
PHYSICAL REVIE%' A VOLUME 30, NUMBER 6 DECEMBER 1984

Polarization properties of phase-conjugate mirrors: Angular dependence
and disorienting collision effects in resonant backward four-wave mixing
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%c p«cscnt thc thc01y of Icsonant backward dcgcnciatc fouI'-wave II11x1ng «n gaseous IIlcd«a for
Doppler-broadened degenerate two-level systems. The degeneracy of the atomic levels as well as the

inAuence of the polarization of the incident fields are taken into account within the framework of a
tensorial formalism. The amplitude, line shape, and polarization of the reemitted phase-conjugate

field are calculated up to the third order in the incident fields. The velocity average is performed in

thc approximation of 181-gc Doppler linewidths. - Onc cons«dcIs 1Q dcta«l thc 1QAucncc of depolarizing

rclaxat«on proccsscs Rnd thc effects of pump-probe RngulRr scparat«on. IQ part«cular, thc «IQp01"

tance of the residual Doppler effect (shortening of the lifetime of the optically induced gratings by

thc RtoImc Illot10Q) assoc1atcd w«th thc puIIlp-pI'obc angle «s cmphas«zcd, %c show that thc polar«-

zation of the reemitted fields is governed by very simple laws as soon as the residual Doppler effect
overcomes the lifetimes of the atomic levels. Phase-conjugate mirrors can be simply characterized

by a linear dichroism (parallel pump polarizations) or a birefringence (cross-polarized pumps). Vec-

tonal phase conjugation «s also analyzed, «n the case of counter-rotat«ng circular polarizat1ons of the

pumps. Finally, the case of two-photon transition is studied and compared with the case of a
resonant transition.

I. INTRODUCTION

Ill 1'ccctlt ycR1's, 111cl'cas111g 111tclcs't llas been S11owtl fo1'

backward degenerate four-wave mixing (DFWM)' in rela-

tion with its applications to phase conjugation (PC).
Numerous experimental and theoretical works have been

concerned with the case when the nonlinear medium con-
sists of a resonant gas sample. These studies on resonant
media are of particular interest for a good knowledge of
all the physical processes involved in DFWM. Some of
the properties related to the Doppler-broadened nature of
these media are rather well known: it has been demon-
strated that resonant DFWM is efficient only in the case
of a small angular separation between the standing pump
wave and the incident traveling probe wave (see Fig. 1)

and, thus, the emission line shape is Doppler-free, due to
velocity selection. The saturation behavior of the Pc
emission has also been widely discussed ' and has been
demonstrated to bc of dlspclslvc orlg111 1n n1ost cRscs.

Some of the polarization properties of resonant DFWM
have been analyzed by several groups, ' but only a few
works considered the influence of level degeneracy in de-
tail. ' In particular, vectorial wave-front reversal (both
phase and polarization conjugation) have been studied in
Refs. 7 and 10. In general, most of the works in the field
have bccn clthcl eonccrncd %1th clcIIlcntaQ' polar1zat1OIl
sclcctlon rules ' ' OI based on thc scalar model
which assumes the reemitted field to be the sum of three
contributions proportional to the scalar product of two in-
cident fields, so that

Epc ——A(Ec E )E++B(Eo E+)E +C(E+ E )Eo

(notations Rre obvious, see Fig. 1; A,B,C Rrc cotlstallts de-

pending upon the nonlinear susceptibility of the medium).

If the scalar model seems to describe conveniently most

works in solid materials, it appears to bc strongly inade-

quate to the case of gas media. Such a model does not

consider the possibility of bringing the atomic system into

a linear superposition of Zeeman sublevels, and thus does

not account for the contributions originating in atomic

sublevel coherence. For instance, for a probe polarization

orthogonal to the one of the pumps, Eq. (1) wrongly as-

s1gns 1csonant phase con)ugatlon to hvo-photon absorp-

tion by the standing pump wave [term C in Eq. (1)] and

1gIloI'cs thc pIoccss 1n %h1ch thc PC cm1sslon process 1s

induced bp R ZccIQan co4cI'cIlcc grRt1ng.
In this paper, we present a calculation of the PC field

for a Doppler-broadened degenerate two-level system

(a,J,~b, Jt, ). One uses the tensorial formalism' '

FIG. l. Basic scheme of degenerate four-wave mixing. The
standing pump wave [fields (E+,E )] is along the axis defined

by K+———K =K, the probe (field Eo) propagates along Ko.
Thc polRr«ZRtion of thc f1clds R«c dcf1ncd, rcspcctlvcly, by c
e, eo, and e'for the reemitted field EPC.
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which allows us to naturally introduce the effects of the
polarizations of the incident fields. In addition, relaxation
processes in a gas phase (such as disorienting collisions or
dephasing collisions) and cascade effects induced by spon-
taneous emission are straightforwardly taken into ac-
count. The validity of our analysis is essentially limited
to the case of low incident powers, so that the PC field is
derived by a perturbation expansion. By comparison with
previous studies, our work demonstrates the extreme im-
portance of the pump-probe angular separation 0 which
severely affects the polarization properties of DFWM
emission. It is shown that several regimes must be dis-
tinguished as it was already the case for a nondegenerate
two-level system (see Ref. 3, which will be referred to as I
in all the following). In the quasiperfect collinear regime,
the Doppler effect is entirely negligible, and the problem
becomes closely related to saturated absorption and polari-
zation spectroscopy: References 6 and 8 consider only
this regime for which the PC emission should depend
strongly on all the details of the relaxation processes. On
the other hand, for relatively large angles 0, the line shape
itself is modified by the Doppler broadening and the
physical processes are independent of the details of the
system relaxation. An intermediate regime exists in
which the line shape is weakly affected by the Doppler
broadening, while the lifetime of the atomic gratings is
governed by the residual Doppler effect: in this case, the
emission line shape and the polarization properties of the
PC mirror become uncorrelated and the latter ones are in-
dependent of the relaxation mechanisms in a gas phase.
This regime is the one commonly encountered in experi-
ments as we have shown in a previous paper. '

Section II is devoted to the notations and to the descrip-
tion of the atomic system. In Sec. III, a general expres-
sion of the reemitted field is given as an integral over the
velocity distribution and is calculated through a third-
order perturbation expansion of the density matrix. In
Sec. IV, the velocity integration is performed for the vari-
ous regimes mentioned above, depending on the pump-
probe angular separation, and some general properties of
the PC field polarization are discussed in Sec. V. Section
VI is devoted to the discussion of several cases of practi-
cal importance; e.g., all the polarizations linear and paral-
lel, or orthogonal, or all the polarizations circular. In all
these cases, the main features of the phase-conjugate mir-
ror can be characterized easily. One also discusses the
practical framework allotting one to carry out vectorial
conjugation. A more complete calculation of the influ-
ence of the angular separation 0 on symmetry breaking by
collisions effects is deferred to an appendix. Finally, in
Sec. VII, we discuss briefly the problem of two-photon
phase conjugation when the level degeneracy and polariza-
tion problems are taken into account. '

II. DESCRIPTION OF THE ATOMIC SYSTEM

The atomic system that we consider here is a two-level
atom a~b (a is the lower level) with respective angular
momentum J„Jb, so that each level is composed of
(2J~+I) sublevels

~
J,m~) ( —J &m &J ). The two

levels (transition frequency coo) are coupled by an electric

dipole moment.
One uses the tensorial formalism in which atomic ob-

servables are expanded on a set of irreducible tensor opera-
tprs + 15p 16, 18

.,T~"'= g ( —1) ~ ~(J.,J,,m. , m—, ~k, g)
m, m&

X
~
J,m )(Jump~, (2)

where (J,J~,m, —m p ~
k, Q ) are Clebsh-Gordon coeffi-

cients. In this basis, the electric dipole operator is
represented by a tensor of rank 1:

