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Multiphoton ionization in strong fields
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The photoionization of atoms in a strong electromagnetic field leads to the effect of "above-
threshold" ionization, displaying a number of peaks in the energy spectrum of the photoelectrons.
In the case of a one-electron model atom in a circularly polarized field, we derive expressions that
describe the position as well as the intensity of those peaks as a function of the field parameters by
means of a nonperturbative method. It is immediately clear from our formulas that the lowest-

energy peaks in general disappear with increasing field intensity, for Coulomb-like'as well as short-

range potentials. For a zero-range potential, a numerical evaluation is easily performed, leading to
results that are in every respect qualitatively similar to the experimental results obtained thus far on

these kinds of processes.

I. INTRODUCTION

Although multiphoton ionization has been studied in
atomic physics for many years, this subject has gotten
new impetus with the advent of powerful lasers which are
capable of producing an electric field incident on an atom,
which is a substantial fraction of the field strength caused
by the (screened) nucleus on a valence electron. Indeed
many interesting experiments on multiphoton ionization
of atoms have been performed in recent years. ' The re-
sults of a typical experiment concerning N-photon ioniza-
tion (N) 11) of Xe are shown in Fig. 1 (Ref. 5). At the
wavelength of the laser used, it takes at least the absorp-
tion of 11 photons in order to enable an electron to escape
from the remaining ion. At the prevailing field intensi-
ties, however, we do not only notice a peak associated
with the absorption of 11 photons (the left one in the fig-
ure), but also peaks associated with 12, 13, etc. , photon
absorption. These peaks are not sharp, but exhibit a cer-
tain broadening (exceeding the detector bandwidth).
Another striking feature is the decrease of the first (11
photon) peak with increasing field strength. In a recent
communication we related the latter effect to an increase
in the ionization potential due to the presence of the field.
There it was also argued that this change in the ionization
potential canceled the ponderomotive shift (the
phenomenon that a charged particle is pushed out of the
field ). It would be of the order of several eV for the case
at hand. The results of Muller et al. were based upon a
recent result of one of us concerning atoms in circularly
polarized fields, applied to the simple case of a zero-range
potential, supporting one bound state. In the present
work we give a general discussion, also for circularly po-
larized fields, applicable to those cases where the interac-
tion of the ionized electron with the remaining ion can be
described by means of a spherically symmetric, dilatation
analytic effective potential. This means that we neglect
the fact that the ionization limit acquires an imaginary
part (since the ionic ground state is dynamically Stark
broadened), but our formalism is exact for hydrogen. The
restriction to circularly polarized fields is important in
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FIG. 1. Electron energy spectrum from ionization of xenon
gas by the Nd —yttrium-aluminum-garnet laser (1.064 pm) (from
Ref. 5). The first peak corresponds to 11-photon ionization to
the P3/2 and 12-photon ionization to the Plq2 continuum. Es-
timated intensities are (2—7) &(10' W/cm .

connection with the fact that in this case the Floquet
Hamiltonian (see Sec. II) is explicitly known for spherical-
ly symmetric potentials. Recently, ' atoms in fields with
different polarization properties (in particular linear po-
larization), have been studied from an abstract point of
view. In these cases, however, a numerical evaluation is
bound to be more complicated, even for the case of a
zero-range potential. Therefore we address ourselves to
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the case where at time t =O the atom is in a given state
(typically the ground state), and study its asymptotic time
development as t —+ oo in the presence of a circularly po-
larized field of constant amplitude. This excludes the
transient effects associated with the turning on and off of
the field. (The latter problem has been solved recently. ")
Nevertheless our formalism adequately explains the
salient features of the experimental results, such as the de-
crease of the first electron peak with increasing field in-
tensity. Moreover our approach is nonperturbative (i.e.,
no series expansion in the field amplitude is made). Since
the electromagnetic field turns the atomic eigenvalues into
resonances, we have made use of the complex dilatation
method which is well adapted for this purpose (the
method is due to Aguilar and Combes' and Balslev and
Combes, ' for an introduction to the subject, see
Reinhardt' ). The dilatation formalism was used earlier
by Chu, ' who, in particular, considered two-photon ioni-
zation in hydrogen. In fact, his starting point and ours
coincide, but the further developments in both cases go in
different directions.

The present work is organized as follows. In Sec. II we
derive general expressions for the energy spectrum of the
ejected electrons in terms of probability amplitudes
F~ (k). In Sec. III we give approximate expressions for
the latter from which the experimentally observed peak
structure becomes evident. Section IV is devoted to the
case of a zero-range potential for which explicit results are
obtained in Sec. V. This paper ends with a discussion sec-
tion.

II. GENERAL THEORY

field, represented by the vector potential

A(t) =(a cos(cot), a sin(cot), 0) (2.1)

In atomic units (A'=m =e = 1) the corresponding Hamil-
tonian is

H(t) = —,[p —A(t)]'+ V(r) =H, (t)+ V(r) (2.2)

acting in A =1. (8 ). Here p is the electronic momen-
tum vector, x its position vector and r =

~

x
~

. V(r) can
be an attractive Coulomb potential (the hydrogen case) or
an effective potential felt by a valence electron in an atom
or ion. It can have an attractive Coulomb tail (atoms or
ions) or be short range (singly charged negative ions such
as H ). In Sec. IV we consider the special case of rank
one projector potentials, and their limiting case, the zero-
range potential. We let U(t) be the time-evolution opera-
tor, associated with H(t), i.e.,

a, U(t) = iH (t) U(t)—, U(0) = 1 . (2.3)

By changing to a rotating reference frame H (t) can be
made time independent. ' ' ' Thus

U(t) =exp( —icol3t)exp( iH 't), —

H '= —,'(p —a) —col3+ V(r),
(2.4)

where l3 ——x ~@2
—p2x ~ is the third component of the elec-

tronic angular momentum vector and a=(a, 0,0). Simi-
larly we have for the time-evolution operator Uo(t) associ-
ated with Ho(t)

