neglect the term pg in the diffusion equations (3.2). Our
reason for doing this is that it allows us to write both the
U and C fields as Fourier-Bessel transforms with com-
patible arguments involving the variable g, and thus we
are able to construct explicit solutions for Eqs. (3.15) and
(3.17) where the two fields are coupled. This approxima-
tion might lead to significant errors, especially because the
chemical Peclet number pc tends not to be much smaller
than unity in these calculations. On the other hand, we
shall use the results of this calculation only at /=0, where

where 6 is a complicated function of pc, pL, etc., given by
Eq. (A10). The quantity 2ado/p v=o.*(C„)is a dimen-
sionless parameter which characterizes the point of mar-
ginal stability and will be calculated in Sec. IV. A com-
parison of Eqs. (3.11) and (3.19) shows that the effect of
capillary forces is to reduce the effective undercooling and
consequently to decrease the dendritic growth rate and en-
large the tip radius.

IV. STABILITY THEORY WITH IMPURITIES

Let us now look at the stability of the needle tip when
impurities are present in the melt. Before going into a de-
tailed quantitative calculation, we can first understand
qualitatively the effect of impurities on the stability of the
dendritic tip. The stability length A,, defined in Eq. (2.5)
is the geometric mean of the thermal capillary length do
and the thermal diffusion length lT ——2a/v which charac-
terizes the thickness of the layer of warm fluid ahead of
the solidifying interface. When impurities are added to
the melt there will also be an impurity-rich layer of thick-
ness lc ——2D/v. This impurity layer may destabilize the
interface on a length scale which is smaller than k, by the
ratio V'D/a, thus leading to sharper and faster dendritic
structures.

We now make this argument quantitative by extending
the stability analysis of Mullins and Sekerka' for a grow-
ing sphere to a situation where two coupled diffusion
fields are present. We approximate the tip of the dendrite
by a sphere of radius p growing at radial velocity v in an
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undercooled melt and then we calculate the amplification
rate for a perturbation proportional to the spherical har-
monic l, m. For convenience we define the following re-

duced fields:

v Cb5( a(v
Cb~l~l —

D
+ 1+1

p

2vCb5I D (l + 1)ai

p
+ l+2

(4.7)

T(r, O~, y) —Tbr(C„)
5U;(r, S,q)= L /ce

COl5l =—2v5( aa((l + 1)
+PTalb, p'

p p+
(4.8)

5C(r, S,qr) =C(r, S,q&) —C

where r is the radial distance from the center of the
sphere, 8 and y are the polar angles, and T~(C ) is the
melting temperature for a solution of concentration C
(Fig. 2). Again the reduced fields satisfy four boundary
conditions at the interface.

(1) Gibbs- Thomson relation:

5U~ ~;„,+P5C ~;„,= dpi' ~—;„„ i =L,S .

(2) Continuity of temperature at the interface:

5U, ~;„,=5UL ~;„, .

(3) Conservation of impurities:

C;„,v„=—DV(5C) n i;„, .

(4) Heat conservation:

v„= —a(V5UL /3 V5U~—) n

(4.1)

(4.2)

(4.3)

(4 4)

Next we consider a slightly deformed sphere whose ra-
dius R is given in terms of spherical coordinates 0 and y
by R =p+5~ Y~~(8,@)e ', where 5I is small and
Y~ (S,y) is the spherical harmonic of order l, m. Associ-
ated with this deformation are diffusion fields of the form

v5I af PvCb5I Pai (& —1 )(& +2)5I
CX p

l+1
p p

l+1 2

(4.5)

Y~l ~l+ l ~=~lPa p+ (4.6)

5U;(r, S,y)=5U; (r)+5U," (r)YI (S,y)e ', i =L,S

5C(r, O, y)=5C (r)+5C'(r)YI (S,y)e ',
where 5U; and 5C are the diffusion fields for the unde-
formed sphere and 5U~' (r) and 5C'(r) are the response to
the small amplitude deformation. In a quasistationary ap-
proximation, 5U (r) and 5C'(r) satisfy Laplace's equation
and are of the form

5 Ul (r) =a~ lr'+',
5 Ug(r) =bir',
5C'(r) =a( lr'+' .

We can now determine al, bl, al, and the amplification
rate co~ by imposing the four boundary conditions [Eqs.
(4.1)—(4.4)] on the reduced diffusion fields at the interface
r =R, and then by linearizing the four independent rela-
tions. We list these four linearized relations below in the
same order as Eqs. (4.1)—(4.4):

