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Maxwell’s equations are solved for the self-reproducing TEM Gaussian-Hermite modes of a stable
resonator formed by two curved mirrors. The boundary condition is satisfied that the electric field
vector of a mode is everywhere perpendicular to the mirror surfaces, which are regarded as perfect
conductors. The vector solution for a semiconfocal or confocal resonator geometry is compared
with the standard scalar solution, and a correction to the scalar representation of the field is dis-

cussed.

I. INTRODUCTION

Our aim is to calculate the electromagnetic modes of a
stable Fabry-Perot resonator defined by two curved reflec-
tors facing each other. The approach taken in this work
is first to obtain paraxial solutions of Maxwell’s equations
for the electric and magnetic field configurations of
Gaussian beam modes in free space, and then fit the re-
flectors of an open resonator to the Gaussian mode solu-
tions so obtained.

In the microwave region of the spectrum, electromag-
netic theory is nearly always based on Maxwell’s equa-
tions. By contrast, optical beams—whether unguided or
supported by open resonators—have mostly been treated
with use of a scalar theory. A difficulty involved in
characterizing an electromagnetic field by a single scalar
wave function is that the boundary conditions on the sur-
faces of curved reflectors cannot be satisfied. To see this,
let us imagine that the end reflectors of an optical cavity
are perfect conductors. Then the tangential component of
the electric field must everywhere vanish on the mirror
surfaces. We recall that each Cartesian component of the
electric and magnetic vectors obeys the scalar wave equa-
tion. For a plane-polarized beam propagating along the z
axis, the scalar wave function is usually taken to be the
transverse component of the electric field, say E,. In
solving the scalar wave equation, one assumes that the
wave function vanishes on the cavity boundaries. It is
clear, however, that for curved reflectors the stipulation
that E, vanishes on the mirror surfaces is not equivalent
to the boundary condition that the electric field lines are
perpendicular to the mirror surfaces.

It is generally assumed that, so long as the physical di-
mensions of an open resonator are large compared with
the wavelength of the radiation, a scalar theory is satisfac-
tory for describing the cavity TEM modes. In the optical
region, where open resonators currently used have mirror
dimensions which are many orders of magnitude larger
than a wavelength, as expected the scalar theory has en-
joyed remarkable success. Nevertheless, even in this
short-wavelength portion of the spectrum, there is motiva-
tion for working out a vector field solution of an ideal
(infinite-aperture) open resonator problem which can be
compared with the conventional scalar wave solution of
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the same problem. By having a vector field solution at
hand, precise knowledge about the interpretation and ac-
curacy of the scalar representation is obtained. In the
millimeter wave and microwave range, where cavity di-
mensions may be comparable to a wavelength, one does
not expect the scalar theory to be satisfactory. In this
spectral region, it will be shown that a vector field treat-
ment, in which the Gaussian scalar potential includes
nonparaxial correction terms, is needed in some practical
situations.

Another consideration is that situations frequently arise
where, because of the complexity of the problem, one
must be content with a scalar representation of the elec-
tromagnetic field. For stable resonators of such configu-
ration that a significant fraction of the energy “spills
over” the outer edges of the mirrors, and also for unstable
resonators, it is virtually impossible to obtain the elec-
tromagnetic field configurations of the modes. Another
important example where a vector wave theory is not
feasible is the case where the resonator, either stable or
unstable, contains a nonuniform gain medium. In cases
like these, one employs a computer to solve the scalar
wave equation subject to the boundary conditions men-
tioned above. Therefore, far from being merely an
academic question, practical considerations compel us to
question when the scalar description is reasonably valid.
The vector Gaussian mode solution obtained in this paper
provides a basis for conjecture about how satisfactory the
scalar representation is in a variety of circumstances.

II. GENERAL FORMALISM

The free-space electromagnetic field may be expressed
in terms of two partial fields which are the electromagnet-
ic duals of each one. On the one hand, the field is derived
from the electric Hertz vector Il according to (time factor

e'®* understood)

H=VxIi, (1)

> 12 > 1= = = '

E=— =—VXxVxII, 2
ika i XV X (2)

The field satisfies
obeys the vector

where kK =w/c is the wave number.

—

Maxwell’s equations provided II
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Helmbholtz equation

V210 +k2T =0 . 3)

By V? acting on a vector one understands

V= V(¥ )=V x VxIi . @)

Equation (3) expressed in curvilinear coordinates corre-
sponds to three coupled scalar equations, but the solution
of this system for a component of II is in most cases in-
tractable. If the vector function II is resolved into its
Cartesian components, however, one obtains the three in-
dependent scalar Helmholtz equations )

V2L, +K21;=0, j=1,2,3. (5)

As explained by Stratton,' for example, the operator V? in
Eq. (5) may then be expressed in curvilinear as well as
Cartesian coordinates.