Uo(t) =exp( —icol3t)exp( —iHO't),

We consider an electron bound by a spherically sym-
metric, dilatation analytic potential V(r) in the presence
of a spatially homogeneous circularly polarized external

l

Also, by direct integration

(2.5)

r

Uo(t)=exp i dsH—O(s) =exp i —,(p .+a—)t ——Ip~sin(cot)+p2[1 —cos(cot)]I
0 67

(2.6)

In fact the existence of the two representations (2.5) and
(2.6) played a major role in the determination of the spec-
trum of H "' in the complex dilated case. H "' and H o

'

are the full and the free Floquet Hamiltonians. H"' is
only known explicitly for the case of circular polarization
with spherically symmetric V(r). We note that in general
the bound states of

H"= —, p '+ V(r) (2.7)

turn into resonances of H"'. In fact the term —col3 shifts
the bottom of the rn-subcontinuum of H" by an amount
—m~ which brings it below the energy of any bound state
for sufficiently large m. Thus the bound states become
continuum embedded Since they are coupled to each oth-
er and the various m-continua by the term —p .a, they
will change into resonances. Resonances are conveniently
described within the framework of the dilatation analytic
method. Thus the dilatation analytic properties of H "'
were studied. The dilatated Floquet Hamiltonian is

I

H"'(g) = —,
'
[p exp( —g) —a] —col3+ V[r exp(g)], (2.8)

is easily established by means of Cook's method (see, for
instance, Reed and Simon' ) [in (2.9) SR stands for short
range]. In case V(r) has a Coulomb tail (without loss of
generality we assume this tail to be attractive and of
charge one), we have to replace Up(t) by the asymptotic

where g is the complex dilatation parameter. As shown in

Ref. 8 its spectrum consists of a number of half-lines,
starting at the points —,'a +mes, m ~ & and going off
under an angle —21m(, together with a set of eigenvalues

(the resonances), see Fig. 2. We drop the superscript Fl
from now on. In case V(r) is a sufficiently smooth
short-range potential [i.e., V(r) =0 (r ' '), e ~ 0, as
r~ ao ] the existence of the wave operators (as strong lim-

its)

A+ = lim U(t) Uo(t) = lim exp(iHt)exp( —iHot)t~+ oo t~+ oo

(2.9)
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evolution operator

U„(t)=UO(t)exp(ip 'ln
~

t
l ),

so that (LR means long range, i.e., a Coulomb tail)

QLR= lim U"(t)U.,(t)t~+ oo

(2.10)

1/202 t.~ 1/202 ~ 1/20 1/20 +(d l/202+ ~~

lim exp(iHt)exp[ i (Hc—t —p 'ln
l
t

~
)] . (2.11)

t~+ oo

Equation (2.11) is a simple adaptation of Dollard s origi-
nal expression, ' whose method of proof can be used in
this case as well to establish its existence. We now cast it
in a form more convenient for applications. Thus we note
that

exp( —iHct) = exp( —i h p )

FIG. 2. Spectrum of the complex dilated Hamiltonian
H"'(g); crosses are resonance eigenvalues, solid lines continuous
spectrum.

XexpI i[ ,'(p—+a—) col, ]tI-

Xexp(ih p), (2.12) where

Q+(h)=exp( ih p—)Q+exp(ih p), (2.13)

where h =( Oa/ oc, O) corresponds to the Hertz vector
Z(t), B,Z(t)=A(t), in the nonrotating frame. Equation
(2.12) is a version of the Kramers transformation often
encountered in work on atomic systems in electromagnetic
fields. We write

Q+= lim exp(iH"t)exp[ i ( , p —t —p 'ln—t )]
t—++ oo

(2.14)

(the two quantities differ in a shift of the coordinate vec-
tor in the potential over —h). Now

Q+ —— lim exp(iHt)exp( i h p—)exp( —iH "t)exp(iH "t)exp[ i ( ,p—t —p 'ln—t )]t~+ oo

Xexp[ i ( —,'a ——cols)t]exp(ih p)

lim exp(iHt)exp( —ih p)exp( —iH"t)Q+exp[ i( ,'a —cols)t]e—xp(i—h p)t~+ oo

lim exp(iHt)exp( —ih p)Q+exp[ i ( —,'p —+ ,'a ol&t—)t]e—p(xih p)t~+ oo

lim exp(iHt)Q+(h)exp( iHct) . —
t~+ oo

Here use was made of the intertwining property

exp( —iH"t)Q+ ——Q+exp( —i —,'p t) .

With

Q" (t) =exp(iHt) Q+( h )exp( iHot)—
we have

(2.1S)

Q""=Q"(h)+ J dt B,Q "(t)
+ oo

=Q+(h)+i I dt exp(iHt)[HQ+(h) —Q+(h)H&]exp( —iHot)
+oo

=Q+(h)+i f dt exp(iHt) IHQ+(h) —[Hc+ V(x —h )]0+(h)I exp( —iHct)

=Q+(h)+i J dt exp(iHt)[V(r) —V(
~

x —h
~

)]Q+(h)exp( iHct), — (2.16)

which relation holds when applied to any function in the domain of p . Equation (2.16) is a variant of the so-called
two-potential formula; note that V(r) V(

~

x —h
~

) is short rang—e. We note in passing that a general approach to the
existence of long-range wave operators in terms of expressions of the type (2.1S) has been presented in Refs. 21 and 22.
In the short-range case (2.16) is still valid [here Q+ is simply lim, +„exp(iH'"t)exp( ip , t)], bu—t w—e also have the
more simple representation
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(2.18)