It is then straightforward to solve for the amplification
rate coI and identify the point of marginal stability
(col =0). Let o*(0) denote o* for a pure substance as
given by Eq. (2.10) and let cr'(C „)be the value of o* at
concentration C . We obtain

a'(C„) PC„(a/D)= 1+
0*(0) 1 —pc&&(pc)e

X I+P'T I

1+1 1—2+c
l+1

(4.9)

V. DISCUSSION

As seen in the preceding calculations, the behavior of
the dendritic system is determined by two competing im-
purity effects. On one hand, the slowly diffusing impuri-
ties retard the growth of the solid, and on the other hand,
the impurities destabilize the interface on a smaller length
scale than the thermal-stability length, therefore sharpen-
ing the dendritic tip and enhancing the growth rate. The
first of these effects is contained in Eq. (3.11) or (3.19).
Typically D is much smaller than n and consequently
pc (a/D)pI is larg——e. It then follows from Eq. (3.11) or
(3.19) that one needs to impose a large b,, in order to
maintain a constant value of pL. Equivalently, at a con-
stant undercooling h„an addition of impurities will
reduce the value of pI and therefore will tend to reduce
the growth rate via Eq. (2.7).

The second of these effects is contained in Eq. (4.9).
The enhanced value of o.* with solute concentration im-
plies an increase in dendritic growth rate via Eq. (2.7) and
a decrease in tip radius via Eq. (2.8). At small impurity
concentration the stability effect will be dominant and the
tip velocity will be enhanced. As the impurity concentra-
tion is increased further the effect of the slow chemical
diffusion will be dominant and the tip velocity will de-
crease after reaching a maximum.

Recent experiments on dendritic growth in dilute alloys
have been carried out by Glicksman and Chopra for solu-
tions of acetone and argon in succinonitrile (CN-C2H4-
NC). We concentrate here on the acetone-succinonitrile
system where the experiments have been done for a larger
range of solute concentration than for the argon-
succinonitrile system. For acetone in succinonitrile the
ratio of the thermal to chemical diffusion constant
a/D —=91.3. A comparison between experimental and
theoretical results for V, p, and cr"(C )/o. (0) as func-
tions of PC are shown in Figs. 4, 5, and 6, respectively,
for an undercooling of 0.5'C (b,,=0.022). The sohd hne
and the dashed line are obtained by combining Eqs. (4.9),
(2.7), and (2.8) with Eqs. (3.11) and (3.19), respectively.
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FIG. 4. Dimensionless velocity V vs dimensionless solute
concentration PC„ for the acetone-succinonitrile system.
Theoretical results with and without the capillary corrections
are indicated by a dashed line and a sohd line, respectively.

The dashed line corresponds to the theory where capillary
forces are included and the solid line where they are
neglected. The experimental data of Glicksman and
Chopra are indicated by circles. It is apparent that both
V and p exhibit velocity enhancement and tip sharpening,
respectively, at small impurity concentration and that
both of these effects have the right order of magnitude.
%'e also note a good agreement with experiment for the
stability parameter 0*(C„)at small impurity concentra-
tion. The quantitative discrepancies for both p and V can
be attributed partly to convective effects. Going back to
Fig. 1 we observe for pure succinonitrile a systematic de-
viation of the experimentally observed tip velocity from
the results of the purely diffusion-controlled theory at
small undercooling. In the present case the undercooling
of 0.5'C is well within the region where convective effects
become important. A more serious discrepancy, however,
is the deviation of cr*(C„)lcr (0) at solute concentration

IO

FIQ, 6. stability parameter o.*(C„)/o*(0)vs dimensionless

solute concentration PC

beyond the maximum velocity point (PC & 10 ). We
note that a similar discrepancy has been observed for the
argon-succinonitrile system but, in the opposite direction,
the experimental values were below the theoretical predic-
tion of Eq. (4.9) for solute concentration larger than the
point of maximum velocity. These deviations cannot be
easily attributed to convection effects because the stability
of the needle tip depends mainly on a thin boundary layer
of impurities which is for the most part unaffected by
convective transport. However, these discrepancies could
possibly be explained by a breakdown of the spherical ap-
proximation in the stability analysis. The experiments
show a change in dendritic morphology at small impurity
concentration. The sidebranches move up toward the tip
as the concentration is increased initially and then recede
backwards along the dendrite when the concentration is
increased further past the point of maximum velocity.
This behavior suggests doing a more realistic stability
analysis of the dendritic tip.