3
' (3)

where P,b is the (real) reduced matrix element. The gas
medium is composed of a collection of atoms whose
translation motion is described classically. Their internal
state is described by an atomic density operator p(r, v, t)
which is expanded on the basis of irreducible tensor
operators:

p(r, v, t)= g,bp&(r, v, t) &T&'.
a, P, k, Q

(4)

The relaxation of the atomic system (radiative decay,
collisional broadening) is assumed to be independent of
the velocity:

n (v)=n f(v)
with

—u2/u 2

f(v)=
(u v'7r)

(6)

The b~a transfer induced by spontaneous emission
(cascade effects) is described by the following term

with

d k

dt aaPg =8(b,a, k) bbpg
spont em

8(b,a,k)= ( —1) '

Jb Jb k
X yb. (2Jb+1)

J~ J~ 1

In Eq. (9), yb, [&Ib(0)] is the probability for spon-
taneous emission from

~

b ) to
~

a ) .
We use a classical description for the incident elec-

tromagnetic (EM) fields. For the sake of simplicity, we

d k

dt ttpa
—= —I ~(k) t pa.
relax

[In the following, we set I (k) = I (k).] I (0) is the re-
laxation rate of the global population in level a, I ~(1) is
the relaxation rate of the orientation (macroscopic angular
momentum), and I (2) describes the relaxation of the
atomic alignment (k =2). In the absence of laser irradia-
tion, the population is at thermal equilibrium, and thus
follows a Maxwell velocity distribution (u, mean velocity):
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restrict ourselves to plane waves, and we assume that

propagation effects are negligible, so that the EM field E
inside the medium is the sum of three incident waves:

E= —,'( &+@'*)

of interest E "(r,t) corresponding to the field reemitted
through the four-wave mixing process is only one of the
Fourier components of the total electric field, radiated by

the corresponding component P "(r,t) of the induced po-
larization. E' and P" can be written in complex notation:

with

8'"e &exp( i 4—„)
p=+, Q

E'(r, t) = —,
'
[ 8' "(r,t)exp( i—C&„)+e e .],.

P "(r,t)= —,'[9 "(r,t)exp( i4—„)+cc ]. .

(20)

(21)

4p ——mpt —Kp. r +yp, (12)

ua=ug, ll+i=+ ~ (u~+1Uy) .
v'2

They satisfy

il q ( 1) u qq uq ilq 5qq&

(13)

(14}

Hence, we defined the standard components of the unit

vectors e" by

e ~= e"u*
q

with

e"=e ~-u
q q ~

where the index p refers to the fields labeled +,—,0 (see

Fig. 1). In Eq. (12), co& is the frequency of the p wave, K&
its wave vector, p& its phase, and 8'" its complex ampli-

tude (K+ ———K =K). The polarization vector e& can
be expanded on either a (real) orthonormal basis

(u„,u„,u, ), or the unit complex vectors defined by

with 4, =co,t —K, -r+y„where co„, K„, and y, are,
respectively, the frequency, the wave vector, and the phase
of the reemitted PC field of interest. Since we consider
only degenerate four-wave mixing in the. following, we as-
sume th'at the dispersion relation is satisfied, so that

co, =c
~

K,
~

(automatic phase matching of backward
DFWM), and we have to determine the field exiting out

of the medium [in the vacuum, where P(r, t)=0]. In vac-
uum, the reemitted field must be a transverse plane wave.
Equation (19) can be separated in an independent system

of equations for the transverse component Ei(r, t) and

the longitudinal one E~~(r, t) (E~~ parallel to K„). In the
slowly varying envelope approximation, one sees easily
that 8'

~~
is everywhere proportional to the induced local

longitudinal polarization 9
~ ~

( r, t ) [Eq. (19) yields

~ ~

= —9
~ ~

/60]. Thus, the longitudinal field does not
propagate inside the medium, in the sense that it is in-
dependent of the length of the interaction zone. In other

words, its gain coefficient cancels, implying that 8'
~

~(r, t)
is very small throughout the sample. On the other hand,
the transverse field and the transverse polarization are
coupled by the well-known propagation equation (in the

slowly varying envelope approximation with K„=—KD):

The transversality of the plane waves imposes the condi-
tion c Bt 2E'0

(22)

e~ K =0.P (17}
leading to (K=

~
K0

~
)

To determine all the properties of the medium interact-
ing with the EM fields, we need to calculate the density
matrix of the system, which obeys the following master
equation

ihip=[A 0 P.E,p]+ — — +
dt dtrelax spont em

(18)

p is the total (hydrodynamic) time derivative of p,
p=Bp/Bt+v. Vp. The equation of motion of pp~ is
thus obtained by projecting Eq. (18) in the tensorial basis

[Eq (4}]

III. EXPRESSION OF THE EMITTED FIELD

The electric field inside the medium obeys the propaga-
tion equation

VXVXE— 1 BE 1 Bp
c Bt e@ Bt

[where E and P are, respectively, the electric field and the
macroscopic polarization at r and t (Ref. 20)]. The field

2E'p

outside of the medium (
~
r

~
&L). One assumes an opti-

cally thin sample, so that Pi(r, t) can be considered as
a constant. L is the length of the interaction zone in the
medium (see I, Sec. 2).

The calculation of the emitted field is therefore reduced
to the determination of the transverse component of the

nonlinear polarization. The total polarization H "=% i
+ 9

~~
is easily obtained by solving the density matrix

equations in the standard tensorial basis. On the other
hand, the separation between transverse and longitudinal
components of H ' is simpler when one deals with the
coordinates in the real space than with the standard com-
ponents. In the following, we give only the expression of
the standard components of H ' and not explicitly of

In most applications, when the angular separation 8
is small, one has

~ H~ ~
&&

~
Hq

~

(as a consequence of
the transverse nature o the incident fields [Eq. (17)]) and
thus H i=A ". In the most general case, the standard
components of 9

~~
and 9 j are immediately deduced
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from H ' if the quantization axis u, is chosen parallel to

K„; such a choice for u, is always possible, although gen-

erally not the most convenient (see Sec. V C).
The induced polarization P(r, t) is calculated through

the equation

where (p) stands for the velocity-averaged density ma-
trix. One deduces from Eqs. (3) and (5) that

(25)

P(r, t) =Tr[(p)P], (24)

The general third-order perturbation solution of Eq.
(18) is given in Ref. 18, assuming the rotating-wave ap-
proximation:

~3
. ~ ab PZ

abPQ' l

kIQIqIq Iq
A, ,p, v

(ba Q'Q)(baGq'Q) (ab Q'Q)(ab q'Q) ~ba1k q 1k q" 1k q 1k k

k + 7 ha
Lb(p v) L, (p —v) Lb (iJ, v)—

N'"I"N' e) e" e
X

q' —q —q"

L ()(b —v+ A, )

1 1 i(@p—@ +@g)p v

L(p, ) I.*(v)
(26)

In Eq. (26), n =nb n, i—s the population inversion densi-
ty. The coefficients G and W are given by

pGg g = ( —1) P [(2k+ 1)(2k'+ 1)]'

L(ij, v+A, ) =—I ah+i[ cop —cow+cot —cop

—(K„—K,+K3) v],
La(p v)=l a(k)—+i [coq co„(K„—K„)—v] . —

(30)

(31)
k' 1 k k' 1 k
Q' q —Q Ja Ja Jp (27)

1 1

Jb Jb k Jb Jb Ja
X '

Ja J, 1
'

1 1 k

Ja Ja Jb

(28)

The denominators L, analogous to those defined in I, are
given by

ctI„=(cot+Kp r+y++t(() —()pp) (32)

so that, in the sum over p, v, A, in Eq. (26), only two terms
contribute, H '+' and 9 ' ', associated, respectively, to
(p, v, A, )=(+,0, —) and (p, v, I(,)=(—,0, +). Thus

pr p(+)+p( —) (33)

For a dipolar transition, only one optical relaxation rate
l,b(k=1) has, to be considered at third order [Eq. (26)]
and we have set I,b ——I,b(1).