[in the short-range case U„(t)= Uo(t)]. In an actual experiment the number of electrons with kinetic energy in a band 5
is measured. This corresponds to a projector P given by the multiplication operator X~( —,P ) [g&(u) is the characteristic
function of the interval 6; it is one for u in 6 and zero otherwise]. Thus [if b, =( —,'5i, —,'52), then b, '=(5i, 52)]

w=(tP
I II+Xg( —,p )II+

I g) =(g
I 0+exp( —ih p)Xt( ,'p —)exp(ih p)A+

I g)
= f,dk g (g I

0 exp( i h—p)
I
k, l, m )(k, l, m exp(ih p)A+

I P)
l, m

0+ = 1+i f dt exp(iHt) V(r)exp( —iHot) . (2.17)0

We let P be a projector, commuting with Uo(t) and suppose that the system is in the state ir'j) at t =0. The probability
m to find the system in a state in the P-projected part of A as t~ oo is then

w = lim (g I
U*(t)PU(t)

I P) = »m (g I
U*(t)U..(t)PU*.,(t) U(t)

I 0) =
& 0 I

&+P&+
I 0&

f—+ oo t —+ co

= f dkg Fi (k)I
I, m

(2.19)

where the probability amplitude Ft (k) is given by

F, (k) = (k, l, m
I
exp(i» p)Q+ P) . (2.20)

Here the
I

k, l, m)'s are free spherical waves and the
mathematically strict interpretation of Fi (k) is that of a
Bessel transform. The insertion of exp(+ih p) in (2.19)
is done in order to convert

I
k, l, m ) into a continuum

eigenstate of Ho, i.e., formally

Hoexp( ih p—)
I
k, l, m)

electron is still close to the nucleus in these cir-
cumstances), and thus gaining a sufficient amount of en-
ergy to pass over the barrier, much more likely. Thus our
model can be expected to be accurate, only the very small
tunneling probability has been neglected. Deviations may
occur, however, for electrons with energy only slightly
above the barrier height. In that case other small nonuni-
formity effects in the fields will also become important.

=[—,'(k +a ) —men]exp( ih p)
I
k, l—, m ) . (2.21)

III. EXPRESSIONS FOR THE MULTIPHOTON
IONIZATION AMPLITUDES

Equation (2.18) refers to an electmn that, although
asymptotically free from the remaining ion, is still in the
spatially homogeneous field, represented by A(t). In an
actual experiment, ionization takes place in a laser focus,
and the detector is outside the field. On its way out of the
field the electron then gains an additional amount —,

' a of
kinetic energy, due to the so-called ponderomotive ac-
celeration effect (Pinard et al. have found experimental
evidence for this effect). In fact more can happen to the
electron on its way out, but it can be shown that for fields
A(x, t), which decrease slowly for large x, that this is the
only remaining effect. Thus Ft (k) is not the amplitude
associated with electrons with energy —,

' k at the detector
(which is outside the field), but with energy —,(k +a ) in-
stead, i.e., their energy is always )—,a . This, however, is
an artifact of the model considered. Actual fields have a
finite spatial extension, and this can be taken into account
by localizing the field, a~a(r), where a(r) vanishes for
large r. [Within the present context we cannot allow gen-
eral a(x) since then (2.4) would break down. ] Now the
ponderomotive potential —,

' a (r) vanishes for large r and
this brings back the various thresholds from —,

' a +men to
men [due to the relative compactness of —,a (r)]. Com-
bining V(r) with —,

' a (r), see Fig. 3, we now encounter a
potential with a barrier of macroscopic dimensions (the
laser focus), and although electrons with arbitrary low,
positive energy can be produced in principle, they have to
tunnel through this barrier. This makes the competitive
process of picking up one or more additional photons (the

A. Short-range potentials

We start with the short-range case. Since

0+ ——1+i f dt exp(iHt) V(r)exp( iHot)—
0

= 1+i lim f dt exp( —et)exp(iHt) V(r)
ENO

Xexp( iHot), —

we have (the limit e &0 being understood)

(3.1)

energy

ii20'+V(r)

FIG. 3. Typical situation where an electron that has gained
twice the photon energy still has to penetrate the barrier in order
to escape. After the absorption of an additional photon it can
pass over the barrier.
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I

Fim(k)=(k, l, m
I
exp(ih p)

I @&

+(k, l, m ~exp(ih p)

&& V[ ,'(k—+a) m—co+i' H—]

so that we encounter poles at —,k =E'p+mco ——,'a . In
view of what has been said in Sec. II this corresponds to
poles at op+men in terms of the energy outside the field.
In the presence of —p. a the poles will move away from
the real axis, but still we expect 4 to peak at such values
of —,

' k . The physical interpretation is clear: the peak as-
sociated with mco corresponds to the absorption of m
photons. Negative m cannot occur, since —,

' k must be
positive. In fact m must be such that ep+mco ——,'a &0.
In order to obtain the precise form of the peaks in @ we
have to continue analytically into the nonphysical sheet
where the resonances of H are located. A direct dilatation
of the expression for 4 as given in (3.2) may not always be
possible. The point is that

f(x)=(x
~

Vexp( —ih p) k, l, m &

= V(x)( x+ h
~

k, l, m &

must be square integrable and

[ Ud(8) f](x)=Iexp[ —,i8(x p+p. x)]f](x), 0&m,

(3.3)

(3.4)

which is the real dilated function, must have an analytic
continuation for 0~(HC„ i.e., f is a dilatation analytic
vector. Now the shift over h leads to complications with
branch points. This problem can be circumvented by ap-
plying the exterior scaling variant of the dilatation
method, but even so

( x+h
~

k, l, m &=(2m. )
~ 4~ki j~(k t

x+h
~

)Yl (0 -„),

=FI (k)+4) (k),
where we have split F~ (k) in a Born pa«F (i.e., a pa«
not containing the resolvent of H) and a second pa«C'.
[Note that the exp(+ih p) cancel if

