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A "complex" resonance, due to the autoionization of a Rydberg series close to its ionization limit

perturbed by an interloper, appears frequently in photoionization spectra. This resonance structure

is studied by means of an analytical formula derived from a multichannel quantum-defect treatment

involving one open and two closed channels. Model calculations demonstrate the effect of the in-

teraction between the two closed channels. Examples taken from the Ba and Hq spectra are dis-
0

cussed. Finally, we reproduce the general feature of a complex resonance observed in the 785-A re-

gion of the Nq photoionization spectrum, using ab initio electronic parameters and taking account

of the rotational structure.

I. INTRODUCTION

Resonant features in molecular photoionization seldom-

ly appear as isolated resonances which could be fitted to
usual Beutler-Fano profiles. Owing to the multiplicity of
ionization thresholds and of types of interactions (elec-

tronic, vibrational, rotational, spin-orbit) in molecules,
several Rydberg series autoionize frequently in the same
spectral range and the resulting resonance structure may
be very intricate. Here we illustrate this point by analyz-

ing a typical resonance figure called a "complex reso-

nance, " first noticed in H2, ' ' but common in other
molecules also, for example in N2. It consists of an in-

tense central peak surrounded by a broad distribution of
satellites with decreasing intensity, and has been interpret-
ed as due to the simultaneous autoionization of a dense

series of Rydberg levels converging to a low-lying thresh-

old and of a single low-n level (the "interloper" ) pertain-

ing to a series with a much higher threshold. Our main
purpose is to determine how both the coupling to the elec-
tronic continuum and the oscillator strength are distribut-
ed among the two series and what governs the general as-

pect of the complex resonance, namely, its apparent width
(i.e., the total spectral range covered) as well as the indi-
vidual width and intensity of each component. This study
might be helpful for the identification of the interloper
and of the host series in cases not yet analyzed.

We use the collisional approach of multichannel
quantum-defect theory (MQDT) and restrict our model to
three channels, one open, which represents the ionization
continuum, and two closed, corresponding to the two
Rydberg series involved. Using a variant of Seaton's
MQDT recently developed by Giusti-Suzor and Fano
and by Cooke and Cromer, ' we derive an analytical ex-
pression for the photoionization cross section near a com-
plex resonance. Although a three-channel model is gen-
erally a crude approximation to real processes in mole-
cules, it is sufficient to discuss the main features of a
complex resonance, and the use of an analytical formula

allows very rapid and transparent model calculations.
More realistic treatments including more channels can be
easily handled by numerical MQDT calculations, as in the
last example given in this paper (see Sec. IV C).

This analytical formula involves nine physically mean-

ingful parameters. One of the main points which will

emerge from the discussion is the important role played
for the resonance structure by one of these parameters,
namely, the coupling between the two closed channels. In
this aspect our study may appear as a complement to the
work of Mies" who studied, using the configuration-
interaction theory, the resonant behavior of independent
discrete levels coupled to several interacting continua.
Here we include a single continuum in our treatment but
we consider interacting closed channels, not assumed to be
"prediagonalized. "

II. MQDT ANALYTICAL DESCRIPTION
OF A COMPLEX RESONANCE

A. A set of MQDT parameters

Following the MQDT approach of Ref. 9, we introduce
a set of three adjusted channel wave functions f; with the
long-range form (for r & ro, the radius of the core region)

3

& =&f X&jgJRJ— (I)
J =1

For each channel i, y; combines the wave functions of the
ion core and of the angular and spin parts of the external

electron, and (f;,g;) denotes the phase-shifted Coulomb
base pair

f; =f;cos(~P; ) —g;sin(rrP; ),

g; =g;cos(mP; )+f;sin(vrP; ),
where the effective quantum numbers p; are adjusted in

order that the reaction matrix R, relative to this radial
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basis, has no diagonal matrix elements (R;;=0). The
quantities p; replace, in effect, the diagonal matrix ele-
ments R;; of Seaton's R matrix, related to R by Eq. (11)
of Ref. 9(a). Physically, the parameters p; represent
mainly the effect of the intrachannel short-range
electron-core interactions, with a small (reactive) contribu-
tion of interchannel coupling [see Ref. 9(b)]. In real cases
the p; may also contain the effect of coupling with addi-
tional channels not explicitly included in the calculations.
The three other MQDT parameters introduced in Eq. (1),
namely the distinct nonzero matrix elements R;~ (i &j),
measure the interchannel couplings.