From Eq. (26), it is easy to get the component P" of the
induced polarization responsible for the emission. For de-
generate four-wave mixing (cp& co =co~——=co), the phase-
conjugate field is such that

L(p) =I ah+i(cpq co() K—~ v—), ' (29) with % '+' given by

+k +,~(+)a Jf(~)d3 y bgg ( ) agg'(k)

Lb(K —Kp) La (K—Kp)

k

1— ~ba
Vha kLb(K —Kp)

+1 1

L ( —Kp) L (K) L (K())*

(+)g 0 ( )g
Xeq e qe (35a)

II

p&g'(k) = X (p Q'Q)(p Gq'Q)
QIqIq Iq

( —)4 0 (+)+XeI e e (35b)

and Hg ' is deduced from (34) by exchanging +~-
and K~—K. 9 '+-' are physically interpreted as the

contribution of the diffraction of the (+K) wave by a

grating formed by waves (+K) and Kp. One has defined
the following notations:

II

pgg (k)= g (p Gg.g)(p G,'.Q)
Q, q, q', q"

L(K„)=l,b+i(cp cop K~—v),—

Lp(K„—K„)= I"p(k) —i(K„—K„).v,
and 4' is a constant defined by

N'+g -gc'p.
4 3

(36)

(37)

(38)

The phase-conjugate field is then readily obtained by
Eqs. (23), (33), and (34). The general expression obtained
contains all the desirable information on the emission

(34)
I

(One should note that these coefficients vanish for k & 2.)

Due to the degeneracy in frequency, expressions of Eqs.
(29)—(31) have been simplified as
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Xi g~ «)= X~ga {")=go
k, P k, P

and in particular, for J, =JI„

X~gg {k)=-'ga .
k

(40)

(41)

%e will see that this symmetry relation allows us to
simplify some of the expressions in the next sections.

Before discussing the problem of the velocity integra-
tion of Eq. (34), let us first consider the simple case of sta-
tionary atoms. In that case, Eq. (34) simplifies because

L ~k(K —Ko) =I'p(k),

L(K)=I,b+i(co —alo) =L(a1),

so that the standard components of H ' are given by

2I,I, Ã I,gg {k) +bgg (k)

L(co) ~L(a))
~ k I b(k)

,gg (k)+,gg (k)
1,(k)

(42)

(43)

(44)

In this expression, the gratings formed by waves

(K,Ko) and ( —K,KO) play comparable roles, and the rela-
tive amplitude of H'+' and &' ' just depends on the po-
larization of the incident fields. Assuming that it is possi-
ble, to vary the angular separation 8 for a given set of in-
cident polarizations [which means that 8'0 is orthogonal
to the (K,Ko) plane], it is thus clear that the 8 dependence
of the reemitted field is only due to propagation effects
(conditions of transversality) since 9 "is independent of
8 (Sec. VIA 5).

IV. ANGULAR DEPENDENCE OF THE PC FIELD
FOR DOPPLER-BROADENED SYSTEMS

In all the following, we assume a Maxwellian velocity
distribution f( v ) [Eq. {7)],and we only discuss the case of
large Doppler broadening, i.e., Ku » I ~II(k) (a =a,
b; 13=a,b).

In Eq. (34), the velocity integration consists in the in-
tegration of products of L-type denominators multiplied
by constant factors. Such an integration is entirely identi-
cal to the one discussed previously in I (Refs. 3 and 21)
for a two-level system; the physical description of the an-

dependence (amplitude, polarization) on the angular
momentum (J„Jb), on the incidence angle, and on the po-
larizations of the incident fields.

In a simple model, in which all the relaxation constants
are equal, and yb, ——0, expression (34) is greatly simplified
by using the following relation (Appendix A):

g I,gg~ (k) = g,gg (k) . (39)
k k

This implies

gular separation dependence is still valid, the main differ-
ence being that instead of considering only a population
grating, one now has to sum over various types of grat-
ings.

If the polarizations of the pumps and probe are parallel,
population gratings are formed, corresponding to a spatial
modulation of the population of the Zeeman sublevels. If
the polarization of the probe is orthogonal to the one of
the pumps, there is no light intensity interference pattern,
but the polarization of the total incident field is spatially
modulated, thus producing a spatial modulation in the
Zeeman atomic coherence. In the framework of the ten-
sorial formalism, these two kinds of gratings decay dif-
ferently since they originate in various combination of
multipole observables with different relaxation rates.
Population gratings involve the global population of the
levels (k=0) and longitudinal orientation (k=1) and
alignment (k =2). On the other hand, coherence gratings
correspond to transverse orientation or alignment. A
second cause of grating relaxation lies in the motional
washout: due to the atomic motion, an absorber runs over
a grating period in a mean time of the order of A/u
[1,/2u sin(8/2), for the (K,Ko) grating]. This introduces
a "residual Doppler broadening" (=Ku8), which shortens
the grating decay time.

The velocity integration of Eq. (34) will be discussed for
several regimes, depending on the relative importance of
the Doppler linewidth Ku, the residual Doppler broaden-
ing Ku8, and the various relaxation times I p(k): (i) the
quasicollinear configuration [ICu8~~I,b, l p(k)]; {ii) the
orthogonal configuration (8=Ir/2); and (iii) two inter-
mediate regimes with 0 ~~ 1, residual Doppler broadening
either large [Xu8» I p(k), l,b] or small compared with
the optical linewidth [I,b »Eu 8,I p(k)]. In all the cases

with 0 &&1, only the gratings induced by waves K and Ko
(Ko- K) contribute efficiently to the emission. The

( —K, KO) grating yields negligible contribution because of
its very large motional decay.

A. Quasicollinear configuration (8=0)

For 8=0 in Eq. (34), we only have to integrate over one
velocity component the product of two resonant denomi-

nators [since L (K—Ko) is independent of v]. This in-

tegration yields the standard components of 8' '
by using

relation 8'~ —— (iEL /2') H P—[Eq. (23)]:

vier 1 ~ bgg «)
Sou L(~) „r,(k)

g+ (k) ~k
l, (k) ' I I, (k)7ha

[L(co) is the resonant denominator introduced in Eq.
(43)].

T11e exactly colllllear collflguration is not, of much in-
terest for phase conjugation and is identical to the basic
scheme of polarizat][on spectroscopy, 23 but the validity of
Eq. (45) can be extended to quasicollinear configuration as
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long as 8 «1 ~(k) /Ku, I,b/Ku.
It is worth comparing the reemitted intensity I' for the

two cases of stationary atoms and large, Doppler broaden-

ings, keeping the same set of polarizations and the same
geometry (8=0}. One finds easily that, on resonance,

7T abr
46IDoppler /Istat = ( )

[one has IDoppi«oc rr/
f

KuL(ro)
f

and Is(at oo 161,b/
fL((U)

f ].
This result appears as quite general (at least for third

order) and does not depend on the incident polarizations
and the population relaxation: it involves only the ratio of
the homogeneous to inhomogeneous width. This extends
the results of I.