~
F~ (k)

~

is
summed over l and m.] In order to get some idea about
the behavior of 4 let us suppose that

~
g& is the "atomic"

ground state
~ Pp& with associated eigenvalue co&0. We

suppose
~ Po& to be an s state. Then, in the absence of the

symmetry-breaking term —p a in H,

[ ,'(k +—a ) mco+—ie H] —'
~

Pp&

changes into (we now set @=0)
(z —H) '

~
Pp& = [(z —Hg ) 'Hgp+P]Gq(z) Pp&, (3.7)

so that

4= (k, l, m
~

exp(ih. p) V[(z Hg) 'H—go+1] Pp&

X(yo
~

( —H)

z =z (k)= ,'(k +a—) mco+—ie.
(3.8)

Q removes the ground state from H" and consequently
the corresponding resonance will be absent in H~. We
therefore expect the first factor in 4 to vary smoothly for
z close to this resonance. The second factor can be dilated
straightforwardly

(3.9)

where g is the complex dilatation parameter. In case there
is another resonance close to the one associated with ep
(this happens if the field frequency is such that the differ-
ence of ep and another atomic eigenvalue is nearly a mul-
tiple of co, resonant multiphoton ionization), we simply
enlarge P so that Q also projects away this second eigen-
value. Then P(z H) 'P can ag—ain be dilated. Suppose
now that eo(a) is the eigenvalue of H (g), corresponding to
ep for a=0 and we let

P(g, a)=
~
Po(g, a) &(Po(g, a)

be the corresponding eigenprojector. [We suppose that the
dilatation angle /=21m( is such that ep(a) is uncovered
indeed. ] We assume now that no other resonances are
near eo(a). Then

g( ) = [ —o( )] '(yo(g)
~
yo(g, ) &

&& & PoC a)
l
4o(0) &+gb (z» (3.10)

ponential) decay. In the long-range case the situation be-
comes even more complicated, since then we encounter
spherical Coulomb waves. The way out of this problem is
to apply the Feshbach formula. Thus we let
P =

~ Pp & (Pp ~

. Then ( Q = 1 P, H—Ig =PHQ, etc.)

(z H) —'= (z Hg—) 'Q+[(z —Hg) 'Hgp+P]

&& G (z)[P +H g(z —Hg ) '],
Gp(z) =P(z H) 'P—

(3.6)
= [z Hp ——Hpg (z Hg )—'Hgp ] 'P,

which expression is valid for z outside the spectra of H
and H~. Now

(3 5) where [Q(g, a) =1—P(g, a)]

where jI is a spherical Bessel function and 0 -, thex+ h'
solid angle associated with x+ h, is an unpleasant quanti-
ty to deal with. The reason is that ji contains sines and
cosines. Upon complex dilatation one of the exponentials
in the latter will be decaying but the other one blows up,
so that we are able to proceed only if Vhas sufficient (ex-

gb (z) = (Po(g)
~
Q(g, a)[z —H(g)] '

~
Pp(g) & (3.11)

is a background contribution as compared to the first
term in g (z) which peaks in z =Reap( a ). The peaking
will be the more pronounced the smaller I =Imago(a).
Indeed I will be small for a close to zero, in which case
the overlap factor
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4&=[z(k)—ep(a)] 'ri(k)+@ g(k), (3.12)

where the background part 4 g originates from the contri-
bution containing gbg(z). We can make the detector band-

&yp(g) ~yo(g, a)&&yoC a) lA(&)&

will be close to one. As to what happens for very large a,
not much is known. Present day experiments concerning
11 and more photoionization of Xe still show a set of
well-resolved "X-photon" peaks; N ) 11. We finally note
that due to the dilatation analyticity the e~O limit in g(z)
exists trivially, except for the thresholds —,

' a +m cp,

m Hg. In the remaining term in (3.8) we also expect no
difficulties with this limit provided V(r) has sufficient
decay (Hz~

~ Pp& = p a
~

Po& has exponential decay, along
with Pp). In summary we have

+ [z (k) —ep( a )] 'g( (k) (3.13)

Since F&m(k)~ @im(k), and rlIm(k) are supposed to vary
slowly across a peak, it makes sense to evaluate them at
the value k of k for which ~z~(k) —ep(a)

~

' peaks.
Then

width 6' so large that it covers the peaks completely.
Thus we let m be sufficiently large positive, fixed. The
corresponding w =w~ (see 2.19) is then obtained by in-
tegrating ~F~ (k)

~

over b, ' and summing over the ap-
propriate l

w = f dkg ~F~ (k)~
1

w = g ~F(~(k~)+%I (k ) b'+ Q I [FI (k )+4) (k )]*f dk[z (k) —ep(a)] 'q( (k )+c.c. I

I 1

+ y f, dk z (k) —ep(a) '~ ri/ (k ) ~'. (3.14)

We now make a further approximation by extending the k integration over the full k range, 0 & k & oo. The integrals are
easily evaluated with the result

+ g I [Ft (k )+@I (k )]*(vari/v 2)[ep(a)+mcp ——,'a ] ' rl(~(k~)+c. c. I
I

+ Q I '(vr/v 2)
~

ep(a)+mcp —,'a
~

—'Re[up(a)+mcp —,'a ]'—
~ g~ (k )

~

I
(3.15)

Note that w refers to the peak in the ejected electron spectrum located at Reap(a)+mcus outside the field (see the re-
mark made in Sec. II). For small I the last term in (3.15) is the leading one. Here the factor Re[go(a)+mcp ——,a ]'~ is
interesting since it decreases rapidly in magnitude once Re[op(a)+mcp ——,a ] comes close to zero. Experimentally this
situation is realized by increasing the laser intensity (i.e., —,a ). Indeed it is found that the 11 photon peak in the Xe pho-
toionization experiment decreases rapidly under these circumstances. One might argue that Reap(a) is also dependent
on the field intensity through a. In fact the eventual shift in ep(a) is precisely the dynamic Stark shift of the ground-
state energy. For sufficiently small co this shift is much smaller than —,a, as can be seen by considering its perturbation
expansion in the electric dipole representation where the field dependence of the Hamiltonian is through x.E. The
strong localization of the ground state leads to a small shift only (in fact no convergent perturbation expansion for the
perturbed eigenvalue exists in this representation, but still we get some idea about what to expect).