The total wave function of the system is expanded as

where N is the Rydberg constant and E;+ is the ioniza-
tion limit in channel i .The factors cos[II(v;+p;)], to-
gether with the condition

~
ZI

~

=1 (unit flux in the sin-
gle open channel), ensure the normalization per unit ener-

gy. Additional conditions on the channel components Z;
are obtained from the asymptotic behavior in each chan-
nel: convergence in each closed channel, with a standing
wave in the open channel, requires that the Z; verify the
homogeneous system

—sin[IT(i —p I )]Z I +R 12cos [IT(v2+p3) ]Z2

+R 1 3cos[m.( v3 + p 3 ) ]Z3 —0

g= gZ;cos[Ir(v;+p;)]g;, R 12cos[II(r—p1) ]Z I +sin[II(v&+p2) ]Z2

+R 23 cos[Ir( v3 +p3 ) ]Z3 —0, (5)

2

E;+—Evi =

the open-channel phase, and 1 for i =2,3
1/2

(4a)

(4b)

R 13cos[II(r—p I ) ]Z I +R 23 cos[ Ir( v2+p2 )]Z2

+sin[m(v3+p3)]Z3 ——0 .

The compatibility condition of this system,

—tan[a. (r—p 1 ) ]

R)2

R)3

tan[II(v2+p2) ]

R23

R(3

tan[a. ( v3+p3) ]

=0, (6)

yields an explicit expression of the open-channel phase r as a function of the quantum numbers v2 and v3 and thus of the
energy through Eqs. (4):

R 12tan[x3]+R 13tan[xq] —2R ~2R 13R33tan[x)]=
tan[x, ]tan[x3] —R 33

(7)

with the abbreviated notations x
~ Ir(r p~) and——x; =—Ir(v;+p;) ( i =2,3)

The phase r plays an important role for the analysis of the resonance structure since the resonance centers may be de-
fined, according to Smith, as the energies at which the phase varies most rapidly. It is instructive to compare Eq. (7),
rewritten in the form

R 12cot[x2]+R 13cof[x3]—2R ~2R ~3R23cot[x2]cot[x3]
tan[x1] =

1 —R 23cot[x2]cof[x3]
(7')

to the analogous two-channel expression (channel 1 open,
channel 2 closed ")

taI1[x 3 ]=R 23cot[x 3 ] (9)

One may show that the true resonance centers, corre-
sponding to the maximum values of the time delay

tan[x, ]=R 12cot[x2 ],
to which Eq. (7') reduces if R13 ——R23 ——0. In that case
the resonance centers correspond to the values v2 ———p2
(mod 1) fo'r which tan[x1] tends to infinity. The in-
clusion of a second closed channel coupled to the first one
(R23&0) shifts the resonance centers near the roots of the
denominator of (7'), for which

iI (dr!dE), ' are slightly shifted with respect to the roots
of Eq. (9) by the indirect coupling between the closed
channels via the continuum. This shift is negligible if

2 2 2R 23 ((R ]2R ]3~

Equation (9) is just the MQDT relation satisfied by the
level energies of the two mutually perturbed Rydberg
series in channels 2 and 3. The energy range of a complex
resonance covers many cycles in v2 but at most one in v3
( v3 ))v3 ), which leads to the graphical representation of
Fig. 2(e), analogous to a Lu-Pano plot. ' One sees that the
roots of Eq. (9) are more and more shifted from the un-
perturbed resonance positions near the interloper and that
one more root occurs in the vicinity of v3 ———p3 (modl)
which marks the unperturbed energy of the interloper.
Note finally that this resonance shift increases with the
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closed-channel interaction R 23.
Besides the six MQDT parameters defined above, the

expression of the photoionization cross section requires
three additional short-range parameters D; which measure
the dipole transition amplitudes corresponding to the al-
ternative channel wave functions P;. The nine short-
range parameters thus introduced will be considered as en-

ergy independent over the spectral range covered by a
complex resonance. We will see in the examples of Sec.
IV that these parameters, as the usual MQDT parameters,
may be either fitted from experimental spectra or derived
from ab initio calculations. We point out that the present
MQDT formulation, like the traditional configuration
mixing theory, consists at least implicitly of two steps.
Unperturbed, or "diabatic, " channels i in a molecular
designation are first defined as the eigenchannels of a
"zero-order" Hamiltonian. For molecules, the corre-
sponding channel wave functions belong to one of the
Hund's cases [case (a) if the functions have the same A
and S quantum numbers, case (d) if the rotational interac-
tions are introduced in the zero-order Hamiltonian, or
case (c) if this Hamiltonian contains the spin-orbit cou-
pling]. The residual electrostatic interactions, treated in a

second step, give rise to off-diagonal terms VJ (i&j )

which are dimensionless quantities since the MQDT chan-
nel wave functions are energy normalized.

