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A model for the surface tension and density profile of simple liquid metals is presented. It is
based on second-order perturbation theory in the electron-ion pseudopotential about the inhomo-
geneous electron gas at a jellium surface. The pair correlations in the ion fluid are computed using

hard-sphere perturbation theory.
tensions of the alkali metals.

The model yields good agreement with the experimental surface
For the polyvalent metals it is shown that it is essential to include the

position-dependent self-energy of the ions, a quantity that is fortuitously small in the monovalent
systems. To obtain such self-energies, very accurate values of the response function of the inhomo-

geneous electron gas are required.

I. INTRODUCTION

The purpose of this paper is to present a theory of the
free surface of a simple (i.e., nontransition) liquid metal.
This system, which contains electrons in the degenerate
quantum regime and ions in the classical regime, can be
reduced for most structural purposes to a classical prob-
lem similar to the inhomogeneous insulating liquid. The
reduction is achieved by eliminating the electron coordi-
nates via the Born-Oppenheimer separation. The result-
ing simplified problem is addressed here by generalizing
the perturbation treatments developed for insulating
liquids and by _constructing an ionic-density functional for
the liquid-metal system. The free-energy functional that
emerges then permits the calculation of both the surface
tension and one-body density profile.

Early work on metal surfaces has largely concentrated
on the electronic aspects of the problem. These methods,
often based on jellium models, replace the discrete ions by
a uniform positive charge distribution which itself con-
tains a surface. The physical attributes of the correspond-
ing electron gas, which has the same bulk charge density
as the jellium, are then computed and the surface proper-
ties of the system determined. Lang and Kohn,! who
pioneered this approach, were primarily interested in the
solid-surface problem for which a step-function profile
for the jellium was appropriate. To calculate the electron-
ic properties, they invoked a local-density approximation
to the exchange and correlation contributions to the elec-
tronic energy. This method leads to a description of the
electron density in terms of single-particle wave-function-
like quantities that obey a Schrodinger equation incor-
porating an effective one-electron potential. They were
thus able to determine the density profile and surface en-
ergy of the jellium problem. The effects of the ions (as-
sumed later to occupy the sites of a solid lattice) are sub-
sequently introduced by utilizing first-order perturbation
theory. The resulting surface energies found by this
method are in reasonable accord with experimental values.

The electron-density profile at a jellium surface exhibits
Friedel oscillations that decay into the bulk. Allen and
Rice? considered the possibility that these oscillations
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" density-dependent self-energy.’

could actually induce similar oscillations in the ionic-
density profile of a liquid metal. They studied this possi-
bility by modeling the jellium as an elastic medium with
its compressibility set to yield the correct bulk behavior.
Calculations in the spirit of the Lang and Kohn method
are then performed for different jellium-density profiles,
and the total surface energy, including the elastic energy
of the jellium, are subsequently computed for each profile.
The surface energy is eventually minimized with respect
to the ionic density to obtain the optimum surface profile.
For large r; (low density), Rice and Allen find that the
ion density does indeed follow the electron oscillations
somewhat but that the ionic profile is actually monotonic
at higher densities. Further, the smooth variation of the
ionic density greatly decreases the numerical contribution
of electrostatic energy to the surface energy compared
with that obtained for the step profile.

Other workers have approached this general problem by
concentrating first on the ions. The properties of the bulk
liquid metal can be described in terms of ions that interact
with screened short-range forces, each possessing a
The electrons only enter
the problem through the determination of the interactions
and self-energies. Evans and Kumaravadivel* assumed
that such a picture can even be extended into the surface
region. - This led them to a model ionic Hamiltonian

H = E +2u(P ;)

+3 > [d(R;;p(T))+$(Rj5p(TiN] (1)
1<y

where u (p) is the structure-dependent energy per ion of a
bulk metal with ionic density p and ¢(r,p) is the pair po-
tential for a bulk metal of density p. (Models of this type
are frequently referred to as pseudoatom models since they
attempt to map the system onto an effective neutral atom-
ic problem.) The energetics of this model are then calcu-
lated by assuming a simple form of the two-body density,
namely p (T, 7 )=p(T)p(T")g(|T—T"]), with g(r)
given by either its bulk value or by hard-sphere values for
a local density. With this ansatz, it is possible to calculate
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the surface tension of various liquid metals and actually
to obtain reasonable agreement with experiment. Howev-
er, the ansatz, which is essential, does not lead to informa-
tion about the electronic degrees of freedom; it also ap-
pears to completely ignore electrostatic contributions.

Mon and Stroud® have also proposed a simple model
for the free energy that shares the feature that it avoids
explicit reference to the electronic degrees of freedom.
They start with a square gradient approximation for the
free-energy density functional,

Flpl= [ f(p(¥)dT+ [ K | Vp|%T, 2

where f(p) is the total free-energy density, including elec-
tronic contributions, of a bulk liquid metal of density p,
and K is related to the direct correlation function of the
liquid. In practice, a simple polynomial form for f(p) is
used which is designed to yield the correct bulk compres-
sibility. This theory yields surface tensions in reasonably
good agreement with experimental values (i.e., to within
10—20 %) for both the mono- and polyvalent simple met-
als. Again, this treatment does not yield any information
about the electron density, and again it appears to neglect
certain electrostatic contributions to the surface tension.