B. Long-range potentials

In the long-range case we have to start from (2.16) instead of (3.1) with the result

FI (k)= &k, l, m
~

(Q+)*exp(ih. p)
~
P&

+ & k, l, m
~

(Q+)*exp(ih p)[V(r) —V(
~

x+h
~
)][ ,

' (k +a2) mcp+i—e H]— — (3.16)

where, in the case of a pure Coulomb potential (hydro-
gen), 0+

~

klm & is an outgoing spherical Coulomb wave.
Apart from this difference the same procedure can be fol-
lowed as in the short-range situation, and with corre-
sponding results

In a numerical evaluation it is important to know the
values of the quantities and

+f(k)=&k, l, m
~

exp(ih p)V~ Pp&

= & k, l, m
~
exp(i h p )(H"——,p )

~ Pp &

=(ep ——,'k )&k, l, m
~

exp(ih. p)
~ Pp& (3.17)
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+O(a'), (3.19)

but a convergent expansion in powers of a does not seem
to be possible. Still one might try to obtain an Agmon-
type estimate for K2(k) (see Reed and Simon, Chap. 9),
but this involves at least a great deal of work. It would of
course be pleasant if one could show Kz(k) to be much

I

K2(k) = &k 1 m
I
exp('h' p) V(z —Hg) 'Hg+

l 4o&

(3.18)

Since Hgt
~
4o) = —p'a

~
0o) we have

Kz(k) = —
& k, l, m V[ —,k —m oc+i e

smaller than K, (k) for —,'k =eo+mco, i.e., in the m-

photon peak. The alternative is a direct numerical evalua-
tion of the continuum eigenstate Il, +exp(i h p)

~

k, l, m ) of
H. There is, however, one exception, namely the case
where V is a separable potential (finite-dimensional pro-
jector), including the limiting case of a zero-range poten-
tial. A numerical evaluation based on the latter has al-
ready been performed. In the next section we turn to
such potentials in some detail.

We further note that it is possible to give an expression
for F~ (k) without a Born term, but at the expense of in-
troducing the atomic wave operator 0+. Starting from
(3.16) it follows after a couple of formal manipulations
and the introduction of the Feshbach decomposition for
the resolvent (I' and Q as before) that

Ft «) = —&No I
« —H) '

I ko&

x [ &k, l, m (0+)*exp(ih p)p a
~
Po)

+&k, l, m (0")*e p(ih p) ~P )&Po p a( —Hg) 'p'a Po)

+ &k, l, m (Il+)*exp(ih'p)[V(r) V( x —"—
l
)](z —Hg) p'a

I 0o) I (3.20)

valid for both short- and long-range V(r). In this connec-
tion we note that

exp( —i h p )0+
~

k, l, m )

is simply an atomic continuum state with energy —,
' k, but

with the shifted potential V(
~

x —h ).
We finally comment upon the choice

~
g) = Po) made

in this section. This choice corresponds to a sudden
switching on of the vector potential at t =0, whereas it in-
creases gradually (on a time scale associated with the
period of the field) in actual experimental situations. In
order to be sure that the electron spectrum measured in
such an experiment results from photoionization at some
definite intensity, ionization in the transient region during
which the field is switched on must be negligible. So, in
general,

~
lit) will be a mixture of bound states of the

atom. If, however, none of the higher bound states is
resonant with the ground state, their contribution will be
very small due to energy mismatch. Even if the field in-
tensity passes through a value for which a higher state can
be resonantly excited from the ground state (this depends
on the field intensity because the levels are ac-Stark shift-
ed), it will not be populated appreciably provided the time
during which the resonance condition is fulfilled is short
enough. In most instances this is automatically the case
if the switching on is fast enough to give negligible ioniza-
tion.

IV. SEPARABLE POTENTIALS

and dilatation analytic. Then H"= —,
'

p
' —A, p ) & p ~

has,
for sufficiently large A, , a bound state Po) given by (un-
normalized)

The formalism in the preceding section still applies, ex-
cept that, due to the nonlocal nature of V, we now have

H= —,'(p —a) —col3+exp(ia x)Vexp( —ia x)

= —,'(p —a) —col3+ V(a) . (4.4)

This follows by starting from the representation, where
the field term is —x E(t) [E(t)= d, A(t) is the e—lectric
field vector], the so-called x form of the formalism.
Since E(t) is a physically observable quantity we must
have V as given by (4.1). Referring to the representation
introduced in Sec. I (the so-called p form), we then obtain
(4.4) for the Floquet Hamiltonian. In the limiting case of
a zero-range potential, V becomes local once more so that
the exp(+i a x) cancel.