[L ( —Ko)L (K)L (Ko)'] ' 1+
I tt(k) —i(K —Ko) v

and in the integration, only [L(—Kp)L(K)L(Kp)*]
contributes notably ( the other term being
[21,b 1 ti(k)]/4Ku(/n —smaller). The integration is easi-
ly performed as in I, ' ' and one gets

4M~ @ g(Z) —z' 2t
( )

(Ku)' Z v rr
(47)

B. Orthogonal configuration (0=m. /2)

In this case, one has to take into account the two grat-

ings (K,Kp) and ( —K,Kp) which both contribute to the
PC emission. The terms to be integrated over two veloci-
ty components in Eq. (34) are terms like

[L(—Ko)] '{[L(K)] '+ [L(Ko)*] '
J [Lp(K —Kp)]

or like

[L(—Ko)] '{[L(K)] '+[L(Ko)*]

X [Lp(K —Ko)La(K —Ko) 1

(terms due to the spontaneous emission).
Assuming I ti(k) «Ku, it is easy to show [see Eq. (B5)

of Appendix 8] that the terms due to spontaneous emis-
sion are much smaller (by a factor of the order of
yb, /Ku) than the first terms, which themselves can be
rewritten as

cident fields and the angular momentum of the energy
levels determine the overall efficiericy, but do not affect
the emission line shape which is Doppler-broadened. As
could be expected, one gets the same frequency depen-
dence as for nondegenerate two-level systems [see I, Eq.
(39)].

4v~
(Ku)'8'

g(1') ——,
' iv m(1 —e )

(50)

X=2((U —(Up)/Ku8 .

One can remark that the contribution of the cascade effect
is negligible after velocity integration (it gives a term

yb, /Ku8 smaller than the main terms). The emission
linewidth given by Eq. (50) exhibits a Doppler broadening
of the order of Ku8 (see I, Sec. 4.3) and the intensity at
line center is reduced by a factor of (I /Ku8) by compar-
ison with the fully collinear configuration [this factor is
calculated in a simple model in which 1 tt(k) =1,
yb, ——0]. This reduction is both due to the partial selec-
tion of two velocity components (instead of one axial
component for 8=0), and to the atomic thermal motion
responsible for the washing out of the induced gratings
(the mean lifetime of these gratings is (Ku8} ', instead of
[1 tt(k)] ', see I).

D. Intermediate regime: residual Doppler effect
smaller than the optical linewidth [l,b »Ku 8, I tt(k) ]

Since I,b,Ku8«Ku, only the (K,Kp) grating contri-
butes. The velocity integration is better performed in a
basis defined by axes Ki ——(K+Kp) /2 and

K2 ——(Kp —K)/2 [velocity components v i, v2', see Eqs. (42)
and (43) of I]. In the integration of Eq. (34), the main
contribution comes from terms like

1

[I ab + ( t(0(U p +K i V i +K2 V p ) ]

1

[I b+l(CU —Cpp+K2U2 Kivi )] [I p(k)+—2/K U ]

(52)

C. I.arge residual Doppler broadening [Xu 8»I,b, I tt(k)]

The integration of Eq. (34) is analogous to the one dis-
cussed in I [Eq. (55)] and we find

with

and

Z = (co —too) /Ku (48)

Because E&u =Eu &~I,b,E2u, co —coo, one easily shows
[see Eqs. (59) and (60) of I] that integration of (52) over vi
leaves us with

g(Z) =e I e' dt . (49)

The geometrical coefficient g& is defined in Eqs.
(39)—(41).

The emission features are independent of the details of
the relaxation processes. The polarization state of the in-

1

I b + ((U o+K2V2 ) I p(k) +2iK2U2
(53)

In the ease when K2u=EuO/2~&I, b, E2U2 can be
neglected in the first denominator of (53), and one gets,
after some transformations,
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bgg+ (k)g(I b (k)/Ku 8)+,gg+ (k)g(l", (k)/Ku 8)
(Ku)'8 I'.b+I ~—~0

f(I b(k)/Ku8) P—(l, (k)/Ku8)
1 ba ba aÃQ' I,(k) —I b(k)

with

[The (real) function f(x) is related to the plasma disper-
sion function W(Ref. 24) by P( x)= 8'(i x).]

Equation (54) shows clearly that the line shape is a
I.orentzian [width I,b, not affected by the residual
Doppler effect], while the overall efficiency depends on
the combination of atomic relaxation, spontaneous emis-
sion, and motional broadening.

In Eq. (54), two.limit cases can be considered.
(i) If I p{0) ((Ku 8, g(0)=l and Eq. (54) reduces to

pQ
Q'

(Ku) 8 I ab+&(~ —~O)
ggi (56)

In that case, the polarization properties are related to g~
as in Eqs. (47) and (50). The motional broadening is the
main limitation to the PC efficiency, so that the intensity
is proportional to (Ku8), mstead of (Ku8) in Eq.
(50), when the line-shape Doppler broadening also contri-
butes.

(ii) If Ku8((I p(k), Q(x)=(xl/rr) ' and Eq. (54) is
thus equivalent to Eq. (45).

V. GENERAL PROPERTIES OF THE POI.ARIZATION
OF THE PC FIELD

A. Independence between emission line shape
and polarization properties

In a11 the cases considered above, we have seen that the
emission line shape does not depend on the incident polar-
izations. Reciprocally, this independence applies to the
polarization of the PC wave, which is found to be in-
dependent of the frequency detuning. This property is
general, independent of the incidence angle 8, as long as
I p(k) ~&I',b. The emission line shape is thus exactly
similar to the one obtained for nondegenerate two-level
systems (see I). This property is valid at third order and,
in general, fails for intense incident beams. At saturation,
emission line shape and polarization properties become
strongly correlated. '

the geometrical coefficients g& [Eqs. (39)—(41)].
In particular, in this regime, polarization selection rules

cannot be broken by collisional effect, since the latter ones
do not have enough time to operate during the grating
mean lifetime. A noteworthy point is that coefficients

g~ are identical whether one considers the grating in-

duced by tl e waves (k,k, ) or waves {—k, k, ). It im-
plies that the PC polarization remains unaffected when

the polarizations of the pump waves k and —k are ex-
changed [for Ku8» I p{k)]. This remarkable symmetry
property allows us to predict the behavior of PC mirrors
when the pumps have arbitrary linear polarization. Be-
cause of symmetry the probe polarization must be un-
changed when it is directed along the bisectors of the
pump polarizations. These directions represent the "neu-
tral" axes of the PC mirror. However, in general, the am-
plitudes of the PC reflectivity along these two directions
are not equal. This will be discussed in more detail in Sec.
VI C.

C. Transversality of the reemitted PC field

As long as wc RI'c 1Iltclcstcd ln a sIIla11 angu1ar separa-
tion 0, we can consider that both probe and PC wave have

a polarization transverse to the pump axis K. Elementary
physical arguments allow one to understand that the non-
linear po1arization induced in the medium is transverse.
For instance, if one defines the standard basis so that

uo ——u, ~~K, symmetry conditions on 3j symbols impose
that

II

(p G~~)(p G~ ~)=0 for q, q', q"=+1 and Q'=0

which means that there is no longitudinal optica1 polari-
zation (Q'=0).

As a consequence of this transversality, Eqs. (50) and
(54) [combined with Eq. (23)] yield directly the standard
components of the emitted field. On the other hand, we
will see in Sec. VI that for 8=Ir/2, a fully longitudinal
polarization can be induced in the medium, without re-
emission of a propagating field.

B. Angular dependence of the polarization

When I',b » I p(k), the polarization dependence can be
sp td' t o '

g
(i) If Ku8 (I p(k), the polarization depends on the rela-

tive valllc of I p{k) aIld K@8, so 'tllat it ls scllsltlvc to tllc
relaxation processes in the gas medium (collisions, etc.).

