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lengthened to that 3% limit. It is clear that the pattern is
strongly skewed (the curves drawn on Fig. 1 are explained
in Sec. IV).

The skewness properties of configurations and transi-
tion arrays have already been considered by Moszkowski
and Cowan. Moszkowski computed the skewness of a
transition array in a very simple case. Cowan calculated
explicitly the skewness of the distribution of levels in
many configurations (Ref. 5, Table 21-1) and also of
several transition arrays.

The aim of this paper is to obtain a general method for
evaluating ab initio the asymmetry properties of transition
arrays, in highly ionized spectra, where the lowest config-
urations are well separated. For that purpose, we at-
tempted the formal evaluation of the third moment of the
weighted wave-number distribution of the l +'-l l' tran-
sition array (the most interesting in highly ionized atoms).
In the following we show that this rather formidable task
is not worth undertaking (Sec. II). For the sake of simpli-
city, we propose a numerical method in a hydrogenic ap-
proximation, which is suitable for the external subshells of
highly ionized atoms. In this way, we obtain the asym-
metry properties of the main nd + ' nd n '-/3 and
nd +' nd n'f typ-es of arrays (Sec. III). Once a skewed
curve shape is assumed, the axis and full width at half
maximum (FWHM) of the array fit better the explicitly
calculated spectrum (Sec. IV) and the experiment (Sec. V).

II. EVALUATION OF THE THIRD MOMENT
OF THE WAVE-NUMBER DISTRIBUTION

IN THE nl~+'-nl~n'l' ARRAY

A. Principles

As in Ref. 1, denoted I in the following, we use the def-
inition

p =g [(b
I

H b) —(a
I

H
1

a)]"w b/~
a, b

for the nth moment of the weighted distribution of the
line wave numbers. In this equation, H is the sum of the
electrostatic and spin-orbit Hamilionians, the weight m, b

of a transition is the z part of its electric dipole strength
[w,b

——
/
(a

f

Z
f

b)
/ ], W=g, bw, b, and the sums run

over all the a and b states of the lower and higher config-
urations A =l +' and 8=l l', respectively.

The formulas for n =1 and 2 have already been deter-
mined' in terins of the Slater and spin-orbit radial in-
tegrals and of their squares and cross products. Those for
n =2 had already been studied by Moszkowski in the as-
sumption that a radial integral with a given name has the
same numerical value in both configurations. This as-
sumption leads to simpler results and is consistent with
the current use of the central-field ab initio method for
highly ioniied atoms. We have used it throughout the
present work for the evaluation of p3.

In the same way as in I, we are first interested in deal-
ing with the intermediate-coupling nature of the a and b
states and in finding the formal dependence of p3 on X.
For that purpose, the second-quantization method, intro-
duced by Judd in the field of atomic spectroscopy, is

q=g(a'
~ Q ~

a')
a'

(3)

[see Eq. (9) in I], where Q is a sum over magnetic quan-
tum numbers m~ and m, of a product of many annihila-
tion and creation operators and of matrix elements of z
and gi2 ——e /ri2, and where a' is a state of /++' in any
extreme coupling of convenience.

B. X dependence

Rather than computing directly the matrix element q of
the very cumbersome operator Q of Eq. (3), it looks more
convenient to find first its dependence on X. For exam-
ple, in the case of interest, Q contains at most four annihi-
lation and four creation operators of l electrons. More-
over, the second-quantization operator for the calculation
of the 8' denominator in Eq. (1) contains one creation-
annihilation pair of electrons. In this way, it is found that
the coefficients of the triple products of the F"(/, /') in-
tegrals in p3 depend 'on X through polynomials of degree
3.

There occur altogether four types of radial Slater and
spin-orbit integrals in the level energies, namely F (/, /),
Fk(/, /') or 6 (/, /'), g&, gi, irrespective of the configuration
in which they are considered. This leads to many types of
triple products. Actually, we are interested in the centered
moment

P3 —P3 3P2Pi+ 2(Pi) =P3—3P3Pi —(Pi) (4)

rather than in P3 itself, P2 being the centered second-order
moment, i.e., the variance. This fact and the other as-
sumptions and properties result in several simplifications.