In conclusion, we have described a theory of diffusion-
controlled dendritic growth for dilute alloys. The theory
predicts a velocity enhancement and a tip sharpening in
qualitative agreement with experiments. However, only

part of the quantitative discrepancies can be attributed to
convective effects and deviations of the stability constant
from experimental values at higher solute concentration
suggest doing a more detailed stability analysis of the nee-

dle crystal.
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APPENDIX

Let "(q,g)=A(q)8(g') be a solution of Eq. (3.18).
Then (3.18) separates into independent equations for each
of the parabolic coordinates
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a2 aA
, 3+(1+gp) (A 1)

an' an
a'B aB
(A(2 Bg' 4

where A, is the separation constant. The solutions to Eqs.
(Al) and (A2) can be expressed in terms of the zeroth-
order Bessel function and confluent hypergeometric func-
tions

At

4

(A2)

B (g) =Jo(A,&g),

y( —A, /4p, 1,—gp), g & 1 (solid)
A(g)= '

e J'"P(1+A, /4p, i,pg), g & 1 (liquid)

Us(q, g) = J f(A, )JO(&~/)

g( —~ /4ps 1 —gps)
X

y( —~ /4ps 1 —ps)

UL(r), g)= f f(A, )Jo(&v'g)

e g(i+A, /4pz r l,pLg)
X

e l(t(1+1, /4pL, l,pL)

C'(g, g)= J g(A, )JO(A, &g)

e P(1+A /4pc~ i~peg)
X

e hatt(1+1 /4Pci 1Pc)

(A3)

(A4)

(A5)

The fact that the same distribution function f (A, ) ap-

where y and lt are the confluent hypergeometric functions
of the first kind and the second kind, respectively. '

A general solution of Eq. (3.18) can be expressed as a
superposition of special functions, and we can write the
reduced diffusion fields in the following way:

pears in both (A3) and (A4) follows from the continuity of
temperature at the interface. Next we impose Eqs. (3.15)
and (3.17) and obtain two simultaneous equations for f (A, )

and g(A, ):

Pc g(1+A, /4Pc, 2,Pc)g(A) g(g) (Cb —C )

4( I+~'/4pc 1 pc)

f(1+A, /4pL, 2,pL)= —pc f(A)
Q(i+A, /4pL, l,pL)

T g~ y(l —A, l4ps, 2 —ps)
4 Ip( —A, /4ps, 1, —ps)

f(&)+Pg(A, ) = — e-"(1+X) .
P

We impose Eq. (3.13) at /=0:

(A7)

+P(Cb —C„)=b, (A9)
Ei(pc)e 'pc . b

We now have a complete solution to the problem.
Combining (A6) and (A7) we solve for g (A, ) and substitute
the answer into Eq. (AS). Finally, combining (AS) and
(A9), we can eliminate Cb and obtain a single relation be-
tween h„PC„, and the Peclet numbers. The final result
is shown in Eq. (3.19) where

Cb —C

CbEi(pc)e pc

+ dA, —1 . (AS)g (X 4( I+~'/4pc, »pc)
Cb Q(1+A, /4pc, l,pc )

Combining Eqs. (3.16) and (3.14) we obtain one more rela-
tion,

PC pcE) (pc)e
PLEi(PL)e '+

(1 pcE) (pc)e—)'

00 0( I+~'/4PL, 2,PL ) I,' q (I ~'/4ps, » Ps)—die (1+~)pc PL 2 + f3T0(1+~'/4PL I ~PL ) 4 W( ~'/4ps I Ps)—
P(1+A, /4pc~2, pc)

X —1
tN 1+k /4pc, l,pc)

pC~(pc/PL) pL l((1+A, l4pL, 2pL ) g& p(1 —1, /4ps, 2, —ps)

pcE, (p )e c f(1+A, /4PL, l,PL)~c +13T
y( —~ /4ps, 1, —ps)

pce(1+~'/4pc, 2,pc)+ —Pcf(1+A. /4pc, l,pc)
(A10)

It is important to mention that when we solve for 5 [Eq. (A10)] we only keep first-order terms in the small parameter
2ado/p v. This is consistent with the linearization of Eq. (3.12) discussed earlier in Sec. II. Typically
2ado/p v- [10,10 '] and higher-order corrections will be very small.
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