(ii) If Ku8» I p(k), the polarization state no longer de-
pends on the relaxation processes, and is only related to

In this paper, the theoretica1 analysis is restricted to the
case of low-power incident fields, so that a third-order
perturbation expansion is valid [Eq. (26)]. The emitted
EM field then depends linearly on each of the incident
fields~ Rnd lt 1s posslb1c to plcdlct thc behavior of thc PC
mirror for any set of incident polarizations by discussing
its properties in a few remarkable cases. A complete
analysis is actually given when one considers the follow-
ing sets (with an arbitrary probe polarization): pumps
linearly polarized, with para11el or orthogonal polariza-
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tions; pumps circularly polarized (co-rotating, or counter-
rotating).

e = 1l = (u 1
—ll+1),v'2

e = ugcosAo+ U~slnAO ~ (58)

where ao is the ( e, u, ) angle.
Thc staIldard coIYlponcnts of thc polarizations RI'c easily

obtained from Eqs. (13) and (16), and when replaced in
Eq. (35), yield the following pg&+ coefficients:

pgo (k) =dp(k)sinao, (59a)

A. Cross-polarized pumps

Here we consider the case when the pump beams have
linear and orthogonal polarization, and the probe beam
has an arbitrary linear polarization. Qne assumes a small
angular separation 6 ~~ 1. For convenience, we choose the
orthonormal basis so that

H„'=V2%" 1.
If we define the unitary vector e "by

(H", complex amplitude), and the angle a„by

(67)

it is easy to verify that a, is real, and, for 8«1, e "is the
linear polarization of the PC wave. From Eqs. (57), (58),
(64), and (65), a simple relation between ao and ct„can be
deduced:

(68)

where D is a quantity independent of ao. As concerns its
polarization properties, the characterization of the PC
IIllrroI will bc Rchlcvcd with thc dctcrImnatlon of thc coIl-
stant D. ' Equation (68) can be predicted by simple argu-
ments of conservation of the angular momentum and
linearity of a third-order perturbation theory, but the
above calculation ls required to dctcH111nc D.

pg, (k)
—=cp(k)sint, ,

COSA'()
pg+1(k) = —pg+1(k) =cp(k)

v'2,

COSA()
pg, (k) =—pg+1(k) =dp(k)

2

(59b)

(60b)

1. Case ofstationary atoms

From Eq. (34), one gets for stationary atoms

~(+) ~(+)

In these equations, one has introduced the following quan-
tltlCS: e "=u, sinAo+ u„cosAo (70)

cp(k) =(p G(')() )(p 'GI() )

(1 6 1k)2 (6lb)

and thus

(71)

1 1
1)k/2 .

cp(k) = Jp Jp J
0 for k=1

for k=0, 2

The definition of the 3j symbols used in Eq. (27) implies
that

This characterizes the PC mirror as the analog of a
half-wave plate, whose neutral axes are along the bisectors
of the pump polarizations (at least for 8«1; extension to
an arbitrary value of 8 is given in Sec. VIA 5).' The high
symmetry of such a type of PC mirror can be understood

by the equal importance of the contribution of the (K,Ko)
grating and of the ( —K, KO) grating.

3, 1 1 k
'

dp(k)= 2 Jp Jp J~

0 for k=0.

for k=1,2
2. Small residua/ Doppler broadening (Xu 8« I,(,)

The results of Sec IVD ap. ply, and yield for the in-
duced polarization

Equations (39)—(41), substituted into Eqs. (59) and (60),
show that

g cp(k) = g d (k) (a&P) .
(I(.u)28 r,b+i((o —o)0)

X (d slncxo U~+c cos(xo u~ ) (72)

By substituting Eqs. (57)—(63) into Eq, (34), one sees that
the polarization of the reemitted field verifies %+1
= —H'*I, and then

= g ~g ug =+o~uz+ ~x ux
Q'

RIld c Rnd d RI'c Ilow glvcIl by

d = g db(k)gg+d, (k)g,

r.(k) —r, (k)
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with

cb(k)gb+c, (k)$,"

k k

I', (k) —I b(k)
(73b)

3. Large residual Doppler broadening (&u 8» r,b, re(k)J
The polarization characteristics remain independent of

the relaxation processes (in particular D=l), but the
emission line shape is gradually modified and undergoes a
Doppler broadening which increases with the angular
separation [cf. Eq. (50)].'

4. Single relaxation model

Equations (72) combined with Eq. (67) yield directly
D =c/d.

Two limiting regimes can be considered in Eqs. (73).
(a) When t u8(&l p(k), gp-Eu8/I p(k)v tr and coef-

ficients c and d can be written as
(77)I p(k)=yp, yb, ——0

so that Pp fp. T——hus c and d can be written as [Eqs.
(63)—(73)]

Let us consider the case when the system's relaxation
can be reduced to one relaxation time per level and the
spontaneous transfer is negligible. 5 Here,

Vha

E'u8 db(k) d, (k)
v m k, 2 I g(k) I,(k) ' I'b(k)

(75a)

d =fb g db(k)+g, g d, (k),

c=pb gd, (k)+p, ddt, (k) . (78b)

t;u 8 cq(k) c,{k)'= v~,~„r,(k)+ r'. (k)
' ~" r, (k)

(75b)

d=c= gdp(k)= gcp(k)
k, P k, P

(76}

so that D = 1. The polarization dependence on the rdaxa-
tion processes (collisions, etc.) disappears. However, the
intermediate regime, F8=1p(k), needs, for its descrip-
tion, an adequate knowledge of these processes.

The above discussion applies to most of the experimen-
tal studies. Experiments performed 'on various neon lines

have been interpreted with the help of Eqs. (72) and (73).
One has shown that in general, D takes values close to 1,
but non-negligible deviations from D =1 are produced by
a residual influence of collisional relaxation and spontane-
ous emission (for instance, D=l. 1 for the 640-nm line of
neon'2' ).

These coefficients, and thus the polarization properties,
strongly depend on the details of the relaxation processes.

If the population grating (k =0) is predominant,
[Ip(0) ((I p{1), I p(2), 1.e., c ))d], only the z component
of the probe is reflected, and yields a PC wave polarized
along u . This is the result predicted by the scalar theory
[Eq. (1)].

As I p(k) )I'p(0) it is theoretically impossible to get a
predominant orientation or alignment grating. However,
it is worthwhile to analyze separately the effects of the
various types of gratings.

For the orientation grating, the PC wave is polarized
along u„and only the component of the probe polarized
along u contributes to the signal.

For the alignment grating, the PC wave is polarized
along ( 2 S11lcto U» —COSA() U» ).

(b) When Ku 8 increases, the difference existing between
the contributions from various orders tends to vanish. In
the limit ICu 8 &)I p(k), gp~ 1, and one has

From these equations, one easily deduces that, for
J,=Jb, one has c =d (D = 1), which implies that the in-
duced polarization 9 " is directed along sinuo u,
+cosaou„, independent of 8. Such a result can be ex-
tended to J,&J&, when y, =yt, . In the latter example, all
the gratings induced in levels a and b have the same life-
time. This allows us to interpret the prediction D =1 for
Eu8» 1 p(k): the residual Doppler broadening becomes
the main relaxation process limiting the amplitude of the
optically induced gratings, and thus they can be con-
sidered as governed by a single relaxation constant

[=(Eu 8) '].

5. Effect of the pump probe angu-lar separation

%hen 8 increases, the probe polarization may have a
component along K (us). However, this component can-
not participate in the PC process because due to the con-
servation of angular momentum, symmetry rules forbid
reemission when the three incident polarizations (pumps
and probe) are orthogonal two by two. Thus we have to
project e on the plane (u„,u, ). As an example, let us

consider the case when the (K,KO) plane is perpendicular
to the pump polarization u, . The probe polarization may
be projected onto u, and u„=u„cos8+u~sin8 (see Fig.
2). In the PC process, u, is transformed in u„, which is
decomposed in a transverse polarization u cosO, and a
longitudinal one (along Ko} which cannot propagate. On
the other hand, u„ is transformed in u, cos8 (since ur
does not contribute). If we assume D =c/d =1 [Eq. (71)],
one easily sees that the PC mirror still behaves like a A, /2
plate, but with an efficiency reduced by cos 8 (in addition
to the line shape and angular dependence). In particular,
for 8=@/2, the PC reflectivity cancels: an incident probe
polarized along u, generates in the medium a longitudinal
nonlinear polarization which cannot radiate, and on the
other hand the PC efficiency is zero for a probe polarized
along u~. T4e latter selection rule, dictated by propaga-
tion effects, is easily extended to arbitrary incident inten-
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uz potheses), a circular o+ polarization is reflected back into
a o polarization. This means that, due to the reversal of
the propagation axis (Kp~ —Kp), left (right) circularly
polarized light is reflected left (right) circularly polarized.
This demonstrates more completely the analogy of the PC
mirror with a half-wave plate when D = 1.