(i) Each triple product which contains only one spin-
orbit integral has a null coefficient in p3. This can be ex-
plained, in the same way as the absence of cross products
between Slater and spin-orbit integrals in the variance
(Sec. III A in I), by the fact that in this case the operator
of type Q [Eq. (3)] has tensorial rank 1 in the 'spin sub-
space.

(ii) Cancellations occur for the triple products which
contain only integrals F"(/, /) and/or gt, i.e., those in-
tegrals which appear in both configurations. As a conse-
quence, the maximum power of X in the polynomial
dependence of such products is lower in the third-order
moment of the distribution of transition energies than in
that of a state-energy distribution. The same phenorne-
non is well known in the results for the variance p2, where
the maximum power of X for the F"(/, /)F" (/, /) products
reduces from 4 for the states (Table II in I) to 2 for the
transitions (see the top right of p. 2428 in I).

most adequate.
Considering, as an example, the quantity

q=X(a IZ Ib)(/ IH I»(b IH
I
b)(b H I/)(b IZ Ia)

a, b

(2)

occurring in P3 [Eq. (1)], and selecting in the (/i H
~

b)
matrix elements the part in F (/, /'), we can deal easily
with the intermediate coupling and arrive at
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F"(I, l)F" (I, I)

F"(I, I' )F (I,I')
or F (l, l')G (l, l')
or G (I, I')G (l, l')

F'(l, l)
or

Gk(l, I') k«k

(g()', gg(, or (gp)'

TABLE I. Highest powers in N of the different triple prod-
ucts in p3, denoted XY. Products which do not appear in this
table, or which appear, but without a value given, have a null
contribution.

(iii) Some simple factors are evident. First, any triple
product containing a Slater integral disappears if N =0,
i.e., in the case of one-electron configurations. Second, if
it contains only Slater integrals, it is zero for N =41 + 1, a
case with only one emission line in Russell-Saunders cou-
pling. Therefore the factor N multiplies the former type
of products and 41 N—+ l multiplies the latter type.

(iv) Symmetry properties with respect to the half sub-
shell can be exploited for the triple products of F (l, l) in-
tegrals and for the triple products of g( and/or g) in-
tegrals. Indeed, replacing X by 4l —%+1 changes the
signs of the coefficients of the former products and leaves
invariant those of the latter.

In conclusion, we give in Table I the maximum powers
of N for the polynomial dependences of triple products

TABLE II. Formulas for the AHA (S&), BCC (S2—S5), and CCC (S6—S9) types of triple-product contributions to p3.

S, : N(41 —N + 1)(41—2N+ 1)

(21 + 1)

k~o k ~o k ~0 (4l —1 )41 (41 + 1 )

kk' k" I I k
—2(21+1) (41+1) I I I +(21+1) (41+1) . I k' I-

k" I I

I I k 6(k, k')+ 3(21+1)(41+1)'I I k, —6(21+1)(41+1) ' +2I I k'

I k I I O' I I k" I

p p p p p p p p p
F (1,1)F"(1,1)F (I, I)

S2.

S3.

S4.

I I k I I k
I(1+1)(21+1)(21'+1)g I' I' 1

1+(21+1) I I 14(41 + 1) k+0

I k I I ' k I '

X 000 0 0 0 Fk(l. l')(gl gl')—
2

N 111'
I(1+1)(21+1)(21'+1)0 0 0 G'(l, l')(g()

6(41 + 1)

111'
(21+1)l'(I'+1)(21'+1) 0 0 0 G'(l, l')(gp)'.

6(41 + 1)
2

1 I'
S,: (21+1)(21'+1)[l(1+1)+I'(I'+1)—2] () () ()

6'(l, l')(((p .
6(41 + 1)

111
S ~

(
3 )'n[I(1+1)]'n(21+ I)'r~ '

(g )' .

I1 1 1 JI' 1 l'
S7. 4 ( 2

)' l(1+1)(21+1)[l'(I'+1)(21'+1)]
I I I I 1 I j(k) PI .