For a suitable choice of basis channels these terms will
be small (m.

~ VJ
~

&&1) and the quantities vrV~ are good
approximations for the reaction matrix elements R;i. The
quantum defects and dipole matrix elements relative to
the basis channels i are then very close to the parameters

P; and D&, respectively, as discussed in Ref. 9(b).

B. The photoionization cross section

From the total wave function (3) we derive an expres-
sion for the three-channel photoionization cross section:

o=IC g. Z;cos[m(v;+P;)]D;

where the factor K, proportional to the photon energy,
does not vary much over the energy ranges considered.
The channel amplitudes Z; are solutions of the system (5),
with the additional normalization condition

~
Z~

~

=l.
The cross section (10) becomes

R (p —R )3R23cot[x3]
d

cot[x 2]D2—
R f3 R ]QR23cot[XQ]

cot[x3]D3

2

1+ I (R,zcot[x2]+R, 3cot[x3]—2R,zR, 3R q3cot[xz]cot[x 3])/d I

where d =1—R z3cot[xz]cot[x3] has been already en-

countered in the expression (7') of tan~(r —p, ~ ).
This expression is the foundation of our analysis. It

will be written later in a simpler form but the different
terms in (11) are easily interpreted by comparison with the
two-channel formula derived by Giusti-Suzor and
Fano, "

(D 1
—R 12cot[x2]D& ) —

~ (q +.p)
o =I( =+a ]

1+R ~2cot [x2] I+~

where the quantities q = D2/R~zD~ and—@=tan[sr(v2

+Pq)]/R &2 have been defined to fit the usual Fano for-
mula. We recall that the periodic autoionization formula
(12) describes at once an entire series of resonances,
without the usual restriction to "isolated" resonances.

At the numerator of (11) the contribution of each
closed channel i =2,3 to the ionization process consists of
two terms. The first one, proportional to R&;, corre-
sponds to the direct path in which the absorption by a
discrete level of channel 2 is "followed" by direct autoion-
ization into the continuum. The second term, proportion-
al to the product R ~JRJ, (j &i &1), corresponds to an in-

direct path via the other closed channel (see Fig. 1). The
two contributions are modulated by the denominator d
which takes account of the mutual perturbation of both

II'ydberg series, as discussed previously. Moreover, the di-

pole amplitude D; of channel i is weighted by the factor
cot[x;]=cot[m(v;+P;)] which becomes infinite for the
unperturbed energy of each level in channel i (v; =n —P; ).

As in the two-channel formula (12), the denominator of
(11) is simply 1+tan [x ~ ]= 1/cos [~(~—P & )]. This term
results from the normalization of the wave function (3)
and determines the main features of the resonance struc-
ture. Cooke and Cromer' derived independently, in a
similar MQDT approach, the expression of the com-
ponent Z2 describing the selective excitation of chan-
nel 2. Their expression, equivalent to Eq. (11) with

D& D3 ——0, is writte——n as a two-channel Beutler-Fano for-
mula with energy-dependent parameters q and I which
vary rapidly in the vicinity of the interloper. Here we
focus our study on the global aspect of a complex reso-

nance, with the main purpose of learning how to identify
the interloper (i.e., its unperturbed energy and width) from
experimental data, a problem frequently encountered in
molecules. For this purpose we now analyze some model
calculations before discussing actual examples. In the fol-
lowing, the ionization threshold for channel 3 is assumed
to lie much higher than for channel 2, such that v3 varies
much more slowly than v2. Note however that Eq. (11) is
symmetric with respect to channels 2 and 3 and could be
used more generally to study the simultaneous autoioniza-
tion of two interacting closely lying Rydberg series.
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III. MODEL CALCULATIONS CHANNEL

Figure 2 shows the aspect of a typical complex reso-
nance for different interaction strengths between the inter-
loper and the host series. For reference we show first
[Fig. 2(a)) the resonances obtained when a single closed
channel (either 2 or 3) interacting with the open channel is
included in the calculations. They have simple Lorentzian
shapes because here, as in all the model calculations, we
neglect the absorption by the continuum (i.e., the direct
photoionization process) by choosing D~ ——0, in order to
clarify the effect of the perturbation on the resonance
shapes. The cross section (11) can then be rewritten as

FIG. 1. Schematic representation of the three channels im-
plied in a complex resonance. The two autoionization processes
for channel 3 (~ direct path, ----~ indirect path) are indicated.
An analogous scheme is valid for channel 2. The R;J are the in-
teraction parameters between the channels.