Since V and V( a ) are rank-one operators, the wave
operators exist in the standard sense (i.e., short-range
case), so that taking again

~
g) =

~
Po),

where eo & 0, the corresponding eigenvalue, is given by the
implicit equation

(4.3)

Instead of a multiplicative potential V(r), we now con-
sider a potential of the type

e, (lc) = & k, l, m
~

exp(i h p) V(a)(z —H) —'
l yo&,

(4 5)
z = ,'(k +a ) m—co+ie . —

where ~P) is spherically symmetric [&x ~P)=P(
~

x
~
)] V( a) in (4.4) is still a rank-one operator,
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V(a}= —Ae, xp{ia x)
I P&&P I

exp( —ia'x)

= —~
I
y(-. ) &&y(-. ) I,

C, (k)= —X&k, l, m fexp(ih p)lk(a}&

(z H—) = {z—Ho)

(z —H. } 'I@(a)&&@(a)I(z —H, )-'
&-'+ &P(a) I

(z —H, )-'
I
y(a) &

it follows that

—~ fq(-a}&&y(-.}f(.-H}-'
(4.8)

X &P(a)
f
(z —H)

I @o&

Since for rank-one V we have

(4.7)

Con.sequently

—
I
y(-. ) &&y(-. )

I
(.—H. )-'

(4.9)~-'+ &y{» I
(.—H. )-'

I
@(-a)&

&k, I, m Iexp(ih p) fy(a)&&y(a} f{z—Ho) 'l0'o&
@i (k)=

k-'+&/( ) I( —Ho) "IP( )&
(4.10)

Suppose now that
I y(a) & is a dilatation analytic vector [in view of the exp(ia x) this implies that 0(x) =

& x
I 0& must

decay sufficiently fast] Then H(g) js djlatatjon analytjc and jts (complex) eigenvalues e(a) follow from the equation

&y(,g}
I [ { ) —Ho(0}] '

l 0( (4.11)

of wl ich (4.3) is a special case. Taking Imp & 0 s«ficientjy»rge, we expec««jnd one ejge~»i« ~(a) tha«ojncjdes
with eo for vanishing a and is analytic in a. Thus the denominator in (4.10) vamshes «r z =e'(a) and +i (k) has a «so-
nance peak for z=Ree(a). For small Ime(a) we have for z close to the resonance value

[g-i+ &y(a)
I
(, Ho)-'

I
y(a) &]-'= &y(a, g)

I I
—[e(a)—Ho(g)] —[ —Ho(g)] 'I

I
P(a 0) &

=[z e(a)—]-'&y(a, g) I
[e(a)—Ho(g)] '

I
y(a, g) & (4.12)

, &k, l, f
p(ih. p) fP( )&&@( ) I( —Ho)

4g (k) = fz —e(a)]
&y(-.,g) I [ (-.) —H.(g)]-'

I
y(-. ,g) &

, &k, i,
I

exp(ih. p) I P(a) &&/{a,g) I [e(a)—Ho(g)] '
I Po(g) &= [z —e(a)]

&y(a, g) I
[e'(a) —Ho(g)] '

I
y(a, g) &

=[ —e( )] '&k, I,
I

p('h p) Iy( )&
&0o(»k} I 0o(a 0) &

{4.13)

where
I po( a, g) & = [e(a)—Ho(g)] '

I
p(a), g) & is the (unnormalized) eigenvector of H(g), associated with e( a).

We now turn to the case of the zero-range potential. Although this potential cannot be presented in the form (4.1) in a
strict sense, it is possible to give it a rigorous meaning in terms of the resolvent. Here we encounter a slight generaliza-
tion, due to the presence of the field-dependent terms. Thus we let Ps(p)= &p I Ps& =(2m') ps(p), where ps(p)~1 as
5«. Examples are ps(p)=exp( —5p ) and ps(p)='(1+5@ ) '. Then, for absolutely integrable f

&y,(-.) fy&=(2 )-'"f dp&y. f-p( —-'-. ) Iy&

=(2~) '~' f dpps(io)f(p+a)~(2~) '~ f dp f(p) as 5&0

=&x If& I-„-,—= «If& (4.14)

Thus, «rm»iy, fps&~ I
0&. (z —Ho) fps(a)& has a limit in A as 5s0. Indeed, using the resolvent equation

(z —Ho) '=(z Hi) '+(z —Ho) —'p. a(z Hi ) ', where Hi ,' (p—+a ) —col3,——we hav—e (Imz&0)

(z —Ho) '
I
0&=(z Hi) '

I
0&+(z H—i) 'pa(z Hi) '

I
0—&+(z —Ho) '[—p a(z Hi} ')

I
0& . —

Now(z —Hi} 'I 0&=fz ——.'9'+~')1 '10&&~l (I 0& is rotation»invariant}»d with ~ =
I
~&&m

I

{z Hi) 'p a(z Hi) 'I 0&—= g [—z —,'(p +a )+jato] '[z ———,'(p +a )] 'P~p a
I
0&, (4.16)

which is also square integrable; the same being true for [p.a(z Hi) ']
I
0&. Consequently —(z Ho) '

I
0&HA and—,
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in fact, is a dilatation analytic vector, as can also be seen from (4.15). Keeping co fixed and letting 5&0, we find that A,

in (4.3) blows up. Since A,
' occurs in the denominator

Ds=A, '+&/ s(a)
~

(z —Ho) '
~
Ps(a) },

we have to check that D~ has a limit B as 6&0. Writing

Ds &P——s(a)
~

(z —Ho) ' —(z Hl—)
'

~
Ps(a) }

+ & ps ~
exp( i—a x)(z Hl —) 'exp(i a x ) —(eo ——,

' pz) '
~ ps }

—+&0 i(z —Ho) '-(z Hl)—'
i
0}+&0i(z ——,a ——,p )

' —(eo——,p ) 'i 0} as 5~0

=D, +D, =D(z),

where we substituted (4.3) for A, ', we have to show that Dl and D2 are finite. Defining —,'ko= —eo and

—,
' k = —z+ —,

' a, we have for Imz & 0,

D =(2 ) f dpI[ —,'(p +k )] ' —.[—,'(p +k )] 'I =(2 ) '(k —k ),
which is finite. Turning to Dl we note that

(z H) '=— i d—t exp[i(z H)t], —Imz &0, j=0, 1 .
0

Since Eqs. (2.5) and (2.6) give

cxp( —iHot)=exp(lcoilt)exp[ I 2 (p —+a )t]cxpIl(Q/co)[pIs1ncot +pl(I coscot—)]I

(4.19)