1 1 1 I'1
S,: ——( 2

)' I'(I'+1)(21'+1)[l(1+1)(21+1)]' I' I' I'
I

I 1 I tk(kl')

1 1 1——'( —', )' [I'(I'+1)]' (21'+1)' '
I I I I'(gp)
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occurring in p3. The triple products not entered in Table
I have null coefficients. For the sake of brevity, in the
sequel we denote g~ and g~ by C, whereas F"(l,l) and
F (l, l') or G (l, l') are denoted A and 8, respectively.

C. Formal calculations

Formal calculations of Eq. (1) for n & 1 by Racah's
methods lead to formulas without sums involving coeffi-
cients of fractional parentage only when X =0, 1, 41, and
41+1. From the information given in Sec. II 8 above, it
can be concluded that, in the present problem, all contri-
butions entered in Table I can be computed in this way ex-
cept those with a highest power in X larger than 3. We
give in Table II the results for the cases AHA, BCC, and
CCC. Those for 888, which are very lengthy, have been
computed only in two cases, namely, for the triple prod-
ucts of F"(l,l') integrals and for those of G (1,1') in-
tegrals; they are available upon request.

In Table II the following points are noteworthy: the
6"(l,l') integrals with k&1 do not contribute to S3 —Sg,
in S2 only the difference between the spin-orbit constants
occurs; and the sum S6+S7+S8+S9 changes sign upon
l+-+l' interchange.

III. NUMERICAL CALCULATION:
THE HYDROGENIC ASSUMPTION

Because we have not obtained a complete closed formu-
la for p3, we propose now an alternative procedure for
evaluating it, in a hydrogenic approximation. In this as-
sumption we consider that the ion is sufficiently ionized
so that the ratios between Slater energy integrals are the
same as for hydrogenic radial functions. We recall that
for a given nuclear charge Z*, all Slater integrals are pro-
portional to Z*, so that their ratios are independent of
Z . Then, in a given series in Ã of nl + '-nl n 'l' arrays,
the total contribution p3 (Sl hyd) of the upper two lines of
Table I is the product of (Z*) by a function of X only.
Now, because it contains the factor X(41—%+1) [see
Sec. II 8, (iii)], this function can be determined completely
by means of its explicit numerical calculation (diagonali-
zation of the electrostatic Hami, tonian with hydrogenic
integral ratios) for four values of X (%&0,41 + 1).

We have done this for four series of current interest in
atomic ions, 3d +'-3d 4p, 3d +' 3d 4f, 4d +'-4d 5p,-

and 4d ~+ '-4d ~4f. The results for the quantity p 3

(Sl hyd) are listed in Table III, together with
o(SIhyd):—[pz(S1 hyd)]'i, for Z = 1.

Thus, in all cases of practical interest we propose to
evaluate p3 as the sum of two parts.

(i) An approximate value of the Slater part p3(S1) (the
upper two lines of Table I) in which we propose to avoid
the necessity of estimating Z' by the following scaling:

p3(S1)=@3(Sl hyd)[cr(S1 )/cr(S1 hyd) ]
We rewrite this equation as

p3(S1)=k(Ã)[o(S1)]

where the value of the dimensionless factor k(K) can be
found in Table III for each of the four series of interest,
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TABLE IV. Numerical evaluation of Sq—S9 for usual types of arrays.

S,: NF'(l, l')(gl —g! )'
NF (l, l')(gl —g!')

Ss. NG'(l, l')(gl)'
S4. NG'(l, l')(g!')
Ss: NG (11)Pig!
S,: (k)'
S7.'(gl) g1'

Ss.' (gl)(g!')
$9: (g!)

p
N+1 p NS

—0.066 667

0.25

pN+I pNy

0.03

—0.133 333
—0.4

0.4
0.25

—1.125
1.125

—0.75

yN+I yNp

0.016 667

—0.222 222
—0.074 074

0.222 222
0.75

—1.125
1.125

—0.25

d&+! d&f

0.019048
0.026 455

—0.333 333
—0.666 667

0.888 889
0.75

—3.0
3.0

—1.5

fN+1 fNd

0.013 187
0.018 315

—0.461 538
—0.230 769

0.615 385
1.5

—3.0
3.0

—0.75

and where the variance [o(S1)] can be computed exactly
by means of Table IV of I and of ab initio values of the
physical radial integrals.