I R12D2tan[x 3 1+ R 13D3 tan[x2) (R 13R23D2+R 12R 23D3 ) I

(tan[x2]tan[x3] —R 23) +(R &2tan[x3]+R ~3tan[xz] —2R,2R»R23)
(13)

and is plotted in Figs. 2(b)—2(d) for different values of the
effective coupling Rq3 between the two closed channels,
all the other parameters being fixed as indicated in the
figure caption.

Without mutual interaction between the series [R23 —0,
Fig. 2(b)], the interloper resonance is essentially "chop-
ped" by the successive resonances of the host series since,
as already mentioned by Fano' and by Mies, " the cross
section (13) must drop to zero once between two succes-
sive autoionizing levels. The resonance structure changes
radically in the more realistic case where the two closed
channels are coupled, even weakly. Three main features
can be noted in Figs. 2(c) and 2(d), obtained with
R 23 /tr =0.01 and 0.02, respectively.

(i) As anticipated in Sec. II A, the autoionization peaks
are very close to the roots of Eq. (9), marked by open cir-
cles in Fig. 2(e) (for R23/m. =0.02) and for which the
main term in the denominator of Eq. (13) vanishes.
Therefore the resonance shift increases both with the in-
teraction strength R23 between the closed channels and
the proximity of the interloper.

(ii) Although there is no true background since D& ——0,
the resonance shapes are no longer Lorentzian and look
rather like distorted asymmetric Fano profiles with an
energy-dependent background. This shape results from
interferences between the direct and indirect autoioniza-
tion paths mentioned in Sec. II and has been analytically
studied by Cooke and Cromer. ' The most important re-
sult of their study concerns the resonance width which is
shown to refiect these interferences itself, resulting in a
strong energy dependence clearly seen on our figures:
very narrow peaks are followed by much broader ones
around the interloper.

Note the narrowing of the interloper with respect to
Fig. 2(a), which increases with the closed-channel cou-
pling R23. Actually, it becomes more and more difficult,
to unambiguously assign one of the peaks to the interloper
when the closed-channel interaction R23 increases.

(iii) The most striking effect in a complex resonance is
the intensity distribution which is also strongly affected

D2 D3R23cot[x3 ]=K~max
R,2

—R &3R23cot[x3]
(14)

which are very close to the true maxima of the cross sec-
tion except for very small values of R23 [for R23 ——0 the
constant value o,„=x:(D2/R~2), which is the peak
height of the unperturbed host series, disagrees clearly
with Fig. 2(b). In this case the resonance shift due to in-
direct coupling of the closed channels via the continuum
cannot be neglected for the calculation of the maxima].
Equation (14) is represented by the dotted curves in Figs.
2(c) and 2(d). They reach the base line when

D2 —D3R 23cot[x3]

that is, when the direct and indirect absorption processes
by channel 2 interfere destructively. If by chance this
point corresponds to a resonance center, the relation
tan[x2] =R 23cot[x3] transforms Eq. (15) into D3
=R23D2cot[x2], which means that the absorption by
channel 3 also disappears for this energy. Generally there
is no resonance centered at this point but the peaks be-
come very weak in this region. On the contrary, they are
greatly enhanced around the point where

12 = 13 23cot[x3 ]

for which o. ,„becomes infinite. Here the direct and in-
direct couplings of channel 2 with the continuum com-
pensate each other, resulting in a vanishing effective
width and thus in a very high intensity. As above, the
symmetric relation R,3 ——R~2R23cot[xz] would be satis-
fied simultaneously if a resonance center happens to lie at

by the interference effects: when the photon energy de-
creases, a region of very low intensity is followed by a
strong enhancement of the peak maxima (the inverse situ-
ation is obtained if the relative signs of the parameters are
changed). This behavior can be predicted from the cross-
section values obtained when tan[x2]=R 23cot[x3] [Eq.
9].

2
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FIG. 2. (a) Two-channel calculations showing the resonance
structure due to the separate interaction of each closed channel

(2 or 3) with the continuum. The coupling parameters are

R ]2/m =0.1 (width 0.42 cm ' for n* =32.085) and

Ri3/~=0. 01 (width 5.56 cm ' for n*=2.916). D& ——0, D2 ——3

a.u. , D3 ——10 a.u. (b) Three-channel calculation with the same

parameters as in (a). The two closed channels interact with the

same continuum but are not directly coupled (R23 ——0). (c), (d)

Same parameters as in (a), with R&3/+=0. 01 and 0.02, respec-

tively. The dashed curves represent the quantity o,„[E . (14)].
(e) or the parameters of (d), tan[x2] (solid lines) and