~U
X

FIG. 2. Components of the probe polarization for non-

negligible values of 0: there is a component along u„, for which
the reemission is forbidden, because of symmetry properties.

B. Parallel polarizations of the pump

We now turn to the case when the pump beams have
the same linear polarization that we take as the quantiza-
tion axis, e = e = u, . This polarization is assumed to
be orthogonal to the (K, Kp) plane, so that the (linear) po-
larization of the probe can be decomposed like

sities (since the laws of conservation of angular momen-
tum are not restricted to third-order theory).

e =cosa0 u, +sincz0 u„
Sin&0=costxp lip+ ( u i

—U+ i )
&2

(79a)

(79b)

6. Probe circularly polarized

The previous discussion allows us to predict the
behavior of the PC mirror when the probe is circularly
polarized. If the two efficiencies c and d are different

[Eu8 & I p(k)], an incident circular polarization is reflect-
ed into an elliptical one.

If e=d (as is the case under broad classes of hy-
I

(u„ is now the unit vector orthogonal to u, and Kp). In
that case, all the incident polarizations, and thus the PC
polarization, are orthogonal to the probe wave vector K0.
By reporting the standard components of the polarization
vectors in Eqs. (34) and (35), one easily shows that the in-
duced PC polarization decomposes in two components
along u, and u„:

cosa() If(v)d'v
L( —Kp) L(+K) L(Kp)*

hb(k) h, (k)
X

k=p, 2 Lb(+K —Kp) L, (+K—Kp)

k

1— ~ba
7ha k

Lb (+K—Kp)
(80a)

H„'+-"=—sinap f f(v)d v
1 1+

L ( —Kp) L (+K) L (Kp)*

fb(k) f, (k)
X

k=1,2 Lb(+K —Kp) Lg(+K —Kp)

k

I—V ha
Lb(+K —Kp)

(80b)

where the coefficients fti(k) (k =1,2) and hti(k) (k =0,2),
are obtained from Eqs. (27)—(35):

1 1 k
hti(k) = 1 + (8 la)2 p p a

g fb(k)= g f,(k)=f/2,
k=1,2

hb(k) = g h, (k) =h/2 .
k=0, 2

(82a)

(82b)

1 1 k
ftt(k) ( 1 ) (81b)

If we define the polarization e ' of the PC field like in
Eq. (67), one gets, ' from Eqs. (80), that a„satisfies

tana, =C tano;0 . (83)
Coefficients hti characterize the PC (amplitude) effi-

ciency for the various sublevel populations gratings (all
the polarizations are parallel). On the other hand, coeffi-
cients fp characterize the efficiency for Zeeman coherence
gratings (probe polarization orthogonal to one of the
pumps).

From Eqs. (39)—(41), one gets the symmetry relations

In most cases of interest, C is real, i.e., e is a linear
polarization. Like in the previous section, Eq. (83) can be
predicted by simple arguments of angular momentum
conservation, but the evaluation of Eqs. (80) is required to
determine C.

(i) For stationary atoms, one finds immediately
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C= F—, /Hg,

where

fb«) f.«)
I'b(k) + I,(k) ' I (k)

and a similar definition for H, .
(ii) For Doppler br-oadened systems, one can consider the

various regimes discussed at length in the previous sec-
tions. In particular, for small residual Doppler broaden-
ing (I tI,Eu8« I,b), one easily gets (see Sec. IVD}

with

in the sense that the polarization after two successive PC
reflections differs from the incident polarization (except
for

f
C

f
=1). When Eqs. (89) are valid, one has

f
C

f & 1

(except for a J= —,
' ~J= —,

' transition; in this case
C= —1, and a linear polarization is reflected symmetri-
cally to u, ): this means that the PC mirror has a linear
dichroism, and that the best efficiency is obtained for in-
cident polarizations parallel to the one of the pump
beams. After one PC reflection, the polarization tends to
come closer to the preferential direction u, (

~
a„~

&
~

IIO (
f«

~
ao

~
& Ir/2). Due to the dichroism of such a

type of mirror, it is obvious that if the probe beam is cir-
cularly polarized, the PC reflection will be elliptically po-
larized;

F= g fb(k)gb+ f,(k)g,
k=1,2

k k

—yb, Mb,f,(k), (87a)
a b

H = Q hb(k)gb+h, (k)f,
k =0,2,

l, (k) —I b(k)
(87b)

[I}}tiis defined by Eq. (74)]. In the quasicollinear configu-
ration [8« I tl(k)/Xu ], these equations reduce to

(J—1)(J+2)C= for a J~J transition
(3J +3J—1)

C= —J(2J+4) for a J~J+1 transition . (89b)(4J'+ 8J+S)

(iii) This last result can be generalized to any value of 8
in a simple relaxation model: one relaxation time per lev-
el, Rlld 110 . spoIltallcous cnllssloil [Eq. (77)]. Tllus,
F=f(p +pb)/2 and H =h(p +fb)/2, and C is given
by Eqs. (89) whatever the angular separation may be.
[This can be demonstrated directly from Eq. (80) by using
relations (82).]

As was discussed in our previous papers, ' " the rela-
tion tana„=Ctana0 implies that the PC miIror with
parallel pump polarizations is a "nonreciprocal" mirror,

The behavior is thus similar to the one obtained for sta-
tionary atoms: indeed, since the two pumps have the
saIQc polarization, thc PC polarization docs not dcpcIld on
the relative importance of the (K,KO) and ( —K,KO} grat-
ings. In a quasicollinear configuration, the (K,KO) grat-
ing is not affected by the atomic motion, and its relaxa-
tion is identical to the case when the atoms are station-
ary."

In the opposite case, when the residual Doppler
broadening overcomes the atomic decay rate
[Xu8» I gk)], $~1 and thus F and H are no longer
dependent on the details of the atomic relaxation: one has
F=f and H=h [see Eqs. (82) and (87)]. According to,
Eqs. (81)—(83), one finds

C. Arbitrary hnear polarizations of the pumps

Whee the two pumps are arbitrarily linearly polarized. ,
the behavior of the PC reflection can be determined as a
linear combination of the two principal configurations
discussed in the above subsections (VIA and VI B). How-
ever, in numerous practical cases, the PC reemitted field
is not modified if the polarization of the two pump beams

are exchanged [even if only the (K,KO) grating contri-
butes]. Such a symmetry between the two pump polariza-
tions occurs notably when the residual Doppler broaden-
ing is predominant [Ku8» I ti(k), yb, ] or in the single re-
lRxatloIl model (scc Scc. VI A 4).

Assuming these hypotheses, the symmetry of the prob-
lem implies that the bisectors of the pump polarization
axes are neutral axes of the PC mirror. Indeed, let us de-

fine (u„u„) so that

e + =cosp u, +sinp u„, (90a)

e =cosp u, —sinp u„. (90b)

It is easy to verify that for a probe polarized along u„
the reemitted field is along u„with an amplitude propor-
tional to h cos p+f sin p, while for a probe along u„, the
reemission is along u„, and the amplitude proportional to
—(f cos p+h sin p) [f and h are given by Eq. (82)].
Some remarkable points can bc IQcnt1oncd.