A recent paper by Wood and Stroud® provides some
justification for the simple model used by Mon and
Stroud.’ Starting with a uniform liquid metal they are
able to show that for small variations about the uniform
density, the change in the free energy of the system,
correct to second order, is

e kg kBT 2> ]33! =2 =
F[Pi]fo(pi(r))dr+derdr c(|T=1"];p)
X[p(F)—p(TH]*. (3)

This is exactly the same as the expression derived by
Ebner, Saam, and Stroud’ for insulating liquids, the elec-
trons now entering directly only through f(p;) but in-
directly through the direct correlation function of the
liquid metal, ¢ (7). To obtain this result, the behavior of
the electrons is described by linear response in changes
from the uniform system. Wood and Stroud then further
assume that this form will be correct even for a surface in
spite of the inherent large variation in the density for this
physical situation. The surface tensions that result from
this assumption are in good agreement with experiment
for the alkali metals, but are in somewhat poorer agree-
ment for the polyvalent metals. These difficulties are at-
tributed to inadequacies in the treatment of the correla-
tion functions of the bulk liquid metals. Some of these
difficulties reappear in the present work: We shall return
to this important matter below.

There has been substantial effort lately to develop
theories that actually incorporate both the electrons and
ions explicitly, i.e., on an equivalent footing. Such ap-
proaches provide, in principle, a means of studying the di-
pole layer of the surface in addition to the surface tension.
Evans and Hasegawa®® and Amokrane et al.'® have
presented simple models which first start with an electron
gas at a smooth jellium surface but subsequently add the
effects of the ions by first-order perturbation theory.
(Evans and Hasegawa® were even able to derive a simple

analytic expression for the surface tension of their model.)
Unfortunately, despite the physical appeal of these
models, the resulting surface tensions are not in good
agreement with experiment. The authors conjecture that
the poor results reflect the need to incorporate second-
order terms, i.e., screening, into the perturbation expan-
sion. Hasegawa and Watabe!! "% have recently carried
out a set of calculations that do just that: terms to second
order in perturbation theory are included and in a manner
which is very similar in spirit to the work described
below. They obtain good results for the surface tensions
but their calculations predict that the ionic width of the
surface is arbitrarily small, a feature that is clearly un-
physical.

Finally, D’Evelyn and Rice!®> have performed
computer-simulation studies of a pseudoatom model of
liquid Na, Cs, and Hg. Again, this approach uses
second-order perturbation theory to motivate a model of
the energetics of the ions in a smooth electronic back-
ground. However, the authors also attempt to incorporate
the fact that ions far enough from the bulk will become
neutral atoms and so should not be treated by perturba-
tion theory about an electron gas. For ions in a low-
enough electronic density, however, they assume that the
interactions are actually given by those of “vapor atoms.”
With this model, they perform Monte Carlo studies of a
sphere of 256 atoms. The resulting density profiles show

5

" extremely large density oscillations, with amplitudes up to

about 40% of the bulk density. It is not clear whether the
large oscillations result from their basic model, the finite
size of the sphere of liquid, or from insufficient conver-
gence of the simulation. The latter possibility is suggested
by similar oscillations found in simulations of insulating
liquids that have been found to diminish considerably
when longer simulations are performed.'$

The method to be presented in this paper is a generali-
zation of the perturbation treatment of the surface proper-
ties that was introduced by Abraham.!” Section II out-
lines the determination of the effective Hamiltonian for
the ions from the full Hamiltonian of the system. It is
followed by an approximate treatment of this Hamiltoni-
an by a combination of hard-sphere perturbation theory
for the ions and density-functional theory for the elec-
trons. Section III presents the numerical procedures and
results, and the paper closes with a physical analysis of
the problems associated with the calculations for the
polyvalent metals, these appearing to be common in treat-
ments of the kind given here and elsewhere.

II. DERIVATION OF THE EFFECTIVE
HAMILTONIAN

Liquid metals are two-component systems consisting of
electrons and ions in generally neutral ensembles. For the
simple metals, the interaction between these components
can be described by weak pseudopotentials which for
many purposes may be taken as local. The goal of this
section is to map the two-component system onto an ef-
fective ionic problem which can subsequently be treated
by classical statistical mechanics. The first step in this
reduction is the introduction of the adiabatic or Born-
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Oppenheimer approximation according to which the
Hamiltonian can be separated into two parts, namely

H=H;+H,, 4)

where H; refers solely to the ions and H, describes the
electrons and the electron-ion interaction. The statistical
mechanics of the liquid metal are determined completely
by the partition function,

Z =Tre P4 | (5)

The physical content of the adiabatic approximation is
essentially that; because of the smallness of the electron-
ion mass ratio the electrons can be well approximated as
being essentially in equilibrium with the ions. This enters
formally in a decomposition of the trace in the partition
function, namely the trace over the electron coordinates is
to be performed separately for each ionic configuration.
It then follows that

—BH, —BH;+BF, (R ;}
2

Z~Tre —BHi(Tree =Trse (6)

where

‘ﬁFe{

Here F, is just the free energy of the electrons in the pres-
ence of the static collection of ions at the positions {ﬁ, }.