R 23cot[x3 ] (dashed lines) are plotted as a function of the ener-

gy. The intersections (open circles) mark the roots of Eq. (9)
and give the positions of the resonances with a very good pre-

cision. The dark circles give the unperturbed positions of the
resonances in channel 2 [see (a)].
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FIG. 3. Three-channel calculations with D& =0 D2=3.0
a.u. , D3 ——0, Ri2/m =0.1, R]3/~=0. 01, Rp3/n. =0.01, and the
same p as in Fig. 2. The scale for the photoionization cross sec-
tion is also the same as in Fig. 2.

cs thus approximately measured by the envelope curve
o,„and may be much larger than the true width of the
interloper. This apparent width, as well as the shift of the

igher-intensity maxima. with respect to the unperturbed
position of the interloper, increases with the closed-
channel coupling strength Ri&, as indicated by Eqs. (15)
and (16) and by comparison between Figs. 2(c) and 2(d).

Finally, Fig. 3 corresponds to the case where D3 ——0. In
spite of the lack of intensity coming from the interloper,
it causes a strong enhancement of the satellite peaks for
long wavelengths. Beyond the interloper, the peaks are
enlarged and have a vanishing intensity.

Two main results emerge from these model calcula-
tions:

(1) The spectral range covered by the complex reso-
nance and illustrated by the curve o.ve o.m„, may great y
exceed the true width of the interloper.

(2) The importance of the interaction between the
closed channels for the autoionization structure has been
demonstrated. The interloper loses more and more of its
identity when its coupling with the host series increases.
Both its oscillator strength and its width are spread over
t e entire series. Conversely, due to the symmetry of the
formula 11) in the channels 2 and 3, the interloper may
borrow its intensity and/or its width from the host series,
as' will be seen in the example of Sec. IV C.

IV. EXPERIMENTAL EXAMPLES

this point. Of course, infinite intensity will never occur in
real cases since the corresponding infinite lifetime would
be reduced by the fluorescence process, neglected in our
treatment (in other words, the natural width cannot be
neglected if the effective autoionization width vanishes).

e possible occurrence of such a quasibound state in the
continuum, stabilized by destructive interferences between
two decay paths, has already been noticed by Lecomte'
and by Cooke and Cromer. '

Far on the wings (tan[x3]~ &x& ) the quantity o,„(Eq.
14) tends to the unperturbed value K(D2/R, 2) . The ap-
parent width of the complex resonance, that is, the spe'c-

tral range over which the host Rydberg series is perturbed,

The figures illustrating the previous model calculations
were drawn for infinite resolution. In actual experiments,
the general aspect of a complex resonance can be modified
by the instrumental resolution. Particularly, the intense
but very narrow peaks will be attenuated and broadened
by a finite apparatus resolution. , Moreover, in the case of
molecular spectra where the rotational structure is not ex-
perimentally resolved, the observed peaks will consist of
t e superposition of numerous complex resonances, one
for each value of J, the rotational quantum number. In
this section we shall discuss several complex resonances
observed both in atomic and molecular h t '

u ar p o ionization
spectra.
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A. The spectrum of the (6p3gg, 10d )J—3 level in barium

To our knowledge, the most striking example of a com-
plex resonance in atomic photoionization spectra has been
observed and extensively analyzed in Ba by Gounand
et a/. ' In the vicinity of the (6p3/2 10d)j—3 level, sharp
asymmetric features appear and correspond clearly to the
high members (16(n (26) of the (6p~ j2,nd) j—3 series,
perturbed'by the (6p3j2, 10d)j—3 interloper. The experi-
mental spectrum is reported in Fig. 4(a) with the best
theoretical fit' obtained in a four-channel numerical
MQDT treatment based on the eigenchannel parameters

Ip, U; I. ' Here we show that the main features of the
experimental spectrum are reproduced by the analytical
expression (13) with an alternative set of MQDT parame-
ters, without any attempt to improve the previous fit.
From arguments specific to the multistep excitation pro-

FIG. 4. (a) Experimental spectrum of the (6p3/2 10~)J—3 lev-

el in Ba reproduced from Ref. 16. The continuous line shows

the theoretical fit given in Sec. III G of this reference. (b) Our
calculated cross section [Eq. (13)] for the same energy region

&1th D] D2:Oy D3:100 a u p p2 2 79 p3 2 75'
R(2/m. =+0.05, R)3/m =+0.1, and R23/~= —0.08, broadened
to a resolution of 1 cm '. cr,„[Eq. (14)] is plotted by dashed

lines.

cess, ' we can assume D~ —D2 —0. Trial values for the
coupling parameters R ~q and R» are provided by the
widths observed for the levels of each closed channel out-
side the range of the complex resonance. The parameters

R 23
~ P2 and p3 have been deduced graphically "from

the Lu-Fano plot of the mutually perturbed series in chan-
nels 2 and 3 (Fig. 6 of Ref. 16). The minus sign for R23
has been chosen in order to reproduce the very high exper-
imental peak ( n =20) on the correct side of the interloper.