(4.20)

(4.21)

»d & 0
(
exp(itoilt) = & 0 [, wc have, in«grating ov« thc angle of p,

D1= —E 0 dt cxp l z —
z p +Q t cxp I,

—p1sln hat +@~ 1 —cos Mt —I 0
0 N

= —i(2m) f dp f dt exp[ ——,'i(p +k )]t exp i Iplsin(rut)+pl[—1 cos(cut)]—I —1
0 6)

i(2m. ) —f dpp f dtexp[ —,'i(p +—k )t]. 2' . 6)t
S1Il

QP

+ Qo
2

Qo

i (2It} f— dp p f dt exp( —gt) a sin—oo 0 2
cot

S1Il 0!S1Il
2

f ds exp( —2gs/co)[(a sins} 'sin(a sins) —1], (4.22)

where /=i ,' (p +k ) an—d a=2ap/co. With f (s) =(a sins) 'sin(a sins) —1 we find after a few partial integrations that

P r

f m' 2gs boa p 2m/
ds exp — f(s) = exp — —1 +

0 3g N 2(

4

f ds exp — (8,f)(s), (4.23)

D, =i (2 ) Ir—3a f dp p /g i ( m2) —— f dp p 1 —exp

~ f dsexp (&,'f)(s) . (4.24)

Tllc llltcgl'al ovcl' s 111 (4.24) CR11 111 absollltc valllc bc bounded by p tllllcs a posltlvc 1111IIlbcl', depending 011 z but llot oil p
and which is finite for finite z. It thus follows that (4.24) is finite and„moreover, can be continued analytically to z in

the negative half-plane in an infinite number of ways, the points k =neo, n H Z being the branch points. We can cast
D I in a different form by noting that for Ref & 0
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OC cotf dt exp( —gt) sin a sin
0 2

COt
cz sin

(2/co) f ds exp( —2gs/~) g ( —I)"(asins) "/(2n+I)!
n=1

so that

' g ( —I )"(2n + 1) '(ac@/2)~"((2+co2) ' ($2+g 2~2) —',
n=1

(4.25)

ao 2 2n +~ 2n+2
D = —(2 ') ' g f d [( '+k')' —4''] ' [(p'+k')' —4n' ']

, 2n+ I —~ 2+k 2
(4.26)

J

where the possibility of analytic continuation is also evident. Equations (4.26) and (4.19) are a convenient starting point
for the calculation of c(a). [The analytic properties of e(a) are discussed in Ref. 28.) By summarizing our results we
have for the case of zero-range potential

[z —H(g)] '=[z —Hp(g)] ' —D '(z)[z —Hp(g)] '
~

0)(0
i
[z —Hp(g)]

(k)=D '(z)(k, l, m
~

exp(ih. p)
~
0)(0

~

(z —Hp) '
~
0p~ .

We note further that in the approximate expression (4.13) we now have (ji is a spherical Bessel function)

(k, l, m ~exp(ih p) ~ps(a))~(k, l, m ~exp(ih'p)
I

o& a &&o

=(k, l, m
~
h) =(2m)'~ 4~k.( i)j't(kh—)I't (A-„) .

(4.27)

(4.28)

(4.29)

It follows from (4.27) that H(g) =H (g, a) is dilatation an-
alytic. In addition, H(g, a) and H(g, —a) are unitarily
equivalent and H(iver, a)=H(0, —a) is self-adjoint. In
concluding the formal part of this section we finally note
that for a general

~
P) EA we do not need dilatation

analyticity, since it is in principle possible to calculate
(k) from (4.10), for instance by means of (4.20) and

(4.21).

V. NUMERICAL RESULTS
FOR THE ZERO-RANGE POTENTIAL

In order to obtain numerical data on the area of the
peaks in the photoelectron energy spectra we use the peak-
ing (third) term from (3.15) together with (3.12), (4.13),
and (4.29). This leads to

to = Q I '
~

(2m) ~ 4+k ( i)'jt(k h)I—'t (0-)
~

I 2 m m

&&Re[op(a)+men ——,
' a ]'~ (5.1)

The ionization rates Rm are proportional to this, but nor-
malized in a different way so that g R =2I (g w~ = 1

since in the limit taboo every atom eventually becomes
ionized, . Noting that k~ cancels

~
Ep( a ) +m co

—~a ~, and dropping all m-independent factors, we

get the proportionality (h falls along the x2 axis)

R o: g [jt(k h)FI (0,7r/2)] Re[&p(a)+mco —&a ]'
1

(5.2)

This equation can be summed easily since the j~(k h) de-
crease rapidly once I becomes large with respect to k h.
k~ is calculated from ep(a) given by (4.11), which in the
zero-range limit (4.18) leads to

D(z) =0 . (5.3)

This implicit equation is solve:d by means of the
secant-Newton method, where the function D is calculat-
ed according to (4.19) and (4.26). The integration in the
latter is performed by summing all the relevant pole con-
tributions. The way of analytic continuation is chosen
such that for a —+0 the energy converges to e0, i.e.,
only those poles are included which are in the correct half
plane in the a = 0 case, and these poles are retained dur-
ing the entire calculation, no matter where they are shift-
ed to.