The next step is the evaluation of F,, by perturbation
theory, in orders of the electron-ion interaction. Consider
the parametrized Hamiltonian

__BHe

R;}=InTr.e (7

H=H,+H,), (8a)
where
P} 7 1
Hi= 2 El_ 3 = o
1 ~m = |R;—Ry

z? [ pAEpAT)
- S [ —avar (8b)

—

_rl

and

=3P+ 7 Y —

ij rz'—f}|
r),
f Pt P dFdT’
— 707
I—K)f pl(r
|r—r,|
+AS V(T —R) | . (8¢)
1

(Atomic units with energy in hartrees are used both here
and in the remainder of the paper.) In (8) the / summa-
tions are over ionic coordinates, the i and j summations
are over valence-electron coordinates, Z is the ionic
charge, and p{(r) is an assumed inhomogeneous form for
the ionic-number density. Now, note that for A=0,
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H,(\) describes a system of electrons in the presence of
an inhomogeneous jellium background described by pf(T).
This system is assumed to be well understood and is thus
taken as the reference system. (In practice, the jellium
problem will be addressed by the density-functional tech-
niques used by Lang and Kohn.!) For A=1, H,(A) de-
scribes the fully interacting system of electrons in the
presence of a static collection of ions at {R;}. The free
energy for A=1 relative to the energy of the jellium sys-
tem can be obtained by a coupling constant integration,

dH,())
>dk )

- . 1
FAR)=FE+ [, (50

~ To evaluate the required average, we note that the change

in the potential undergone by the electrons at a glven
value of A is AA(T) where

. . —Zp)(T")

A= VE—R)— [ — P lgw . (o0

1 |T—1"|

The average electron density is then assumed to be related
to the initial electron density pJ(r) by a response linear in
this potential change, i.e.,

<za<?-?,~)>A

~pd(F)+A [ X(F,FIAMT)dT" . (11)

Pe(T)=

Here X(7,T’) is the density-density response function of
the inhomogeneous electron gas at the jellium surface.
The free energy is then given by

F(R;)=F"p0+ [ pADADET
+ [ AE(ETHAFHTAT (12)

We will be interested in the properties of a time-average
planar surface and accordingl gr will consider p,( ) to vary
only in the z direction [i.e., p;(z)]. It is convenient to de-
fine the ionic density averaged over planes parallel to the
surface:

p,-(z)=L28(z —z;), (13)
474

where A is the surface area. It is also useful to define the
planar averaged change in the electrostatic part of the po-
tential undergone by the electrons, i.e.,

—Z[pi(z")—pi(z")
A= [ 2P = Liv. (14)
| T—1"|
The remaining change in potential is then given by
A (T)=A(T)—A(2) . (15)

We now note that the free energy may be written as



30 PERTURBATION THEORY OF LIQUID-METAL SURFACES: ... 3139
F AR} =Fp{1+ [ pADAL2dT+5 [ Aul2X(F,F)A(2')dTdT
+ [ AD [ 2D+ [ @) ,_,s(z')df"]dm%fA,(?)X(f:f*-')A,(f')df’df". (16)

The first three terms in this expression are an expansion
for the energy of a jellium surface with the jellium charge
density Z, (z). The electron density that enters the penul-
timate term corresponds to a jellium density of Z as
computed by linear response around the value for p,

now observe that the approprlate choice of p, is Just p,,
the actual average ionic density. With this choice the ef-
fective Hamiltonian can be written as

Heg=H; +F,({R;})

2
P z? Z’p;(2)p;(2")

=2 7 5  — | ————————d7dtr’
2m o |R,—Ry| |T—7"|

+FMNp)+ [ pe@A (DT

+3 [ AEN(E,FA,(F)dTdT (17

where p;(z) is given by Eq. (13). In practice p;(z) will be
determined by a minimization of the surface free energy.

Note that the A,(r) in this effective Hamiltonian con-
tains summations over ionic coordinates. Thus it is clear
that the penultimate term in (17) is simply a sum over
one-body energies; correspondingly the last term is a sum
of pair energies. It follows that this Hamiltonian has the
same general form as that of an insulating liquid in the
presence of an external field. The corresponding internal
energy can be written in terms of the one- and two-body
densities as

U=3NkpT+ [ p(DEM(T)dT
+3 [ pi(®pi(TOR(F,T$(F,F)dTdT’,  (18)
where
h(F,F')=g(F,F")—1 (19)

is the total correlation function for the ions. The self-
energy in this expression is divided into two parts, i.e.,

E¥(r)= [ |ymFE—F)— T‘:—Zj—t pe(FHAT (200)
r—r
+3 [ VE—DXE, T
X V(T — T)dT,d T, . (200)

Here (20a) represents the next-to-last term in (17) and
(20b) originates from the / =/’ contribution of the last
term of (17). Note that (20b) also represents the screening

self-energy of the ions.
thus given by

The effective pair interaction is

2
I*‘Z*’l +3 [ VRE =TT, T
XVP(Ty—T)dTdT, . (21)

We observe that the internal energy as written in (18) also
has the same form as that of an insulating liquid in the
presence of an external potential, except that # =g.—1 ap-
pears here where the pair-correlation function g is nor-
mally present. This reflects the special treatment required
of the overall electrostatic terms, a treatment that is re-
quired in both bulk and surface problems. The surface
problem of metals also has an additional complication in
that the pair interaction will depend on the position aris-
ing from the changes in the response function expected in
the surface region. Section III describes the practical im-
plementation of this physical picture.