We now set I =&V, in which & is a constant vector of
unit length. The resulting field is said to be of the E type.
If the beam is propagating along the z axis, we further
distinguish between the cases where II is transverse and
longitudinal:

(a) @ =@, describing what are called TEM modes in the
literature,

(b) @ =e&3%, describing axially symmetric TM modes.

On the other hand, the free-space complementary field is
derived from the equations

E=VxIi*, : (6)
:TVsz—i—Vx?xﬁ*, (7)

where IT* is the magnetic Hertz vector. By duality, this
partial field also obeys Maxwell’s equations provided IT *

satisfies the vector Helmholtz equation. As above, one.

lets 1l * =@y, with @ denoting a constant vector, where-
upon 1 obeys the scalar Helmholtz equation. This pro-
cedure describes an H-type field. For the cases where In*
is transverse and longitudinal we now have

(c) @ =&, describing what also are called TEM modes
in the hterature,
(d) @ =e&3, describing axially symmetric TE modes.

It is perhaps worth mentioning that the TEM modes, in-
cluding the fundamental mode, lack axial symmetry. The
scalar field has axial symmetry but the TEM vector field,

being nearly plane polarized, clearly is not axially sym-

metric.

The axially symmetric TM and TE Gaussian-Laguerre
unguided beam modes were first described by Goubau and
Schwering.? The properties of these vector modes were
later treated in more detail by Davis and Patsakos.> Laser
oscillators employing a stable open resonator normally
generate the TEMy, mode. This mode is favored because
(1) the fundamental TM and TE modes have larger diam-
eters than the fundamental TEM mode (see Fig. 1), and
therefore they may be apertured by the plasma tube; and
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FIG. 1. Intensity profiles of the fundamental TEM mode and
the lowest-order axially symmetric TM and TE modes.

(2) laser resonators invariably have some axial asymmetry
arising from Brewster angle surfaces (an extreme example
of symmetry-breaking elements) or reflector anisotropies.
For this reason, in the remainder of this paper we will
consider solutions of the scalar Helmholtz equation
V2V +k*V'=0 in a Cartesian coordinate system, as is re-
quired to describe the usual TEM modes. Incidentally,
the term TEM mode conceals the fact that neither the
electric nor the magnetic fields of any bounded elec-
tromagnetic wave in free space are purely transverse.
Some field lines of a TEM(, beam mode are shown in Fig.
2.
For a TEM partlal field of the type given by Egs. (1)

and (2), with TI =¢, V, one obtains

= .oV vV :

H——EZ 3z —63 ay . (8)
For this case the lines of H are confined to the yz plane.
The associated electric field is

~ OV . 3

3’V
e dxay tes 0x9dz

+k2V

9)

E:el

FIG. 2. Section y =0 showing electric field lines of a Gauss-
ian TEMy, mode at a fixed time. Plot is for the case wy=A so
that the Rayleigh length is / =7A.
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III. PARAXIAL TEM GAUSSIAN MODES

Gaussian beam mode solutions of the paraxial scalar
wave equation are discussed in several papers and text-
books. In a Cartesian coordinates system, one obtains the
well-known Gaussian-Hermite traveling-wave solutions*

. = X
V=iQH,, |[V2—
w

H, V2L~
w

X exp[ —iQp®+i(m +n)p—ikz] , (10)

where p=(x2+4y2)!/? /w, is the dimensionless radial coor-
dinate, ¢ =arctan(z/I), I =+kw} is the Rayleigh length
parameter, and one introduces the complex beam parame-
ter

__ 1
T 1—iz/l
The quantity wy is the spot size at the beam waist (plane
z=0), and

w(z)=wg(142%/1*)1? (12)

iQ (11)

is the beam contour function. Finally, H,(x) is a Hermite
polynomial
n
H, () =(— 1)nex* 4" g—x*
dx"

If needed, higher-order corrections to the paraxial solution
(10) could be obtained using the approach of Agrawal and
Pattanayak.’