The results, broadened to a resolution of 1 cm ', are
given in Fig. 4(b). They agree reasonably well with the ex-
perimental spectrum in spite of the crudeness of the
model. The strong intensities of the satellite peaks in
spite of a zero oscillator strength for the (6p~j2nd)j —3

series illustrate the mechanism of intensity contamination
by the interloper and of interference effects between the
direct and indirect autoionization processes. Note also the
narrowing of the interloper width from 55.6 cm ' (its
"true" width, proportional to

~

R ~3
~

) to 20 cm

B. The (7po. v =2) level in the hydrogen molecule

In the photoionization spectrum of the H2 molecule, re-
ported by Dehmer and Chupka, several complex reso-
nances appear. For example, in the 791 A spectral region,
a typical complex resonance is formed by the rotational
levels J= 1 of the series npO(u =1) converging to the ro-
vibrational level %+=0, v+=1 of the H2X Xs ground
state and by the interloper (7po v=2)J =1 level. This
spectrum has been analyzed in detail by Jungen and Ra-
oult and their MQDT calculated spectrum, broadened to
a resolution of 0.016 A, is in good agreement with the ex-
perimental spectrum [see Fig. 5(a)]. This calculation has
included 20 rovibrational channels, necessary for
representing a large part of the spectrum. Here we have
tried to represent schematically the small spectral range
covered by this complex resonance by a three-channel cal-
culation, with the supplementary approximations D2 ——0
and R&3 ——0. Indeed, the vibrational quantum number
v =2 of the interloper differs by two from that of the
U+ =0 continuum such that its vibronic interaction with
this continuum is very weak. ' On the other hand, the
host series in this region absorbs weakly because its levels
have less favorable Franck-Condon factors than the inter-
loper and high principal quantum numbers.

With these approximations the cross section (13)
reduces to

(D,R )2R23cot[x3]).g=K-
(tan[x2] —R 23cot[x3]) +R )q

(17)

The remaining parameters have been determined as in the
preceding example: p, 2, p, 3, and R23 are graphically read
off the Lu-Pano plot drawn from the positions of the res-
onance peaks. " The coupling parameter R ~2 is deduced
from the theoretical widths of the npO(u =1) levels far
from the interloper.

The resonances in the cross section (17) are almost
Lorentzian, as for an unperturbed series with no back-
ground, but the peak maxima, located on the envelope
curve [dashed line in Fig. 5(b)]
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exhibit strong variations. The same is true for the widths
of the individual resonances [derived as the inverse of the
maximal values of the time delay h (drldE) which mea-
sures the resonance lifetime]:

FIG. 5. (a) Observed and calculated photoionization spectra
near the u+ = 1, N+ =0 threshold in H2 reproduced from Ref.
2. The experimental points are from Dehmer and Chupka {Ref.
3). (b) Our calculated cross section [Eq. (17)] for the same ener-

gy region with D] ——0, D& ——0, D3 ——3.16 a.u. , R~2/~=0. 04,

R]3——0, p2 ——0.08, p, 3
——0. 12, and R23/m=0. 04, broadened to a

resolution of 2.6 cm '. cr,„[Eq. (14)] is plotted by dashed
lines. Part of the disagreement with (a) comes from the neglect
of the np2 channel.

Equations (18) and (19) correctly describe the distribution
of intensity and width among the members of the complex
resonance: in accordance with the refined MQDT calcu-
lations (see Table I of Ref. 2), the highest peaks are the
closest to the unperturbed position of the interloper
(cot[x3]~ ao ) and have the smallest widths.