(ii) The spin-orbit-dependent part p3(SOD) (the bottom
line of Table I) computed exactly, using Table IV, which
contains the numerical values of the coefficients written
formally in Table II.

Two examples of application of this procedure are
given in Table V, for Xexxrx 3d' 3d'4f and-
Prxvi 4d' 4d'4f, an-d are compared with the exact values
of p3 computed by means of the explicit diagonalization
of H in both configurations. To provide some detailed in-
formation, the exact values have been split in five parts,
evaluated either from the formulas in Table II or from ad
hoc diagonalizations. The relativistic-central-field code
(RELAc) and nonrelativistic approximation formulas have
yielded the ab initio values of the radial integrals used in
the diagonalizations and in the calculation of o(S1).

In both cases the fair agreement, sufficient for our pur-
pose, between the exact value of p3 and its hydrogenic-
ratio approximation supports the use of the latter. The
two cases are quite different: in the Xe case the predom-
inant contribution comes from the BCC term, and in the
Pr case from the 888 term.

IV. REPRESENTATION OF SKEWED ARRAYS

A. The skewed Gaussian

a3=i'3'(v2)'" .

For representing an asymmetrical transition array by a
continuous curve, we have chosen the skewed Gaussian
shape proposed by Croxton et al..

' and used by Cowan.
The corresponding function reads, within an arbitrary
multiplicative factor,

f(x)= [1——,
' a3(x ——,'x3)]e (8)

where x is the reduced abscissa, measured in units of
o =(p2)'~ (the rms deviation of the distribution), and re-
ferred to the reduced first moment pllcr of the distribu-
tloIl.

If a3&0, this function is not positive for all the values
of x. But, for moderate values of a3, the curve does not
reach points far under the x axis, so that this negative
part can be truncated in the drawing of a calculated spec-
trum. The examples of a3 ———1.0 and —2.0 are shown in

Fig. 2.
Now, the most interesting features of a broad peak ob-

served in a spectrum are the wave number v of its max-
imum and its FTHM hv. For a Gaussian-shaped peak,
v-—=pt and bv=2(21n2)' o=2.355o. But this is not
true for the skewed-Gaussian distribution written in Eq.
(8), for which we write, instead,

v~ =p&+5v

The dimensionless constant which characterizes the
skewness of a distribution is its asymmetry coefficient, b,v=2(21n2)'~ cr'. (10)

TABLE V. Comparison of the contributions of the different types of parameter products to p3 (in 10' cm ) in

Xexxtx 3d'-3d74f and Prxvt 4d' 4d 4f. A=F"(l, l),-B =F"(l,l') and G"(l, l'), C=gl and gl'. Each entry with superscript a or b
represents the sum of the terms of specified type.

Xe XXIX
3d' 3d4f-
Pr XVI
4d' 4d'4f-

AAA'

201.9

13.1

BBB"

—193.4

—332.0

55.9 —233.8

1.0 196.4

Explicit calculation
ABB
and

BAAb BCC'

—475.1

—42.5

total

P3

—644.5

—163.9

p3(Sl)

—245.5

p' (SOD)

—419.3

total

P3

—664.8

—150.3 —41.5 —191.8

Hydrogenic approximation

'Values obtained using the formulas presented in Table II.
Values deduced from ad hoc diagonalizations and explicit calculations of p3.
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is cr/(y

o.e.

f(x) is

3 QCg

FIG. 4. Curve giving the ratio o'/o. of the F%HM of the
skewed Gaussian to that of the Gaussian, vs o.3, the coefficient
of asymmetry.

FIG. 2. The skewed Gaussian. The equation of this curve is
—x /2f(x)=c[1—2a3(x —3x )]e ",a3 is the asymmetry coeffi-

cient [Eq. (7)]. c is an arbitrary constant. In the upper curve,
a3 ———1; in the lower, a3 ———2.