III. THE JELLIUM ENERGY:
CALCULATIONAL PROCEDURES
AND APPROXIMATIONS

. To evaluate the energy expression (17) for the surface
problem, the surface energy and electron density are re-
quired for the jellium surface in which the background
charge density is Z pi(z). We compute these quantities by

the density-functional treatment of the exchange-
correlation contributions as discussed by Lang and Kohn.!
Our calculations mostly follow theirs except for two im-
portant differences. First, the variation of the back-
ground density is not assumed to be a step function; in-
stead it is chosen to mimic the average ionic density of the
liquid surface. The second is the choice of exchange-
correlation functional. Here we have used the form re-
cently proposed by Langreth and Mehl,'® which is
designed to incorporate the dominant nonlocal corrections
to the functional in a computationally convenient manner.

For practical reasons we have made one additional ap-
proximation. In the minimization of the free energy with
respect to the ionic-density profile, the formalism calls for
the energy of the electron gas in the presence of the actual
charge distribution Z, (r). However, this density profile

is obviously not known in advance; furthermore, the solu-
tion of the Lang-Kohn problem is a computationally
time-consuming process. Thus, though correct in princi-
ple it is not desirable to perform such a calculation for
each intermediate density profile that is encountered in
the course of determining the profile that minimizes the
free energy. However, in practice, this is actually not
necessary. Calculations of the electron profile for ionic
profiles of different widths have shown that the electron
profiles predicted by this approach tend to be rather in-
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sensitive to the exact form of the ionic-density profile. It
is important to note, however, that this conclusion holds
only in the limit where the ionic profile is itself narrower
than the electronic profile; indeed, it appears to be only
substantiated firmly for the lower-density systems. On
the other hand, this behavior is to be expected since the
electron density cannot vary too rapidly because of kinetic
energy considerations. In the limit where the ionic width
is less than the minimum electron width imposed by the
kinetic energy, further reductions in the ionic width can-
not therefore produce similar reductions in the electron
width. The electronic profile then remains largely un-
changed.

As already noted this invariance does not hold in the
limit of wide ionic profiles for which the electrons tend to
follow the ions in order to reduce the electrostatic energy.
Fortunately, we find that the liquid-metal surfaces appear
to fall in the first category, and as a consequence the ma-
jor shift in the energetics of the jellium problem for simi-
lar ionic profiles is just the change in electrostatic energy.
Accordingly, if we have solved the jellium problem for an
ionic profile Zp(z), the surface energy of the jellium with
ionic profile Zp;(z) is then well approximated by

Fp 1=F[p{1+AE,, , (22)

where AE is the electrostatic energy change. Note that
if this approximation becomes poor because of a known
large difference between p; and p?, we can simply perform
the Lang-Kohn calculation again using an improved esti-
mate of the ionic density.

IV. CALCULATION OF THE IONIC ENERGY

In order to calculate the remaining contributions to the
surface free energy, tractable approximations must be in-
troduced for the ionic entropy, the pair-correlation func-
tion of the ions, and the density-density response function
of the electron gas. The treatment of the first two quanti-
ties is based on the hard-sphere perturbation theory of
liquids and its generalization to the insulating liquid sur-
face by Abraham.!” The entropy associated with a given
ion should be reasonably approximated by that of a corre-
sponding hard-sphere system with the correct local densi-

ty. This leads to the simple ansatz that
S= [ sus(p;(2))d7, (23)

where sys(p;) is the entropy density of a uniform hard-
J

LBV =f"Mpi(T),p (PN +p;(¥) [ | V(T —1)—
r

|

+ 10T [ [pi(E)—ps(ER F—F | ,pi(FNG | F—F" | ,p(F))d

In this expression, f°* is the free-energy density, exclud-
ing electrostatic terms, of a bulk liquid metal with ionic
and electronic densities, p; and p,.

In calculating the properties of the various uniform sys-
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sphere liquid of density p;. More accurate treatments of
this term are possible, but since its contribution to the to-
tal surface tension is small these techniques do not at
present seem necessary.

The pair-correlation function g(7,r’) should also be
reasonably modeled by the values for a uniform hard-
sphere system. Here we use a prescription based on
h{T,T")=hys(|T—T"|,p(T)), a form that appears at
first sight to be asymmetric in the indices T and T'.
However, it can be shown by change of variables that it is
actually equivalent, in the calculation of the free energy,
to the use of the average of 4 (r) for densities p(T) and
p(r"’). Thus the asymmetry is only an artifact of the no-
tation used here. This approximation for the pair correla-
tion does, however, have a deficiency: Because of the
long-wavelength capillary wave excitations of the free sur-
face, the pair-correlation function should possess a long-
range component for two points within the interface.!
However, since the screened interactions in the liquid met-
al are actually short ranged, this feature should have only
a small effect on the calculation of the internal energy and
so is reasonably ignored here.

To approximate the electron-response function, we shall
assume that the X used to determine the energetics of a
given ion is that appropriate to a uniform system but with
the valence electron density taken to be that appropriate
to the position of the ion. This asserts that the screening
self-energy of an ion is just equal to its value for the local
electron density, and further that the pair interaction is
given by ¢(7,7') =¢(|F—7'|,p(T)). In practice, it is
convenient to modify this last approximation slightly and
consider the product of the pair interaction and the pair-
correlation function, 4 (7)¢(r), as a unit. This yields

h(T,T)(T,T")
~hys( | T—T"[;p,(D)p( | T—T" | ,po(r)) .
Again the apparent asymmetry in the indices can be re-
moved by a change of variables.
In the numerical computations, it is convenient to re-
group the terms somewhat in order to generate the free-
energy density of a uniform system together with correc-

tions. This produces the following form of the free-
energy functional:

F=Fp)+ [ f(0)dF,

where

(24)

(25)

— |[pe(T") —p (T)]dT"

r

—y

r

tems further approximations are necessary. First, the
bulk response function is taken to be consistent with the
local density approximation for the exchange-correlation
energy. This has been shown by Rose and Dobson? to be



30 PERTURBATION THEORY OF LIQUID-METAL SURFACES: ... 3141

XO(k)
1— (47 /K2 +GX k)’

X(k)= (26)

where

d2
G= ;p_zpeexc(pe) .

