
PHYSICAL REVIE%' A VOLUME 30, NUMBER 6 DECEMBER 1984

Energy distribution in the near-threshold electron-impact ionization
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A concise overview of the present situation of the near-threshold energy distribution investiga-

tions for electron-atom (-ion) ionizing collisions is given. By making use of an essentially perturba-

tive approach, the distribution function has been calculated for two extreme regimes of the two-

electron final state: (i) e& —e2 and (ii) e~ & && e2 ~, where e~ 2 are the escaping-electron final energies. It
is shown that within the classical Wannier theory (linear configuration) one obtains the flat distribu-

tion function in both cases. The calculations for case (ii) are compared with recent Coulomb-dipole

results. A brief discussion of some conceptual differences between Wannier and Coulomb-dipole

theories is also given.

I. INTRODUCTIQN

Near-threshold phenomena continue to attract much at-
tention of both experimentalists and theoreticians and the
overall activity on that subject appears in the state of a ra-

pid expansion. After the early studies of the energy
dependence of various multiple escape processes above the
breakup thresholds, which have provided values of the ex-

ponent in the corresponding threshold laws

o;,„=const XE

where E is the total energy of the system, the interest has
been widened to comprise other phenomena, like the ener-

gy, mutual angle and angular momenta distributions and
their energy dependence. Despite a great progress made

up to now and many more or less firmly established re-

sults, a number of unsettled questions still persist, even at
the conceptual level. One of the controversial issues on
that matter appears to be the very model used to describe

the way a multiple escape takes place. Two principal as-

sumptions have emerged up ta now. (i) Wannier's model

which takes a complete dynamical symmetry of the final
configuration as a starting point. (ii) Temkin's approach,
based on the asymmetrical, Coulomb-dipole final-state in-

teraction. The latter predicts an analytical expression for
the ionization threshold law, which differs from the sim-

ple power law of Eq. (1.1). However, it turns out that a
noticeable difference between predicted threshold behavior

appears presumably so close to the threshold that the ex-

periments can provide a clear evidence in favor of either

of approaches mentioned abave, though the measurement
corroborates marginally better Wannier theory. Hence,
apart from importance of their own, it is of interest to ex-

amine other measurable quantities, which can distinguish
between two approaches. In the present study, we exam-

ine analytically the final energy partition between outgo-

ing electrons, within the classical Wannier theory, adopt-
ing in part the method due to Vinkalns and Gailitis, al-

ready successfully extended and applied in the study of a
number of ionizational processes. As the distribution of

final energy has been the subject of both numerical and
experimental studies, we first quote some of the results
obtained up to now.

The first attempt to derive numerically energy distribu-
tion within the classical model (linear configuration) pro-
vided deviation from the uniform partition by less than
1% for a neutral target (Z =1). It should be noted that
taese computations relied. heavily on the quasiergodic hy-
pothesis, confining the calculations to the final states
only. This assumption has been removed in the subse-

quent classical trajectory calculations, but the latter still
pertained to Wannier theory, via the assumption of the
one-dimensional phase-space volume behavior. Computa-
tions provided results confirming the earlier (restricted)
numerical findings, at least for Z= 1,2, (see Fig. 3 of Ref.
8). For Z & 2, one may argue that a deviation from strict
uniformity may show up (see Fig. 7 of Ref. 8 and discus-
sion there). It should be noted, however, that all these
computations were not a proper Monte Carlo calculation
(or, equivalently, simulations of experimental measure-
ments), and the most they can yield is a proof of an actual
uniform distribution (or, possibly, some other highly
specific distribution, like 8 function). All computations,
also, have been carried out for the plane configurations
(I. =0, 1). All these restrictions, except the last one, have
been removed in the very recent calculations by Read,
who has repeated Vinkalns-Gailitis computations with
full statistics of Wannier diverging orbits. The energy
distribution for the plane motion thus obtained, exhibits a
shallow convex shape, with wings surpressed by about 5%
of the maximum at the centers (@i=@2). It is interesting
to note that the derivative of the distribution function be-
comes very large (in magnitude) at the very wings (e~,
F2=0), Fig. 3 of Ref. 9. One encounters a similar situa-
tion in the case of positron-atom near-threshold ioniza-
tion, when a sudden collapse of the distribution function
occurs at e(positron)=7/20E (see inset in Fig. 3 in the
second reference quoted under Ref. 8). We emphasize
here, that this cutoff does not depend on the ion mass (un-
like the threshold law, derived in the same paper) and ap-
pears for e+ + H system as well.
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(Semi) quantum-mechanical calculations did not pay
particular attention to the energy distribution, but one can
infer the latter from the general results. Thus Rau' de-