At this point, we restrict attention to the TEMy, mode
(m =n =0) to simplify the discussion. Since a resonator
designed to support the fundamental mode also will sup-
port the higher-order TEM,,, modes, this is not an essen-
tial limitation. From Eq. (10) the paraxial solution of the
scalar wave equation for the fundamental mode is

V:iQe—i(Qp2+kZ) , (13)

where it is useful to write
wy
iQ=—2e' . (14)
w

For the E-type fundamental TEM mode, the field com-
ponents are®

H, =0 (exact), H,=V, sz—%V R

E.=V, E,~(i0F>7, Ezz—%iv.

In deriving these expressions for the field components,
only leading-order terms in the small expansion parame-
ter’ f=uw/2l have been retained. Specifically, terms of
order f? are neglected in our expressions for H, and E,,
terms of order f3 are neglected in the expressions for H,
and E,, and terms of order f* are ignored in the result for
E,. '
For the H-type mode which is the electromagnetic dual
of the E-type fundamental mode just treated, the six field
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components are

E,=V, E,=0 (exact), Ez:__QlZ‘_V ,

(16)

H,=(i0?2 v, H,—v, H——ZV,

12 y )i
where again these expressions for the field component are
correct to leading order in the power-series expansion pa-
rameter f. By analogy to the E-type mode case, terms of
order f? are neglected in these expressions for E, and H,,
terms of order f* are neglected in the expressions for E,
and H,, and terms of order f* are ignored in the expres-
sion for H,.

Let us now consider the properties of a mode which is
the symmetrized linear combination of the above E-type
and H-type TEMy, modes. The electric field of a sym-
metrized mode is conveniently written

E=TL—V’><§><-(@1V)+\‘7’><(52V) ,

where the scalar potential is given by Eq. (13). When two
such counterpropagating traveling Gaussian beams are su-
perposed, this prescription leads to the standing-wave
electric field (r2=x2+y?)

E, = Yo, “’Z/wzsin[k (z +r%/2R)—¢]cos(wt) ,
w

(17a)
1 |w ?
0 | Xy 2.2
E=— |— | Xe-r
y 2 w l2 e
X sin[k (z +#2/2R)—3¢]cos(w?) , (17b)
2
Eo—_ Wo X —rtw?
z w l
X cos[k (z +r2/2R)—2¢]cos(wt) , (17¢)
in which /
12
R =z+7 (18)

is commonly known as the radius of curvature of a wave
front. For use below, in Egs. (17) we have written the ac-
tual electric components of the mode rather than the pha-
sor components. It is seen from these expressions that on
the plane surface z =0, the transverse electric field is zero:
E,=E,=0. Thus if a flat perfectly conducting mirror is
placed in the plane z =0 (beam waist), the analytic solu-
tion given above does satisfy the boundary condition that
the tangential component of E vanishes on the reflecting
surface.

We consider now the modes of a Fabry-Perot resonator
which consists of a concave perfectly conducting reflector
facing the flat reflector. The curvature of this reflector is
to be selected so as to fit the field lines described by the
expressions we have developed. We wish to discover the
surfaces which are perpendicular to the electric field. If
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dt denotes a translation tangent to such a surface, then
E-d7=0. For the moment let us limit our discussion to
the planes of constant y, whereupon dr=2&x +&3dz.
Therefore, a perfect conductor will cut the planes of con-
stant y in lines with slope

dz Ex

dx  E, '

From Egs. (17) one obtains

dz __wisin[k(z+r’/2R)—¢]
dx  wyx cos[k(z +r2/2R)—2¢]

(19)

This differential equation could be integrated numerically
to obtain the required reflector curvature to any desired
degree of accuracy. However, for our present purpose an
approximate analytic result will suffice. Although w, R,
and ¢ weakly depend on z, for a paraxial beam we can
suppose these quantities are constant over the surface of a
curved mirror. In this work we assume a semiconfocal
resonator geometry, so that the curved mirror is located a
distance z =/ from the flat mirror. The phase angle of
the beam on the curved mirror is then ¢ =7/4. On the
reflector surface the relation

k(z+r*/2R)—¢p=qm, q=1,2,3,...
is approximately obeyed, so that

sin[k(z +72/2R)—¢]=(—1)%z —zo+x2/2R) ,
where kzo=gm+¢—ky?/2R. Furthermore

1
2/2R)—24]= —P)=(—1)Y—= .
cos[ k(z +r*/2R)—2¢]=cos(gmr—¢)=(—1) V5
Hence, using w /wy=""2 when z =/, one obtains
x % _oklz'=x*/2R) 20)
dx

where we have let z'=z —z,. Solving this differential
equation gives the parabola

x2

2=20— 207 (21)
where
R'=R(1—-1/kl). (22)

This result may be compared with the prediction of sca-
lar diffraction theory. The fundamental Gaussian beam
mode is represented by expression (13):

w
V= expl 2 iz +kr /2R )]

Given a beam of this type, it is assumed one can form an
open resonator simply by inserting two mirrors with radii
of curvature which match those of the propagating beam
phase fronts. It is seen that at an axial distance z, from
the beam waist, the phase fronts of the Gaussian scalar
disturbance are paraboloids which obey

}‘2

2220—5 .