In these expressions €,(p, ) is the exchange-correlation en-
ergy per particle of the uniform electron gas and X, is the
Lindhard function. Next, as a representative local pseu-
dopotential we use the empty-core model?!

VP(r)= 0 r<ke |
—Z/r, r>R,. @7

Here R, is a core radius which we have chosen to eventu-
ally be consistent with a hard-sphere packing fraction of
n=0.47. (The resulting core radii are similar to those
computed by other methods.??) In addition, the k=0
value of the pseudopotential is adjusted separately to yield
the correct equilibrium density. The hard-sphere correla-
tion functions that we require are obtained from the
parametrizations of Verlet and Weis,?* and of Henderson
and Grundke,”* and the hard-sphere free-energy density is
derived from the Carnahan-Starling?® equation of state
which is thermodynamically consistent with these correla-
tion functions. Finally, the hard-sphere diameter used for
a given set of densities is determined by the criteria used
in the Weeks, Chandler, and Anderson? perturbation
theory of bulk liquids.

Lastly, note that what we have obtained is an expres-
sion for the free energy of a liquid metal with a surface.
However, the experimental quantity of interest is the sur-
face tension itself, y. The latter is normally equal to the
excess surface free energy computed relative to the Gibbs
dividing surface (i.e., zero excess number). For a general
two-component liquid, however, one cannot normally de-
fine a single dividing surface such that the excess number
of both components vanish. However, since we assume
here that the metal surface is charge neutral, a single
Gibbs dividing surface can indeed be defined in such a
way that both the electrons and ion excess numbers van-
ish.

V. RESULTS FOR THE ALKALI METALS

The procedures just described have been applied to the
alkali metals, Na, K, Rb, and Cs. Table I lists the bulk
densities, temperatures, and pseudopotential core radii
used in the calculations. The temperatures and densities
correspond to the zero-pressure melting points in all cases.
For reference, the bulk compressibilities and the core radii
quoted by Cohen and Heine? for these systems are also
listed.

The ionic profile is assumed to have the parametrized
form

- 1-%e2/w, z <0
Pi\Z)=po 28
' %e"”"’, z>0 28)

TABLE 1. The experimental electron density, temperature,
and compressibility of the liquid metals at the melting point.
The last column lists the pseudopotential core radius, and the
value from Ref. 12 in parentheses.

K
pe (ag?) T (K) pkBTT R,

Na 3.60x 1073 371 0.023 1.73

(1.66)

K 1.88x 1073 . 337 0.024 227

(2.12)

Rb 1.54x 1073 312 0.022 2.49

(2.12)

v (2.72)

Cs 1.23x 1073 302 0.024 2.71

: (2.93)

Mg 1.17x 1072 923 0.025 1.39

(1.39)

Zn 1.79% 102 693 0.015 0.98

: (1.27)

For this profile, the 10—90 width, which is the width that
will be referred to below, is wjy_go=3.2a9. A simple
monotonic form of this kind does not allow us to investi-
gate the possibility of oscillatory behavior in the density
profile. If present, this behavior is expected to have only
a small effect on the energetics of the surface.” On the
other hand, it is not clear that the present method can de-
finitively address the question of oscillatory behavior in
the one-particle density even with the introduction of a
more general form for the profile. Nevertheless, it should
allow us to determine an approximate width of the inter-
facial region as well as the surface tension.

The surface tensions and widths computed for the
liquid alkali metals are presented in Table II along with
the experimental surface tensions. Also included in the
table is the surface energy of the jellium component, with
the minimizing ionic density and the contribution of the
ionic-density functional (16) to the surface tension. Fig-
ure 1 shows both the electronic- and ionic-density profiles
for Na. As expected the ionic profile is narrower than the
electronic profile. The profiles for the other alkali metals
are similar.

As can be seen from Table I, the surface tensions are all
somewhat above the experimental values but still in good
agreement with them. Part of the calculated difference
may be attributable, as noted, to the free energy of capil-
lary waves. (This perturbative treatment of the surface
tension concentrates on the local energetics and so does

TABLE II. The computed 10—90 ‘surface widths and
theoretical and experimental surface tensions of the liquid alkali
metals. The decomposition into oj and oo, is defined in the
text.

w ( ao) Tiell Tion Otheor Texpt
Na 58 144 66 210 191
K 5.3 92 29 121 115
Rb 5.6 75 32 107 85

Cs 5.7 64 26 90 70
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FIG. 1. Ionic (
the Na surface.

) and electronic ( - - - ) number density at

not appear to include the contributions from the capillary
wave excitations of the surface.) In the absence of exter-
nal fields, the capillary wave contribution?’ is of order

- —(1/w)?
_—————477_[3 .