duced from his Wannier-type quantum-mechanical calcu-
lations that the distribution should be a broad Gaussian
correction superimposed upon otherwise flat distribution.
In his semiclassical study" Klar was able to deduce the
uniform distribution only at ei —e2=E/2. (See also re-

cent work by Feagin, ' for a general discussion of previ-
ous nonclassical calculations. ) In this context mention
should be made also of the combined analytical-numerical
calculations by Peterkop and Liepinsh, ' who derived also
uniform distribution within the semiclassical Wannier
theory. We mention finally calculations by Yurev, ' who
obtains for a double photoionization (1. =1), within his
quantum-mechanical perturbative method, almost uni-

form partition, with a shallow minimum, which becomes
more pronounced as the total energy increases. In corn-

paring his results with those by Read (with maxima rath-
er than minima), we note first that the former are ob-
tained for different angular momentum (I. =1), and
second that they yield the threshold exponent ~ in Eq.
(1.1) 1.13 rather than 1.056 (Z =2).

As for the experimental evidence, we mention only two
important features (the reader may consult Ref. 9 for a
more detailed overview) which have emerged from almost
all measurements: (a) a flat distribution within the energy
range E/5(e& @&4/5E, with wings undetermined, (b)
this distribution persists up to an energy which is above
that which delimits Wannier threshold behavior. Find-
ings by Bottcher, who solved the corresponding
Schrodinger time-dependent equation numerically (within
linear configuration), appear consistent with these experi-
mental data. We notice that points (a) and (b), taken to-
gether, imply that the problem of the cross section thresh-
old behavior and energy partition function are not neces-
sarily crucially interdependent.

We now turn to the latest Temkin's results, obtained
via the Coulomb-dipole theory (for the previous energy
distribution see Ref. 3). One observes immediately two
striking features at the close inspection of Fig. 2 of Ref. 3:
(i) an oscillatory behavior of the distribution in the range

ei 2& E/5, (ii) a sharp descent to zero at ei z «E/2 (ac-

tually, this feature is not conspicuous in the figure, but is

pointed out in the text). Now, if one averages over oscilla-
tions, it turns out that the overall picture is not incon-
sistent with the latest numerical findings, discussed
above.

Whether wing oscillations would be smeared out by in-

clusion of higher angular momentum terms is yet to be
settled. We merely note there that undulatory structures
pertain to monopole-dipole interaction, both within the
classical' and quantum-mechanical' pictures.

Our aim in the present work is to investigate the possi-
bility of deriving the energy distribution within the classi-
cal dynamics model. Such an attempt has been already
made, ' making use of Vinkalns-Gailitis (VG) approach,
but cannot be regarded fully satisfactory, for the follow-

ing reasons. The linearized, approximate (VG) solution is
valid only within a (small) part of the Wannier Coulomb
zone (our SCZ in Fig. 1). While knowledge of the relevant
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FIG. 1. The exact solution of Eq. (2.9) is r,„[Eq. (2.10)], ap-
proximate solution (2.13) is r,p, and the improved approximate
solution [Eqs. (2.15) and (2.16)] is r;, vs time, for Z=1 a.u.
and E=0.02 a.u. Value for t& (see text) in this particular case
assumes 6147 a.u. and is not comprised by the figure. Note the
scale for u variable [Eq. (2.11)), on which numerical values for
u~, uc, u~, and u& (not shown) are independent of Z and E.
The quantum-mechanical zone (QZ) extends up to zero.

deviation from the so-called leading configuration is suf-
ficient to determine the threshold law, it does not contain
enough information for deducing other observables, like
various distribution functions. One has, therefore, to car-
ry out calculations throughout the intermediate region of
the configuration space, so as to carry over initial infor-
mation to the free zone (where measurements are made).
In fact, Wannier did it in the sense that he was able to
show that the Coulomb-zone solution does correspond to
a second-asymptotic-zone equation of motion, with a
structure equally suitable for deriving the threshold law.
However, to derive a distribution function, one needs a
precise (quantitative) relation between the initial condi-
tions (at the reaction zone boundary) and the parameters
appearing in the final-state solution. As we shall see, we
have succeeded in obtaining such solutions only in a re-
stricted part of the phase space.