(i) For p=m/4, the efficiency is the same along the two
neutral axes: indeed, the two pumps have orthogonal po-
larization and the hypotheses imply that D= 1 (see Sec.
VIA}. Moreover, the amplitude of the PC field can be
directly shown to be proportional to c ( =d), and it is con-
sistent with the identity

c+d=f+h (91)

when c and d take the value calculated in Eq. ('76).
(11) If C &0 [I.e., for a J-+J transition, J&—,', or for a,

J=O~J=1 transition, see Eq. (89}], there is a remark-
able angle po for which the reflectivity cancels along thc
neutral axis u, . This zero value is obtained for
po=tall (C ). Ill this collflglllatioll, 'thc PC field ls

1 y pl ed 1 gth db' t
(iii) In the case of a J=—,

' ~J=—,
' transition, one has

f=h [see Eq. (89)], so that the neutral axes have the same
efficiency whatever p may be. It means that the PC mir-
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ror thus acts as a birefringent half-wave plate for any cori-
figuration of the pump polarizations. This generalizes the
behavior obtained for orthogonally polarized pumps
(P=ir/4). One should note also that the efficiency of this
mirror is independent of the angle between the pump po-
larization axes.

D. Circular polarization for the pump beams

The case of co-rotating circular polarizations for the
pumps (e.g., o+) is quite simple, as selection rules imply
that only the o+ component of the probe wave is reflect-
ed, and with the same o.+ polarization. On the opposite,
the configuration where the two pumps have counter-
rotating circular polarizations (or+, o ) cannot be treated
so simply, but presents much interest since it has been
pointed out that such a PC mirror can be a way to achieve
vectorial phase conjugation. ' ' Indeed, selection rules
show that a o+-polarized probe is reflected o, and vice
versa, as is expected for vectorial phase conjugation. Ac-
tually the reflectivity for a cr+ probe wave generally
differs from the reflectivity of a 0. probe wave, leading
to an elliptically polarized PC wave when the incident
probe is linearly polarized. We have given a rather exten-
sive discussion on the possibility of achieving vectorial
conjugation in a previous paper. ' The requirements are
essentially identical to the conditions for which one finds
D = 1 in Eq. (71): an effective single relaxation model has
to be assumed, due either to adequate hypotheses on the
atomic relaxation, or to the Doppler shortening of the
grating lifetime. A less restrictive condition can also be
considered, in the case of a J~J transition: a single de-

cay rate for each level [I p(k) =yp] is a sufficient condi-
tion for vectorial conjugation (see Sec. VI A 4). However,
it should be noted that vectorial phase conjugation can be
achieved only for small values of 0. With increasing 0,
the probe polarization can get m-polarized components
which are reflected with the same m polarization, but with
an efficiency which is always different from the cr+~cr
efficiency. Thus vectorial PC cannot be achieved for arbi-

trary incidences.

VII. TWO-PHOTON RESONANCE

In this section we consider DFWM emission enhanced

by a two-photon transition between degenerate levels. '
We do not present the complete formalism, but we give
some general and simple results deduced from a treatment
analogous to the one given for a one-photon resonance.

Let us recall first some of the basic properties predicted
for two-photon resonantly enhanced DFWM. For a
two-photon transition, the interpretation of the PC emis-
sion as a diffraction process on a grating induced by one
of the pump beams and the probe beam is no longer valid:
indeed, the physical process responsible for the PC emis-
sion consists in an interaction between the probe beam,
and a two-photon coherence generated by absorption of
one photon from each pump beam. This coherence is ba-
sically Doppler-free, and the PC emission line shape does
not depend on the angular separation 0. This point,
which should be an advantage in comparison with one-
photon DFWM in a Doppler-broadened medium, is bal-

A. Pumps linearly and orthogonally polarized

A general symmetry rule of DFWM forbids the emis-
sion when the polarizations of the three incident fields are
orthogonal two by two. Let us define the pump polariza-
tions as being o.„and o.~: a m.-polarized probe is not re-
flected. Selection rules imply also that a cr„-polarized
probe is reflected o~ and vice versa (see Sec. VIA). Due
to the equivalent role played by each of the two pump
fields, the efficiency of o„and o~ is identical, and the
behavior of the PC mirror is strictly similar to the one
described in Sec. VIA for resonant DFWM when D= 1.
The PC mirror acts as a half-wave plate, whose neutral
axes are along the bisectors of the pumps polarizations.
The efficiency of the PC mirror decreases with increasing
8, due to propagation effects only: in particular the
analysis developed in Sec. VIA 5 still applies.

c,J

~bc
b'Jb

a, J

FIG. 3. Schematic of the three-level system.

anced by the weakness of the PC emission, caused by the
nonresonant nature of single-photon absorption or emis-
sion (see Ref. 28 of I). This explains why the observation
of two-photon cw emission in gas media has not been yet
reported.

The cascade three-level a-b-c system is given in Fig. 3.
We assume that there is a single relay level (

~
b, Jb ) ). It is

well known that the two-photon transition operator is a
sum of a scalar operator and quadrupolar (rank k=2)
operator. Moreover, if J,&J„there is no scalar contribu-
tion. These considerations imply that the PC field is pro-
portional to

0 2

OC +I g, (0) i(2—co co~—, ) I'„(2) i(2c—o cog, —)
(92)

where K and X depend on the incident polarizations
and on the angular momenta.

If I „(0)= I „(2),or if J,&J, (leading to g 0= 0), the
emission is a Doppler-free Lorentzian. If I „(0)&I„(2),
and if J, =J„the emission line shape is more complicated
as it is the sum of two Lorentzians, and the respective
contribution of each one depends now on the atomic sys-
tem (angular momenta, etc.) and on the incident polariza
tions (in this sense, it differs from resonant DFWM).
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B. Linear and para11e1 polarization of the pumps,
or counter-rotating circular polarizations of the pumps

In these two cases, it is possible to define the basis
(u„,u~, u, ) so that only q =0 components appear in the
tensorial development of the two-photon coherence: u, is
chosen along the polarization of the pumps if they have
an identical linear polarization (m), and u, is chosen
along the propagation axis of the pumps if they have cir-
cular counter-rotating polarizations (o+ and o ).

From the expression of,', 'p (,', 'p is the two-photon
coherence created at second order), given for example in
Ref. 30, it can be shown that

@0 g 2

1 «(0) i (—2co co—„) I „(2) i (2—co co„—}

with

I 1 0 -, 1 1 2

a a b a a b

1 1 0 1 1 2[r.,(0)l '-J J J '+2[1«(2)]
a a b a a b

(95)

(ii) For (o.+,o ) pumps, and orthogonal incidence
8=m/2, one has

1 1 0
) &

1 1 2
[r«(0)] J J J 2 [r«(»] J J J,

1 1 0 ,
112'

[r.,(0)]- J J J +[r.,(2)]- J J J
(96)

1 1 0 1 1 0 1 1 0
~ —'-~

q —qo Q —QO

(94a)

1 1 2 1 1 2 1 1 2

q —qO Q —QO J, J, Jb

(94b)

and q is defined so that q =0 if the pumps are m. polarized
and q=1 if the pumps are respectively (cr+,o ) polar-
ized.

(a} If J,&J, [or eventually, if 1„(2}«I „(0) for
J,=J,] the PC mirror is dichroic in such a way that a
probe polarized along cosao u, +sinao u„ is reflected
along cosao u, ——,

'
sinao u„[C=——,

' in Eq. (83)]. Be-
sides, the amplitude of the emission for a m.-polarized
probe is two times larger if the pumps are themselves m.

polarized than if they are (o.+,o. ) polarized. It results
that for grazing incidence (8=0), the intensity of the PC
emission is 16 times larger if all the three incident beams
have the same linear polarization than if the pumps are
cr+ and o (the probe being necessarily cr polarized since
8=0). ' Due to the dichroism of the PC mirror, and al-

though a+—is reflected sr+, there is no way to achieve Uec-

torial phase conjugation, except
(i) for 8=0, if the pumps are (o+,o ) polarized (as

probe o+ and o present the same reflectivity) or
(ii) for 8=sr/2, and Ko~

~
u„ if the pumps have the same

linear polarization m (as the probe is then necessarily o
polarized).