Using the above estimates of the width, we find that this
correction is negative and with a magnitude of a few
ergs/cm?. Thus it is plausible that much of the discrepan-
cy between theory and experiment in this case may be
indeed due to the neglect of such capillary excitations.

The ionic widths predicted for the alkali metals are sub-
stantially less than those calculated from the theory of
Mon and Stroud® but, on the other hand, are considerably
wider than the step profiles predicted by Hasegawa and
Watabe.!! The only experimental data available on the
widths of the alkali-metal surfaces are the recent reflec-
tivity experiments on Cs by Sluis and Rice.?® Unfor-
tunately, these authors do not fit their data to a monoton-
ic density profile. However, we can infer from their com-
parisons with the predictions of the Mon and Stroud
theory that the width is substantially less than those pre-
dictions and thus plausibly consistent with our results.
Note further that for K, Rb, and Cs, the widths increase
as we expect, since the length scales of the electron gas are
also increasing. Sodium, with the highest electron densi-
ty, does not fit this trend. A possible explanation for this
will be discussed below.

Recall that the electron density is computed for an as-
sumed ionic profile and that the jellium energy is taken
from this calculation together with the change in electro-
static energy corresponding to the ionic profile being con-
sidered. To assess the sensitivity of the method to the
choice of initial profile, the Na calculation was performed
again with an assumed ionic 10—90 width of 3.2a, and
4.8ay. The resulting surface tensions are 214 and 210
ergs/cm?, respectively, and thus appear not to depend ap-
preciably on the choice of the ionic density used in the jel-
lium calculation. For the other alkali metals, the jellium
calculations were performed with an initial profile width
Wig—90="6.4a,. 4

Ay (29)
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VI. THE POLYVALENT METALS

This procedure can also be applied to the divalent met-
als Mg and Zn, but in common with other approaches to
this problem the results of the procedure just described for
these systems are not satisfactory. The surface tensions
are predicted to be negative and the widths to be large (for
example, wg_go > 6ay for Mg). The former conclusion is
clearly wrong (the experimental surface tensions are 559
ergs/cm for Mg and 782 ergs/cm for Zn). The latter con-
clusion violates the physical intuition that smaller r, sys-
tems should have narrower surfaces. The appearance of
large widths actually prevents any reliable determination
of surface values for this model since ionic widths are re-
quired that are larger than the relaxation widths of the
electronic system. Thus the approximation (22) for the
calculation of the jellium energy for p;(z) by simply
correcting the electrostatic contributions for the calcula-
tion with p?(z) is clearly inadequate. It is also clear,
though, that the resulting surface tensions will inevitably
be strongly negative (y < —100 ergs/cm?). This con-
clusion follows from noting that the surface tensions cal-
culated for a given initial width are large and negative to
begin with. The width that later minimizes the surface
energy is always greater than the assumed initial width,
and the larger the assumed initial width, the more nega-
tive the surface tension is then computed to be.

Negative surface tensions are in part attributable to
wide ionic profiles and are directly traceable to the elec-
tron gas surface energy. We recall that for small r;, the
jellium surface energy at a step surface is itself negative!
and is a direct consequence of the reduction of the elec-
tronic kinetic energy at the surface. With a smooth pro-
file, however, the kinetic energy savings can be substan-
tial. In real systems, the background charge is not con-
tinuous but discrete (the ions) and the positive surface ten-
sions in metals with small r, result principally from the
increase in the ionic self-energy as the ions approach the
surface. The fact that the surface tension is negative in
the scheme presented above therefore implies that either
the reduction in kinetic energy has been overestimated or
the increase in ionic self-energy has been underestimated.
We shall argue below that the latter is the case.

The theory of surface properties of the polyvalent met-
als have thus been more of a challenge than is the case for
the alkali metals. Though we now understand the
reasons, to a certain extent the challenge persists. But
consider the following. A fundamental difference be-
tween the polyvalent metals and the alkali metals is the
relative size of the ionic-density-functional contribution to
the total surface tension. The surface energy of the elec-
trons in jellium for a step jellium profile is greatest for
r,=3.0—3.5 and thereafter decreases rapidly for higher
densities. It even becomes negative for r; <2.5. As men-
tioned above, the jellium energies are themselves lower for
a smoothly varying ionic profile. As a result, the ionic-
density-functional contribution to the surface tension of
the polyvalents is obviously of the same order or even
larger than the fotal surface tension. This is in striking
contrast to the alkali metals, where the ionic contribution
is only about'a quarter of the total. From this it is ap-
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parent that the ionic-density functional itself should be an
order of magnitude larger in the polyvalent metals than in
the corresponding case in the alkali metals. Further, since
the jellium energy will favor broad ionic profiles, the ener-
gy barrier required to maintain a reasonable surface width
must also come from the ionic-density functional. The
failure of the model for this case therefore clearly indi-
cates that the density functional as treated above is in
some way deficient. We may also note that the somewhat
anomalous width computed for Na may also reflect simi-
lar problems since of all the alkali metals its electron den-
sity is highest and hence closest to the polyvalents.