In Sec. II, which is of a preliminary character, we first
demonstrate the uniqueness of the Wannier saddle point
and then partition the configuration space into a number
of convenient zones. Derivation of the energy distribution
for two cases: (i) e&-e2, (ii) e& z « e2 &

is presented in Sec.
III. In the last section we make some genera1 remarks
(IVA) and finally conclude with a brief discussion of
what appears to be a conceptual difference between
Coulomb-dipole and Coulomb-Coulomb types of final-
states interaction near the ionization threshold (IV 8). In
case (i) the VG method has been adopted as a starting
point, whereas regime (ii) we investigate via a monopole-
(dynamical) dipole interaction model, which may be
viewed as a counterpart of the latest version of Coulomb-
dipole quantum theory.
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II. DOUBLE-ESCAPE FINAL CONFIGURATIONS

A. Vfannier potential ridge
r 2

which has the solution

(2.9)

—Z 1+
dt r; (r +r2)

(2.1)

Now, in searching for a stationary solution (no energy ex-
change between electrons), we put

(with p a real constant). With this correlation constraint,
Eqs. (2.1) become (formally) single-particle equations

d rl Zg

2 2, /=12 (2.3)
r;

(2.4)

Z2=Z— 2

Here we show that for the case of two identical particle
escape above the threshold Wannier saddle point: r& ——r2,
8~2

——m, is a unique configuration around which an ioniza-
tion can proceed. We treat a simplified case: 0~2 ——m., but
it can be easily shown that the argument loses nothing of
its generality for sufficiently small total energy E.

Let two electrons recede from the residual ion of charge
Z (atomic units are used throughout), along a common
straight line, with distances from the ion (situated at the

origin): r„r2. Corresponding Newton's equations are

Vu(u +1)——,
'

In[2M u (u +1)+2u+1]— t=0,

u =Er—/g

(2.10)

(2.11)

1. Reaction zone (RZ): u (0.04

It is the space within the sphere of radius r~, the latter
being of the order of dimensions of the target in its initial
state. Value of r(2 is arbitrarily chosen to be of the order
of 1 ao, but we note that in actual calculations care must
be taken that at specific E, r& is not too close (or even
exceeds) to the next important point rc, to be defined im-
mediate. y. The main feature of the motion within RZ
(and this is a crucial assumption of the Wannier model) is
that it must be very complicated (both within the classical
and quantum-mechanical .pictures), that it is close to
chaotic behavior (quasiergodic hypothesis). In other
words, reaction zone serves here as a kind of black box
and it is only outside the RZ that the symmetric motion
makes sense.

with the usual convention r(0) =0. For further analysis it
is convenient to distinguish the following zones in u-

variable space: see Fig. 1, where corresponding values of
r variable are given as well, for Z = 1 a.u. and (typical) to-

tal energy E=0.02 a.u.

Equations (2.3) possess the first integrals e~ and e2 satisfy-
ing the following equation:

dE d 2

dt dt dt2
=—(e~+ e~) =(1+P') Z2

Z] 2

(2.6)

As cari be seen by direct inspection, the energy E is con-
served if and only if the correlation parameter is

(2.7)

(Wannier ridge) which provides a completely symmetrical
configuration

2. Strong correlation zone (SCZ)

In the range

Qg (Q (Qg —=0.2 a.U.