3095

Thus, according to scalar theory the radius of curvature
of the spherical mirror is R rather than R'=R (1—1/kl)
obtained in the vector theory. We can understand this
discrepancy as follows. In a scalar theory, when describ-
+ing a TEM mode one identifies the wave disturbance as a
single transverse electric field component, say E,. Refer-
ring to Fig. 3, we see that for an arbitrary electric field
line E, =0 at the point S. However, if the reflector sur-
face is represented by the dashed line, the electric field
line in question is normal to the reflector surface at point
P. Thus one can reason that the reflector curvature R’ is
smaller than the curvature R obtained by assuming E, =0
over the surface.

To this point, we have examined the reflector curvature
in planes of constant y. We now consider lines on the re-
flector surface in planes of constant x. A small displace-
ment along such a line is dT=2&dy +&3dz, so that the
condition E-dF=0 yields

dz _ 5

dy  E,
From Eqgs. (17) one obtains

dz woysin[k(z+r2/2R)—34]

= 5 . (23)
dy  2uwlcos[k(z+r*/2R)—2¢]
In the present case, to a close approximation
sin[ k (z +72/2R)—3¢]=(—1)2+" |
and as before,
1
2 —2¢]=(—1)1—= .
cos[k(z+r*/2R)—2¢]=(—1) 5
Thus Eq. (23) becomes approximately
dz y
= 24
dy 21 @4
which has the solution
2
z=zo— 2. (25)

2R
In deriving this expression we have used R =z +12/z =2I.
These findings indicate that, under the assumed condi-
tions, in planes of constant y the lines cut by the surface
perpendicular to the electric field have curvature
R'=R(1—1/kl), while in planes of constant x the lines

BEAM AXIS

FIG. 3. Several electric field lines in plane y =0. Dashed
line corresponds to the contour of a perfect reflector.
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cut by this surface have curvature R, the curvature of the
phase front of the scalar disturbance. A more precise cal-
culation might reveal that surfaces perpendicular to the
electric field are in fact axially symmetric for the assumed
symmetric superposition of E-type and H-type Gaussian
modes, a point which we hope to explore in future work.
In any event, in actual practice cavity mirrors will contin-
ue to be surfaces of revolution, so the field supported by
these open structures may turn out to be slightly different
than the symmetric linear combination of E-type and H-
type Gaussian modes proposed here.

Although we have treated a semiconfocal resonator, our
solutions apply equally well to a confocal resonator. In
the latter case, of course, the transverse electric field need
not vanish in the plane z =0.

IV. CONCLUSIONS

The development of a vector field description of the
modes of a Fabry-Perot resonator serves to illuminate
some of the difficulties which arise when the electromag-
netic field is represented by a single scalar function.
Furthermore, a vector framework yields the field configu-
rations, which in some applications are of interest. A
difference between the scalar and vector theories lies in
the manner the boundary conditions are met. In this pa-
per, the mirror surfaces are modeled as perfect conduc-
tors, and consequently we require that the electric field is
everywhere perpendicular to these boundaries. To our
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knowledge, this is the first time such an approach has
been used to solve an open resonator problem, though it is
standard procedure for microwave cavity resonators.

For a semiconfocal or confocal resonator, we find that
on a curved mirror the relationship between the phase
front curvature R of the scalar potential V(T) and the
mirror radius R’ is given by Eq. (22). One notes that
1/kl=2f?, where we recall that for a paraxial beam the
power-series expansion parameter f is much less than uni-
ty. In the visible and infrared portion of the spectrum,
typically, f is roughly 1073, so our correction, being of or-
der f2, is not of practical significance. In the millimeter
wave and microwave regions, however, open resonators do
exist for which the modes are not paraxial. If reasonable
accuracy is to be achieved in describing such cases it must
be appreciated that the approximate Gaussian-Hermite
scalar potentials of Eq. (10) are no longer valid and the
vector representation of the field must be employed in or-
der to closely satisfy the boundary conditions on the
curved reflector surfaces.
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