The cross section, calculated by means of Eq. (17) and
broadened to the experimental resolution of 2.6 cm ', is
shown in Fig. 5(b). It is clear that with this very schemat-
ic model, we reproduce at least the two main characteris-
tics of this spectrum, already pointed out by Jungen and
Raoult: the intensity of the satellite peaks comes from
the interloper, which in turn borrows its width from the
levels of the host series. Note that the calculated widths
before convolution are all much smaller than the experi-
mental resolution width, such that all the peaks in the ex-
perimental spectra and the two convoluted theoretical
spectra have an apparent width of about 2.6 cm

In this example the interactions R&2 and 823 respon-
sible both for the autoionization of the host series and for
the redistribution of the oscillator strength have the same
vibronic origin and the same order of magnitude. Several
other cases of complex resonances have been pointed out
in H2. ' Their mechanisms may be more complicated.
For example, in the 803-A region, two kinds of interac-
tions, electron-rotation and electron-vibration couplings,
are implied and there is a transfer between these two cou-
pling modes. Effective parameters P; and R;J can still be
defined but the three-channel formula would be only valid
in a very small energy range because two interlopers are
actually involved. The same situation is encountered in
the following example.

0

C. The morley-Jenkins series near the 783.5-A region
in the nitrogen molecule spectrum

In the photoionization spectrum of N2 observed at high
resolution by Dehmer et QI. , a complex resonance ap-

pears near 783.5 A, just below the ionization limit v+ =1
of the X Xg+N2+ state. This complex resonance has been

previously interpreted by us ' as due to the interaction
between the Sscrs 'II„member of Worley's third series

converging to the v+=0 3 H„N2+ limit and the higher
members ( m = n —1 & 15) of the npn„'II„Wrol ye-

Jenkins series converging to the v+ = l X X~+ level.
These members present an anomalous enhancement of
their intensity near the interloper. The interaction be-

tween these states has the same electrostatic origin as the
interaction between the 5scrg 'II„state and the continuum
of the v+ =0 X Xg+ level responsible for the autoioniza-
tion of this state. Even if the direct vibrational coupling
of the members of the Worley-Jenkins series with the con-
tinuum v+=0 is neglected, we have shown that the in-

direct interactions via the 5scrg II„state is sufficient to
reproduce qualitatively the observed intensity anomaly.

Actually, this complex resonance contains two interlop-
ers attributed by Ogawa and Tanaka ' to two members of
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19 17 15 population up to the J= 8 rotational level. The rotational
constants have been taken as 2.0 cm ' for X'Xg+, 1.902
cm ' for X Xg+, and 1.739 cm ' for A II„. The main
features of the complex resonance depend drastically on
the exact values of the quantum defects of the two inter-
lopers. The experimental relative intensity of the two
parts of the resonance is only reproduced if the
(u =O, n =4) 5so.g interloper is placed at higher energy
than the (v =3,n =3) 4so.

~ interloper. The values of the
quantum defects of these interlopers have been adjusted
separately with a preliminary model including only three
channels at the same time, namely, one of the interloper
channels and the two p channels (with v+=0 and 1), but
in different energy regions of the complex resonance. It
has thus been possible to use the formula (11) for each
value of J and separately for each ensemble of P, R, and
Q lines.

The D; and R,z electronic parameters have been taken
from ab initio calculations except that the interaction be-
tween the closed channels (A II„)@so and (X Xg+)epvr
has been multiplied by a factor of 2, becoming equal to
the calculated interaction between the (A II„)@so and
(X Xs+)efvr closed channels. These electronic parameters
(two interaction parameters and three transition moments)
have been weighted by the corresponding overlaps be-
tween the vibrational levels of the Morse potential curves.
The vibrational coupling between the v+=0 and V+=1
X Xg+ channels has been neglected. The quantum defect
for (X Xg+)op~ has been taken from experiment and that
for (X X~+)ef~ from calculations [the experimental value
0.0233 for 4f (Ref. 23) differs insignificantly from the
calculated value 0.0168]. All these parameters are given
in Table I. They have been introduced in a model with six
channels [two (p and f) open channels, four closed chan-
nels] for which the analytical formula (11) is no longer
valid. We have then solvent the electronic autoionization
MQDT equations for,each ensemble of P, R, and Q tran-
sitions and this, for each value of J. The sum has been
broadened to the resolution of 2.5 cm '. The final results
are reproduced in Fig. 6(b). We see that without any fur-
ther adjustment of the parameters, the appearance of the
complex resonance is correctly represented. In particular,
the anomalous enhancement of the p members of the
Worley-Jenkins series far from the interlopers are well
reproduced and although the vibrational interaction be-
tween the v+ =0 and 1 channels of the X Xg+ state has
been neglected (corresponding to put R &2

——0 in the
model), both the p and f levels are enlarged by indirect

(b)(a)
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FIG. 6. (a) Experimental photoionization cross-section of N2
taken with a wavelength resolution of 0.017 A near the N2+
X Xg+(v+=1) ionization threshold (Ref. 6). The absorption
spectrum suggests that the wavelength calibration requires
a shift of 0.02 A to the red. (b) Calculated photoionization cross
section with a MQDT calculation including the band contour
and broadened to a resolution of 2.5 cm '. The parameters are
given in Table I.

alculation of the N2 complex resonance.