Equation (2.10) can be solved for u (see Ref. 6)

Q
2/2

(2.12)

(2.13)

3. First asymptotic zone (AZI)

It is to be noted that despite the explicit appearance of E
in Eq. (2.13), motion is essentially independent of the en-
ergy in this region. [In fact, the solution (2.13) can be ob-
tained directly from Eq. (2.9) for E =0].

rl ——r2, Zl ——Z2 ——Z ——=g .
4

(2.&) Upper boundary of this zone is determined by the so-
called Wannier point u~

B. Symmetrical escape zones Q c (9 (Q p =2 a.u. (2.14)

Before proceeding with further calculations, it is con-
venient to divide the configuration space around the ion
into a number of zones. The criterion for separating r-
variable space into distinct regions is partly physical and
partly because of mathematical convenience, as we shall
see below. ' We first write Eqs. (2.1) in the form (without
subscript)

(2.15)

where correlations are supposed to cease. Here it is not
possible to extract an explicit dependence of u on t, but an
approximate solution can be found in the following way.
We write [accounting for Eq. (2.13)]

]./3

r = —g t'~'+5=r' (t)+5(t)9
2
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with 5 as a small perturbation of the symmetric case.
Substituting Eq. (2.15) into Eq. (2.9), we have, within the
linear approximation with respect to 5/r' ~

t4/3+C t —1/3 (2.16)

where C3 and C4 are arbitrary constants. If we define via

Eq. (2.10)

A. Motion in SCZ

The strong correlation means that the outgoing parti-
cles must follow trajectories that lie close to the saddle
point: r& rz,——O, z ——m (motion along the potential ridge) .
One may, therefore, write

tc = t(u =0.2) =0.056 39$E (2.17) r12 ——r+6, 0&6«r . (3.1)

then by matching solution (2.16) at t = tc, one has

C = —tc5/3 (2.18)

Additional relation between C3 and C4 is provided by
matching the solution (2.15) with that in the second
asymptotic region, ' to be determined immediately.

tg
——t(u =2) = l.303 27(E

and ends at

(2.19)

t~=t(u =25)=23.1827$E

after which the moment motion is essentially free. In be-
tween we may regard electrons to move almost freely
(quasifree zone)

u ——1n(4u )+—— E i v —2t—=0 .
2 2 4u

(2.21)

Now, matching solution (2.15) with (2.21) at t =tts we ob-
tain

C, = —1.2246&& 10-'g'"Z-'" (2.22)

4. Second asymptotic zone (AZII)

It starts at un (=2), with the corresponding "Wannier
instant"

Substituting this into Eqs. (2.1) we have

E + 0 4 ~

tt3 g u

d 6 E
dt'

(3.2)

A=C1r '+C2r ',
1/2

3 1 100Z —9
p =—+—

4 8
Z)1.

(3.3)

(3.4)

The first term describes the solution when electrons
cross the boundary separating QZ from SCZ at different
moments, but with such velocities that r~(t) —+rz(t),
t —+ ao. On the contrary, the second term corresponds to
the case of simultaneous passing from QZ to SCZ, but
with different velocities, so that 6/r grows in time. If at
r =r~ (u =u&, see Fig. 1) 6/r is large enough, it will

prevent both particles from escape and the slower electron
will be recaptured by the residual ion. This difference de-

pends on the magnitude of the (arbitrary) constant Cz, at
a particular value of the energy E and there must exist
such maximum value

with u given by Eq. (2.13). Further, because of the condi-
tion in Eq. (3.1) imposed on the magnitude of the longitu-
dinal deviation 5, one may neglect linear (and higher)
term(s) in the large square bracket of the right-hand side
of Eq. (3.2), which yields the solution

so that with Eq. (2.18) 5 function from Eq. (2.16) is com-
pletely determined. Cz ——Cz '"(E) (3.5)

5. Free zone (EZ)

For nonzero energy we have a free-particle motion

r=V Zt . (2.23)

that for Cz & Cz'" no ionization takes place. This limit-
ing C2 value is therefore proportional to the single-
ionization probability. Further, as inferred from Eq. (3.3),
under the (homothetic) scaling, arbitrary constants depend
on the energy E as follows

In the limit, E~O, however, t~~oo and Eq. (2.13) [or
Eq. (2.15)] covers entirely the configuration space avail-
able. This is the well-known property of the Coulomb
force, that at zero energy particles follow parabolic trajec-
tories, without asymptote (long-range force).