(b) If J,=J„ the PC mirror still has a dichroism be-
tween m and o probe polarization, and this dichroism de-
pends on the ratio of [I „(0)—i (2co —co„)] '/
[I'„(2)—i(2co —co„)] '. It must be noticed that the di-
chroism depends now on the frequency detuning 2co —co„.
At line center (2co=co«), the dichroism is expressed by
the value of C [see Eq. (83}].

(i) For m.-polarized pumps, at any angle,

The measurement of the dichroism can yield a deter-
mination of the relative importance of 1 «(0) and I'«(2).
It gives a way of measuring the importance of quadrupo-
lar relaxation. For r.,(0)=r.,(2), the dichroism does
not depend on the frequency detuning.

(c) If the scalar contribution is predominant [J,=J„
with J, =O or —,', or with I „(0)« I „(2)], there is no
longer any dichroism, and any linear polarization is re-
flected identically to itself. A perfect uectorial phase conj'u

gator is then achieUed independently of the pump polariza-
tion, either with (o+,cr ) pumps or with vr-polarized
pumps. Moreover, the efficiency of these two kinds of PC
mirror [m pumps or (o+,o. ) pumps] is the same. It
should be noted that all these predictions (assuming a
predominant scalar contribution) are in agreement with

the scalar theory (see the Introduction) which describes the

PC field as proportional to (E+ E )E *. It is also
worth noting that the scalar theory is almost never valid
for one-photon transition in experimental conditions,
whatever the hypotheses on the relaxation processes may
be (population predominant), because the motional shor-
tening of the grating lifetime tends to equalize the contri-
butions of each type of grating (scalar and nonscalar grat-
ing).

VIII. CONCLUSION
In this paper we have derived the general polarization

properties of resonant DFWM, and we have seen how the
details of the relaxation processes must be taken into ac-
count. One of the basic results of our analysis is to
demonstrate that the efficiency of the various induced
gratings is determined by a combination of the intrinsic
atomic lifetimes [I ~(k)] and of the mean motional life-
time (Ku8) . As soon as the motion-induced lifetime
shortening becomes predominant [Ku8~~1 ~(k)], which
is the case in most of the experiments, the polarization of
the reemitted field obeys very simple and general laws, in-
dependent of the relaxation constants. Another noticeable
result is that, in general, the'scalar theory leads to strong-
ly incorrect predictions. In particular, this is always the
case when the residual Doppler effect is predominant, so
that the physical processes can be described by a single re-
laxation time model.
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An important conclusion of our work is that the most
striking collision effects (such as violation of a selection
rule ) are generally not observable in the experiments, due
to their drastic reduction by the Doppler lifetime shorten-
ing (see Appendix B). However, it must be outlined that
in our theory we have not taken into account elastic
velocity-changing collisions. Such collisional processes
are of great importance at high buffer-gas pressures, as
they tend to reduce the atomic mean free path. Thus the
thermal washout of the grating becomes less important,
and the overall efficiency larger: this point is analogous
to the Dicke narrowing effect, and was recently demon-
strated by Bloembergen and co-workers.

In all this work we have assumed weak incident powers
in order to deal with a lowest-order perturbation theory,
so that the frequency line shapes are always rather simple.
It is well known that for Doppler-broadened nondegen-
erate two- or three-level atoms, saturation effects are re-

sponsible for complex spectral line shapes. For degen-

erate atomic systems, the saturation processes generate
still harder difficulties. In particular, experimental obser-
vations have shown that for a given set of incident polari-
zations, the reemitted polarization itself depends on the
frequency detuning. ' However, if the incident polariza-

I

APPENDIX A: DEMONSTRATION OF EQ. (39)

Equation (39) is a consequence of the identity
tt t

g( G' )( G' )= g( G'. )( G'" „).
k, g k, Q

(Al)

To demonstrate (Al), one starts from the following ortho-
gonality relation:

1 1 k 11k(1)(2k+1)
k a a P

(A2)

and from the 3j-6j symbols relation35

tions are only principal polarizations, and in the case of a
J=O—+J=1 or J=1~J=1 transition, theoretical solu-
tions can be obtained through the well-known theory of
saturated absorption for nondegenerate two- and three-
level systems. In particular, we have solved recently the
case of an intense backward pump beam as well as the
case of intense forward pump and probe beams.

J2 J2 g

jp J2 f mi Mi —mg m2 M2 ms
(2g+1) =(—1)

2f+J ~ +J' + ji j 2 f Ji J2 f
mi m2 —mf Mi M2 mf

(A3)

which implies

1 1 k 1 1 k 1 lg 1 1 g 1 1 g1)q"+q'( 1)k Q' —q' —Q —q" q —Q 1 1 k Q'q" —m —q' —qm(2g+1)

Once (A4) is multiplied by ( —1) (2k+1) I I q q I, and after summation over k, the relation (A2) givesa a P

1 1 g 1 1 g 1 1 gg ( p'Gg g)('pG'", g)=( —1)g +~+ 3(2g+1) ~' q" —I q' q —m Jp J~ J

(A4)

(AS)

demonstrating the identity (Al).

APPENDIX B: EFFECT OF THE ANGULAR
SEPARATION ON THE COLLISIONAL BREAKING

OF SELECTION RULES

In the case of a single relaxation time model with paral-
lel pump polarization, one knows that C=0 for a
J =0~Ji, ——1 or J, = 1~Ji, ——I transition [Eq. (89)]. A
direct demonstration of such a selection rule can be given
as long as collisional processes are not considered [i.e.,
when one assumes I p(2)= I p(1)] (see Ref. 9). Here we
discuss the value of C [Eq. (83)] for different values of the
angular separation in order to see how the collisional ef-
fects become negligible.

For instance, let us consider the example of a
J =0~Jb ——1 transition. As long as AuO &&1 b, one has

I

[see (ii) of Sec. VI B]

FC= ——=
H

2 ('pb 'pb )—
+' '+ ' '"r.(o) r, (o)

(B1)

(i) If Ku8 « I p(k), hence 0'p=Ku8/I p(k)Mm, so that'
1 1 1

2 I b(2) I b(1)
(B2)

1 2 Vb

r. (o)
+ 3r, (o)

+ 3r, (2) r.(o)r„(o)
One notes that the selection rule is broken when
r, (2)er, (1).

(ii) When Ku8» I p(k), %p-I 2I (pk) V—/mKu8, so
that
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I'b(1) —I b(2)C=
2v ~I~ue

(B3)
chroism is now independent of cascade effects (yb, ).

(iii) For 8=m/2, we have mentioned in a previous pa-
per that the dichroism is given by

As we consider Xu8&&l tt(k), one sees that, in first ap-
proximation, now C=O, so that the selection rule is no
longer severely violated. Equation (B3) means also that
the reflectivity of a cr-polarized probe decreases as rapidly
as (ICu 9) —instead of (Xu 0) for a m polarized
probe —because of the variation of the dichroism with the
angular separation. One should also notice that the di-

I

I b(1)—I b(2)C=
4~mKu

(B4)

so that even in the presence of depolarizing collisions,
there is no hope to observe any violation of the slection
rule. To demonstrate Eq. (B4), one must use the identity

(sru ) 'exp[ —(v„+v, )/u ] 2f dv dv, = [for I ~(k), I,b &&Ku] .
(r.„+iXv„)'(I .,—trav, )[I ~(k)+tX(v„—v, )]

'
(I~u )'

The case of a J, =1—+JI, ——1 transition is analogous to
the previous one, but involves collisional depolarization in
both levels. For instance, in the case I tt(k) «Eu 8

&&I,b, one gets

C= [I b(1)—I b(2)] +.[I (1)—l, (2)]
4~nKu 9.
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