Worley s (third) Rydberg series converging to different vi-
brational levels of the A II„state of N2+. A further
complication arises from the rotational structure which is
partially resolved and cannot be neglected. Indeed, the R-
and Q-branch' heads of each of the
'II„~X 'Xg+(A II„)nscrg transitions, separated by 14
cm ', can be seen on the experimental figure 6(a). Furth-
ermore, each member of the Worley-Jenkins series forms
a p complex whose 'X„+ and 'II„parts are completely
mixed. Thus, we have studied this problem again includ-
ing the two interlopers and taking into account the rota-
tional structure in a simplified form. For the p complex,
we have considered only the b,N+ =0 (Q-form) branches.
The II-X separation of the components of each complex
has been taken equal to zero. This is justified by the ex-
perimental observation of the members with n &15 of
the series converging to u+=0 of X Xs+. The f com-
plexes have been treated in the same way as the p com-
plexes. As the temperature is 78 K, there is only adequate

TABLE I. Parameters used in the c

Channel

p
D (a.u. )

(X Xg+ v+=0)
&7~u

—0.36
—0.702

(X Xg+ v+=0)
sf~„

0.0168
—0.316

(X Xg+ v+=1)
EP ~u

—0.36
—0.207

(X Xg+ v+=1)
efvr„

0.0168
—0.0937

( 3 II„v+=0)
ESCTg

0.0664
—0.197

( 2 IIM v+ =3)
6'S 0'g

0.0553
—0.124

—0.0137
—0.0137

0.0118
0.0118
0

—0.0039
—0.0039
—0.0086
—0.0086

0.0
0.0
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electronic coupling.
We note that the calculated electronic parameters (tran-

sition moments and interaction) are in good agreement
with the known semiempirical values. In particular, our
calculated electronic interaction between the (A II„)Esog
and (X Xg+)epee„channels of —0.0097 is of the same or-
der of magnitude as the value 0.0062 deduced from the
work of Stahel et al. , but disagrees with the value 0.085
used in our previous work where we have confused the
apparent width of the complex resonance with the true
width of the interloper.

Furthermore, we have looked for an explanation of the
low intensity observed for the members m =9—11 of this
same Worley-Jenkins series and pointed out by Dehmer
et al. The zero value for the cross section resulting from
interference effects [see Eq. (15)] cannot occur so far from
this interloper with the small values of our closed-channel
interaction parameters. But other features seen at 791 and
792 A, which we suggest to correspond to the enhance-
ment of the 9f complex by the (A II„)3d5g u =2 inter-
loper and of the 8p complex by the (A II„)3do~ u =1
state, respectively, could be responsible in part for the in-
tensity anomaly of these m =9—11 members. The strong
calculated electronic interactions between the closed chan-
nels seem to support this explanation.

In this part of the spectrum of Nq, a single continuum
is open. Higher in energy, the situation becomes more
and more complicated, due to numerous close ionization
thresholds. For example, the first member of the Hop-
field absorption series corresponding to the (B X„+)3dog
state lies close to numerous vibrational thresholds of the

II„state. It has been pointed out that its width is

smaller than that of the 4dcrg state, in disagreement with
the n* scaling factor. This narrowing probably results
from an interaction both with the very neighboring
member m =7 of the series (A II„)ndmgc.onverging to
u+ =3 of the A II„state and with all the members of the
same series converging to the A II„v+=2 limit which is
also close to the interloper.

V. CONCLUSION

The phenomena occurring in the vicinity of a "com-
plex" resonance can explain in some cases the anomalies
observed in the widths or in the intensities of an autoion-
ized Rydberg series. Using our MQDT treatment, it is
then possible to return to the unperturbed quantities
which satisfy the usual laws (for example, the n* scale
rule for the widths). This is analogous to the deperturba-
tion performed in the case of perturbed discrete levels, but
in the case of autoionized states, besides the energy shifts
and the line intensities, supplementary information comes
from the widths and the shapes of the resonances. Note
that the occurrence of such complex resonances is in-
dependent of the nature of the open channel. In the case
of a dissociative continuum, similar effects could appear
near a dissociation limit. Finally, one can hope that the
optical-optical double resonance (OODR) technique com-
bined with the multiphoton ionization (MPI) spectroscopy
will permit more detailed observation of numerous com-
plex resonances in molecules. A model in which the au-

toionizing levels are assumed to be reached in such
OODR-MPI experiment has been treated elsewhere.
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