In Fig. 1 time intervals corresponding to various r
zones are shown for Z =1, E=0.02 a.u. , together with
the exact solution [Eq. (2.10)], approximate one [Eq.
(2.13)] and the improved approximation, Eqs. (2.15) and
(2.16). As can be seen in Fig. 1, the improved solution not
only better represents motion in its proper AZI, but is
closer to the exact one in SCZ, compared with the solu-
tion (2.13), the latter being a straight line in our log-log
scale. Note, also, that at t=t~ the improved solution
possesses both the magnitude and its derivative closer to
the exact one, than the simple Eq. (2.13).

p,
g
—1 p, 2

—1C1-E, C2-E
so that, according to Eq. (3.5) one has

p2 —1

ion

(3.6)

(3.7)

1 2e'i, z= —r i,z«z t~~» (3.8)

and the energy distribution is then obtained by

provided that distribution of C2 has no singular points
(quasiergodic hypothesis). The latter assumption is cru-
cial for the above derivation and has been criticized ' as
unfounded. We shall, however, postpone the discussion of
this point to Sec. IV.

Now, for a particular choice of C2, final energies of es-
caping particles are
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dC2
(3.9)

1. The solution in AZII; t~ & t ~ tF

We write explicitly corresponding linearized equation

We need, therefore, (in principle) equation of motion in

FZ, which implies a complete description of motion
through all intermediate zones (see Fig. 1). On the other
hand, Eq. (2.1) describes the three-body problem (though a
somewhat restricted one), which is beyond the reach of
our mathematical methods at present. We must therefore
confine ourselves to those parts of the final states phase
space where at least approximate solutions in the inter-
mediate zones are possible. We find two such cases: (a)
the quasisymmetrical configuration (ei-e2), (b) extreme
asymmetrical configuration (Ei « tp or vice versa). We
treat first case (a). Before proceeding with calculations in

SCZ, we note that around rii (or t~) solution (3.3) can be
written in the simplified form

d 6 2Z5
dt2 E3/2t 3 (3.12)

r"'=V Et . (3.13)

We seek a solution of Eq. (3.12) in the form (quasiuniform
motion)

b, =a~Et+ 5(t),

0&a&1, 5«V Ft .

(3.14)

(3.15)

where rhs of Eq. (3.2) is treated as a small perturbation
and the free-motion solution for u (i.e., for r) is substitut-
ed there

~1,2 =~+C2" ~ P =I 2 (3.10)
Substituting Eq. (3.14) into Eq. (3.12) one gets

Case (a) corresponds then to C2«C2'", whereas the
asymmetrical case (b) is defined by the requirement

+ Cmax
2 2

B. The quasisymmetrical configuration solution in AZ I

d 6 A 5
dt' Et' +0

A =Z[a(2 —3a)+ ' ]

with an approximate solution

5(t)=D'3v Et Aln(v Et—)+D2,

(3.16)

(3.17)

(3.18)

1/3 p/3
2/3 + 2 2

t ~, tg(t &tw .2p/3

(3.11)

On the other hand, both particles' motion being highly
correlated in AZI, these correlations may extend beyond
u~ (i.e., after tii ) and we proceed with evaluating elec-
trons' motion in the next zone, AZ Ir.

Since in this case trajectories in AZ I still cluster tightly
around the leading trajectories ri ——r2, linearized Eq. (3.2)
may be used. Further, we shall use solution (2.13) instead
of that given by Eqs. (2.15) and (2.16). In the Appendix
'we show that by making use of the latter, more appropri-
ate, u function, no significant change in the final result is
made. So, with the help of Eq. (3.10), one has

where D2, D3 are arbitrary constants. Hence, we have

rii vEt+D3u Et——Aln(v Er)+D—2 (3.19)

2. Matching the solutions

].
D3 = r', (t~)+ ~E (3.20)

Now, retaining only the leading terms in Eq. (3.19), one
has at tw

In order to establish correspondence between C2 and
D3 constants [here we do not need D2, which is, anyway,
negligibly small compared with the rest of rhs of Eq.
(3.19)], we equate ri and r», as well as their time deriva-
tives, at t = tw, which provides

I'
1 9

2/3

t-'/'+2 CW P 2

1/3(1+p) JM/3

2/3(IM —2) 2
tw C2p 2' 4p, /3 —2

1/3
~

p/3

+ —g tii +C2p
4A 9 '

1/3 9
3tw 2 2

t@2,/3
—i

2

+ 2
tw

(3.21)

For r zone has 'similar expression, with C2 —+ —C2 [see
Eq. (3.1)], so that, keeping terms linear in Cz, one obtains,
through the relation (cf., Ref. 18)

1 9
2p 2

E3/2t

1/3(1 —p)
g' "' "' —1 E" ' (3.23)

26'1
7

(3.24)

(3.22)

the desired functional dependence of the (quasi) uniform
system variable C2 and electron 1 final energy e1

As can be seen, C2 has retained its proper dependence on
E [cf., Eq. (3.6)] and, which is of utmost importance here,
depends linearly on ei, so that (dropping the subscript in
ei)
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dC2 1 9
dE p 2

1/3(1 —8)

g " "'E" =const .