The quantities 5v/o and o'/cr are functions of as only,
which are drawn in Figs. 3 and 4. They are, respectively,
an odd and an even function of a3. The latter is a positive
function not larger than 1; this means that an UTA with a
given variance p2 has a smaller FWHM if it is skewed
than if it is symmetrical (up to about one-third, according
to Fig. 4).

B. The example of Prxvt 4ds 4d74f-
It is now possible to describe Fig. 1 completely.
(i) The dashed curve (a) is the envelope of the line array,

in the sense that its ordinate is the superposition of 721
Gaussian curves, one per line, having each the relevant
axis and height and a small FWHM (0.5 A).

(ii) The symmetrical solid curve (b) is a Gaussian curve
centered at v=p~ and whose FWHM is equal to 2.3550,
it is the only possible description if only the first two mo-
ments of the distribution are available.

(iii) The asymmetrical solid curve (c) is a skewed Gauss-
ian [Eq. (8)], which peaks at v=v~ (but remains centered
at v=pt), and with a FWHM equal to 2.355cr' [Eq. (10)].
Both v and o' are derived from ab initio radial integrals
already used in Table V, yielding the asymmetry coeffi-
cient a3 ——p3/(p2) = —1.79. The negative part of this
curve, on the short-wavelength side, has been deleted.

The maximum heights of the skewed Gaussian (c) and
of the symmetrical curve (b) have been adjusted so that
the areas under these curves are identical. The maximum
height of the envelope (a) has been adjusted to be the same
as that of the skewed Gaussian (c).

The fair agreement between curves (a) and (c), in posi-
tion and width, and their disagreement with the symme-
trical curve (b) support the validity of the skewed Gauss-
ian description. However, the shoulder of the asymmetri-
cal solid curve is an artifact of the skewed Gaussian func-
tion (see Fig. 2), and its resemblance to the shoulder of the
envelope is fortuitous.

V. CONCLUSION

In conclusion, the present paper contains formulas and
numerical tables which are sufficient for an easy evalua-
tion of the asymmetry coefficient a3 of the weighted
wave-number distribution of the nl +' nl n'I' transition-
array. Thus, it is meaningful to describe this array in a

FIG. 3. Curve giving the ratio of the shift 5v of the max-

imum to the rms deviation o., vs a3, the coefficient of asym-

metry.

13.5

FIG. 5. Recording of the ionized Xe spectrum emitted by the
TFR 600 tokamak (preliminary results). Xe xxvnt: 3d9 3d 4f. -

Xe xxtx: 3d' 3d 4f. Xe xxx: 3d 3d64f. -The arrows indi--
cate the position of the maximums caIculated without taking
into account the asymmetries of the patterns. The axes which
are drawn are shifted by the quantity 6v (Sec. IV).
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calculated spectrum by means of an asymmetrical skewed
Gaussian curve. The axis and FWHM of this curve are
quite different from those of the simple Gaussian curve
proposed previously: in brief, asymmetry results in a shift
of the maximum and a narrowing of the peak. Once the
values of o. and ct3 are known, the shift and the FWHM
can be readily derived from Figs. 3 and 4. The steep slope
of the curve is on its long- (short-) wavelength side if a3 is
positive (negative).

In Table V we present the detailed numerical contribu-
tions to the third-order moment for two different physical
arrays, one where the largest contribution comes from the
Slater integrals (Pr) and one where it comes from the
spin-orbit integrals (Xe). If the spin-orbit integrals were
still larger, one would, of course, observe a spin-orbit-split
array, " for which the asymmetry coefficient of the total
array is meaningless.

Experimental examples can be seen in a spectrum re-
cently obta.'ned on the TFR 600 tokamak at Fontenay-
aux-Roses on a preliminary recording with low resolution.
They consist of three transition arrays of Xe xxvIII —xxx,
namely 3d 3d -4f, 3d 3d 4-f, and 3d —3d 4f, shown in
Fig. 5. All three features have their steep slope on the
short-wavelength side, corresponding to negative values of
tts, e.g. , —1.55 for 3d 3d 4f-(see the value of p3 in Table
V). For each array, the arrow indicates the place where
the maximum of the Gaussian curve would be if the
asymmetry was ovcI'looked.
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