One possible source of the evident difficulties in the
polyvalent metals is the treatment of the pair interactions,
but this does not seem likely for various reasons. First,
the total contribution of the pair interactions to the sur-
face energy can be easily estimated. Each surface atom
loses about half its bonds (about six) with each bond hav-
ing an energy roughly equal to the depth of the potential
which, for example, is about 0.002 hartree for Mg. The
pair contribution to the surface tension then is approxi-
mately this energy per atom divided by the surface area
occupied by each atom. This gives a value of about 100
ergs/cm? for Mg. It therefore seems unlikely that small
errors in the treatment of this contribution can lead to the
large energies needed to correct the deficiencies. As a fur-
ther test, the characteristic pseudopotential radius r, can
be changed; however, the resulting general behavior does
not. Finally, the bulk response function can also be al-
tered, for example, to the form proposed by Singwi,
Sjolander, Tosi, and Land;?® but once again the general
behavior remains unchanged. Since these changes must
also alter the pair interaction, this further supports the
conclusion that the problem is not with the pair contribu-
tion.

We are therefore led to consider the one-body terms,
i.e., the self-energy of the ions, which represents a very
large contribution to the total energy. In particular, we
observe that the screening contribution to the self-energy
varies by about a hartree (2 Ry) as the position of the ion
varies through the interface. Further, the common asser-
tion that this term can be computed solely from a
knowledge of the local electron density, though initially
plausible, is actually suspect since the screening length is
comparable to the width of the electronic profile. In or-
der to assess the reliability of the local approximation for
the screening energy, a simple yet reasonable approxima-
tion for the screening self-energy is desired.

The screening self-energy can be written as an integral
in real space, namely

ESND)=1 [ V(F—DN(E, BV(H—TdTdT, . (30)
The local approximation simply sets X(T},T)

=X(|T;—T,|,o(T)). This form has the obvious disad-
vantage that the density response between two points de-
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pends on the position of the ions. That is clearly not
correct. A simple model for X that is both reasonable and
computationally convenient averages the bulk response
functions for the local densities at T and 15, i.e.,

2 [X( | rl—rzl,pe(rl))—f—){( ‘ rl—rzl,pe(rz))]
(31)

When placed into the self-energy expression this leads,
after a change of variables, to

ES(7) fV(r1~r X(| T1—T,|,p(T1))
XV(T,—T)dTdT, . (32)

(I'I,I‘2

The simpiest model of the bulk response function is the
Thomas-Fermi screening result, namely,

k3 k2

K= ——2 = —20 | 33
X(k) T (33)

41

where kg is the Thomas-Fermi wavelength, i.e.,
k0=2(3/ﬂ_)1/6p;/6 .

If the electron-ion interaction is taken to be purely
Coulombic, the expression (32) can be evaluated in closed
form for the uniform system, i.e.,

2

ES'=—"ko (34)
For the nonuniform case, all of the integrals can be per-
formed analytically except for the final z; integration. To
see this, we first take the Fourier transform in the plane
perpendicular to z. This yields

ESM(z)= fdzldzzfd QV(z,—z,Q)

XX(ZI —Zz,é)V(ZZ_Z,G‘) ’

(35)
where the Coulomb potential takes the form
e—2l1zl
V(z,Q)=21mZ—— (36)
Qo
and the response function is
k§ exp[(Q*+k1)1? |z
4rX(z1a) = —k§8(z) + -2 pLQ + 2] ]
_ 2 ‘/Q2+k2
(37)

Next, the integral over z, is carried out (taking care to
treat the absolute values correctly). After combining
terms and simplifying, we obtain

self
EYa=-=% f

22 © exp{—[Q +(Q*+k¢")'"?]|z;—z |}
kol(zy) f —
V' QO +k?2

dQ le . (38)
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Note that the kg in this expression depends on the posi-
tion z; through its dependence on p(z,). The integral
over Q can now be simplified by the change of variables
7=0 +1V Q%+ki. The result can be even further sim-
plified thereafter to give

22 Vo ) 0 e !
=S [ kb [y Tz (9)

This- integral is the exponential integral E, for which

E¥f(z)=

there exist accurate rational approximations.’ We thus

obtain the final expression,
Z? e

E:zlf(Z)Z T w

k§(zE \(ko(zy) |z, —2 | )dz,  (40)
with
ko(zy)=2[(3/m)p.(z,)]"° .

With this expression it is very straightforward to nu-
merically evaluate the self-energy as a function of position
given as primary input a form for the electron density.
For the calculations below, a simple fit to the electron
density of the Mg surface can be used, namely

pe(z)=po[1—tanh(0.8z)] . (41)

The resulting self-energy for both the nonlocal approxi-
mation (40) and local approximation using (34) are plotted
in Fig. 2. The difference between these two values is
presented in Fig. 3.

These results lead to two qualitative but extremely im-
portant conclusions. First, the nonlocal self-energy rises
much more rapidly in the vicinity of the surface than is
the case for the local approximation. This strongly favors
a narrower surface and so tends to explain the wide pro-
files obtained above. Second, the nonlocal self-energy is
substantially below the local value and hence more ener-
getically favorable for ions close to the surface. This will,
of course, lower the surface tension even further. Howev-
er, it is now possible to isolate the physical reasons behind
the difficulties encountered in the polyvalent metals.

0.0 T T

(hartree)

self
Esc

-2.0 1 L
-100 5.0
z (a,)

FIG. 2. Position-dependent ionic screening self-energy for
Mg. Solid curve is nonlocal approximation (258) and dotted
curve is local approximation.
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FIG. 3. Difference between the nonlocal and local approxi-
mations to the ionic self-energy.