The result for the case with co=0.24 can be seen in Fig.
4, where the various R are plotted as a function of field
strength a. The minimum number of photons needed to
overcome the ionization potential (ep ———1) at a=O is
five. For small a we note that the Rm have an intensity
dependence that can be described by a simple power law,
the exponent being the one expected from perturbation
theory. The real part of ep(a) is plotted in Fig. 5, where it
can be seen that the shift in ionization potential is propor-
tional to a at low a. This increase of ionization poten-
tial eventually leads to the collapse of Rz, and, later on,
R6, as can be seen from the dips in the corresponding
curves. The values of a at which the ionization potential
is exactly equal to m times the photon energy (as can be
seen from Fig. 5) are marked along the horizontal axis in
Fig. 4. The behavior on the low-field side of these points
is dominated by the factor in (5.2) containing the real
part, and therefore drops very rapidly as a approaches the
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FIG. 4. Rates for absorption of various number of photons
by the zero-range model atom, as a function of the field strength
a. The minimum number of photons necessary to ionize is 5 in
this case. Note the minimum in the rates at the points (marked
by arrows} where the argument of the square root in (5.2) ac-
quires a negative real part.

critical value. After going through a minimum, however,
this factor increases again as the imaginary part I of
eo( a ) (and therefore the real part of the square root) grows
larger. Since the order of the intensity dependence of I is
much larger than that of the real part, the decrease of 8
accompanying the growing negativeness of the square-
root argument is more than offset. Note that at the high-
field side of the disappearance points the F~ (k) no longer
has a peak at real k. The integration leading to (3.15) is
in this case entirely over a tail of the lifetime broadened
profile of the resonance, so that the considerations leading
to the choice of the third term of (3.15) as the physically
interesting one, in fact, become invalid. Although the in-
crease of the R seems rather dramatic on the logarith-
mic scale of Fig. 4, the total contribution of these "sub-
threshold" electrons is always very small. The behavior
of R7 becomes understandable from Fig. 5 also; after a

1.4

I—
Z
LLI

cj
CL

N

l .2
C3

decrease caused by the approach of the 7-photon thresh-
old the ac-Stark shift of the ground state (which lowers
the energy if the first photon does not bring us above any
excited states) reverses sign, and eventually grows larger
than the continuum shift —,'a, thereby increasing R7
again. For a Coulomb potential the cross section has a
finite value immediately above the threshold, so in real
atoms the collapse of the R~ might be more abrupt.

As a final remark we draw attention to the way in
which the total ionization rate 2I depends on a. For low
a the ionization process is dominated by R5, as expected
from perturbation theory, and the order of nonlinearity of
the ionization process is therefore equal to five. As the
various peaks disappear, however, the higher R start to
dominate the electron spectrum, but the order of non-
linearity for their total stays more or less the same. This
is not at all what is expected from perturbation theory,
and the fact that the order of nonli. nearity for the pho-
toionization of Xe by the yttrium-aluminum-garnet —laser
turns out to be 11 even in an intensity region where 11-
photon ionization is completely negligible compared to
the total ionization rate, suggests that a similar result
holds for long-range potentials.

VI. DISCUSSION

In the preceding sections we obtained a reasonably sim-
ple description of the energy spectrum of the ejected elec-
tron in a multiphoton ionization experiment with a circu-
larly polarized field. The disappearance of the first elec-
tron peak with increased intensity is accounted for and it
is seen, for instance from (3.12), that the broadening of
the electron peaks is basically due to the dynamic Stark
broadening of the ground state [through e( a )]. (In experi-
ments employing very short laser pulses an additional
source of broadening occurs due to the finite duration of
the pulse, because then the intensity at which the electron
leaves the laser focus might be different from the one at
which it was created, so ponderomotive force and ioniza-
tion potential shift no longer cancel. ) In case the continu-
um is reached through an intermediate resonant or nearly
resonant state, our formalism can readily be adapted by
increasing the projector I' in Sec. III. Under these cir-
cumstances the peak width will depend on the ac-Stark
width of all states involved. The general picture will not
change in the case of an n-electron atom. We did not
consider that case here since there still exists a gap in the
underlying mathematics (see Ref. 8, discussion section) so
that we do not know whether or not the corresponding
Floquet Hamiltonian is dilatation analytic. In the n-
electron case the term —col3 in H"' is replaced by —~J3,
J being the total angular momentum vector (including

spin). If we put a cutoff on this operator, i.e.,
+ 00 M—coJ3 ——— g m coI' ~— g m coP

0.0 0.2 0.4 O. B O. S
(INTENSI TVj g

1.0

FIG. 5. Real part of the ionization potential of zero-range
model atom as a function of the field strength a. The dashed
lines indicate the thresholds for 5- and 6-photon ionization.

M finite, the corresponding Floquet Hamiltonian is dila-
tation analytic, whereas the physical consequences of the
cutoff are minimal for M sufficiently large. This would
allow us to discuss the consequences of the fact that the
ionization threshold becomes complex in an n-electron
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( n & 2) atom (since the ionic ground state is ac-Stark
broadened). In connection with the above cutoff it would
be interesting if we could show that the amplitude 4 (the
generalization of 4 in Sec. III) can be written as the sum
of the amplitude, containing the resolvent of the cutoff
Hamiltonian, and a second term which can be chosen to
be arbitrarily small. Since this can be done before the di-
latation it can probably be justified on the basis of strong
resolvent convergence. It should be noted that an ap-
propriate description of an n-electron, n & 2, atom
through a real or complex effective potential, that van-
ishes at large distances, never gives rise to a complex ioni-
zation threshold (Weyl's theorem on the invariance of the
essential spectrum of an operator under relatively com-
pact perturbations).

In actual experiments the field polarization is usually
linear. It is possible to treat this case as well, for instance
by Howland's' approach. The trade-off is that we have
to work with an enlarged Hilbert space leading to a more
involved bookkeeping. The final formulas will be of the
type encountered in Sec. III, the basic difference being a

change in the "selection rules. ". An essentially equivalent
description can also be obtained by means of the second
quantized formalism of Grossmann and Tip. This for-
malism is in fact valid for any many-electron atom, due to
the semiboundedness of the Hamiltonian. The results of
Sec. IV are specific for the circularly polarized case, since
the rank of the potential becomes infinite dimensional in
the enlarged space mentioned above.
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