To assess the reliability of these calculations, two
changes can easily be considered. First, the pure Coulomb
potential can be replaced by a pseudopotential. The
empty-core potential is analytically inconvenient for this
calculation; the form

VR(r) = —%—(1—e—”) 42)

is more convenient and has the correct qualitative
behavior for the purposes of this argument. A similar
nonlocal analysis of the self-energy can then be performed
except that the Q integral must now be evaluated numeri-
cally. The difference between the resulting nonlocal and
local approximations is almost the same as that computed
for the pure Coulomb potential. (The self-energy values
themselves are quite different, though.) This reflects the
fact that the pseudopotential only differs from the
Coulomb potential at short distances where the local ap-
proximation is reasonable. Thus the effects of the pseudo-
potential largely cancel in the difference.

The sensitivity of these results to the form of the bulk
response functions can also be determined (the Thomas-
Fermi response function is rather crude, especially for
large k). Recently, Igloi’! has proposed a simple analytic
form for X(k) that correctly describes both the large and
small k limits, namely

—P(k)
X(k)=————— (43)
() 1+ (47 /k?)P (k)
where
k
P(k)=—% b __ (44)
m [1438(k /2kp)]
and
14+0.0155/kp |~
= |1 - 2ORr (45)
7Tkp

A calculation, with the Coulomb potential, similar to the
one described above which can also be performed for this
response function though the Q integral, must again be
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carried out numerically. The resulting difference in the
local and nonlocal self-energies is again very similar to
Fig. 3. This suggests that the exact form of the bulk
response function used in this approach also does not af-
fect the difference between the local and nonlocal treat-
ments. [Note that (44) contains a parameter § which is
ill-defined in the low-density limit. Nevertheless, in this
limit the self-energies are quite insensitive to the choice of
5.] .
A large decrease in the nonlocal estimate of the self-
energy for ions near the surface is somewhat counterintui-
tive. In addition, if valid it would imply vastly negative
surface tensions. The above analysis clearly suggests that
this conclusion follows from the ansatz (31) relating the
inhomogeneous response function to the bulk values. As
the bulk density changes, the response function varies in
two ways. First, the amplitude of X varies as the cube
root of the density. This reflects the requirement that if
J

22
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there is less material present, the response to a potential
change will be smaller. The second change in X is the
variation of its basic length scale. It is clear that the
change in amplitude can only lead to an increase in the
self-energy so any anomalous decrease must itself be at-
tributable to the change in the length scale. It is not clear
that it is physically correct to incorporate this change of
length scale into the response for electrons at the edge of
the metal. In particular, the divergence of the length scale
that occurs for zero electron density is physically inap-
propriate. Also, since the electrons in the tail of the pro-
file cannot really be distinguished from those in the bulk,
the basic length scale may in fact be much more represen-
tative of that of the bulk. These arguments then suggest
that the variation of the length scale of the response func-
tion is too strong. To see if a slower and bounded varia-
tion of the length scale will lead to more reasonable
behavior, the following alternative can be studied:

ES(z)= 2~ f_w k3(z)E, {[ak{™ +(1—a)ko(z))] | z; —2 | }dz; ,

4

where a is a weight that roughly determines how much
the length scale should vary. A straightforward calcula-
tion then shows that the self-energies determined from
this form do not in fact have the anomalous decrease in
the self-energy near the surface. However, they still retain
the more rapid increase of the self-energy near the surface
compared with the local approximation, a clear indication
that this feature is probably correct since it is not affected
by the various modifications to the model. To establish if
such a change in the self-energy would actually correct
the predictions of the surface model for Mg, the differ-
ence in the local and nonlocal self-energies can simply be
added to the self-energies used in the original surface cal-
culations. For a=0.15, the surface tension thus comput-
ed for Mg agrees with experiment; the 10—90 width is
then 4.5a,. This width seems physically plausible in that
it is somewhat less than the widths inferred for the alkali
metals as one expects because of the shorter response
length of the electron gas. Experimental information on
the widths could be extremely useful to check this expec-
tation.

Note that in principle any substantial changes in the
calculated values of the self-energy can destroy the al-
ready reasonable results we have obtained for the alkali
metals. However, the central point is that the ionic self-
energies make a much smaller contribution to the surface
tension in these metals because the self-energy for a given
electron-ion potential decreases with the electron density.
This, coupled with the factor of Z?2 scaling the interac-
tions, implies that the self-energies are about an order of
magnitude smaller for the alkali metals. Further, the con-

—

tribution of a given change in the self-energy on the sur-
face tension is also proportional to the ionic density. This
is again substantially lower for the alkali metals. Accord-
ingly, we do not expect that changes in the calculation of
the ionic self-energies will make a significant difference in
the results for the alkali metals.

" The nonlocal model for the self-energy just described is
not intended as an accurate theory of that quantity. It
does strongly suggest, however, that the local approxima-
tion radically underestimates the rise of the self-energy as
the ionic position is moved through the surface and that
this underestimation is principally responsible for the neg-
ative surface tensions obtained for the polyvalent metals
using the procedure described earlier. Further, the results
from the nonlocal model strongly suggest that a more
realistic treatment of the self-energy may lead to results
for the polyvalent metals that in turn lead to agreement
with experiment. The next step toward understanding
these systems is thus an accurate calculation of the screen-
ing self-energy as a function of position in the interface.
This requires an accurate knowledge of the response func-
tion of an electron gas at a jellium surface. Only when
these results become available will it be possible to make a
determination of the surface properties of the polyvalent
metals of an ‘accuracy comparable to that currently
achievable for the alkali metals.
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