(3.25)
(0) 9 jeff

1/3
t2/3

g g ff&z (3.27)

substitute there "zero-order" solutions for the first elec-
tron

Hence, at e&-ez-E/2 we have the uniform final-energy
partition between escaping electrons. [Note that within
the linear approximation C2 is independent of 3, and
hence of a, cf. Eqs. (3.15) and (3.17).]

where g& is an effective charge seen by the slower parti-
cle, and for the faster electron

r 2
-vt+R2, R2 « vt(0)

C. Asymmetrical configuration u =5v E, 5 & —(V 2+ v 11)=2.3654
1

2
(3.28)

The solution in AZI

We again seek an approximate solution but this time
adopting a different strategy, since the electron paths are
now most of the time very far away from the leading con-
figuration. Because electron 2 is now most of the time
considerably faster than the first one, it "feels," apart
from an eventual Coulomb field (Z & 1), a time-dependent
dipole force of the remaining electron-ion system. On the
other hand, the slower electron "sees" an essentially
Coulomb attraction of the ion, perturbed by the remote
electron weak repulsive force. We write Eq. (2.1) in the
form

r2

dt
Z —1

2 3 r 1 ((r2 (3.26)
r2 r2

Equation (3.26), of course, poorly describes the system at
t & tc, but as time evolves, approximation improves and
becomes very good at t & t~. However, even with such an
approximation, finding the solution of motion is an im-
possible task. On the other hand, since r2 »1, we may
treat rhs of Eq. (3.26) as, presumably, small perturbation
(note that electron 2 is here "energetic", with e2-E), and

This most unequal partition case is defined by motion
within the time interval t~ & t & tF, when the so-called (in
case Z = 1) monopole-dipole configuration is dominant
(r& « rz or vice versa). The most crucial period is
(tc, t~), when (quasi) symmetrical configuration (r& =r2)
develops into the other extreme.

Here, a word on the applicability of the classical picture
to the situation when e~ 2&&E./2 seems in order. As ar-
gued by Wannier, the smaller the energy of an outgoing
electron, the further the Coulomb zone must be pushed
away from the reaction zone so as to remain "classical"
(point b in Wannier division, see Fig. 1 of Ref. 2). So if
Wannier's inner part of the Coulomb zone (our SCZ) is
classical for e& 2=E/2, it need not be for e& 2 «E/2. On
the other hand, it is only upon entering AZI that one of
the electrons lags behind and starts losing its energy.
Hence, Wannier's requirement appears automatically
satisfied; the smaller the energy, the further the classical
region. In other words, if the electrons are classical in

SCZ, they remain such in AZI, too. (This argument,
however, does not apply to the extreme case

e~ q & & & E/2, r = r~ The poin. t e~ 2-0 deserves special
attention, anyway, as many numerical studies have re-

vealed, but we dispense with considering this limiting case
here. )

with the mean velocity K The difference between Eqs.
(3.27) and (3.28) reflects the fact that while electron 1 is in
AZI, the faster particle is (mainly) in AZII, so that a
quasiuni form motion is a reasonable approximation.
Equation (3.26) is solved to give

(1) Z —1
2 lnt —

3 3/2 1/3 + G1t+ G2,8E 2@E t
(3.29)

9z — —z1 2

1/3

(3.30)

p/3
2P 9

~ tp2/3 —1c+ (3.31)
/

with tc given by Eq. (2.17). In Eq. (3.28) U is assumed to
be somewhat smaller than the arithmetic mean of the ini-
tial and final velocities within AZ I.

For the slower electron, one has from Eq. (2.1)

d r1 Z I 2r11— (3.32)
dt r1 r2 r2

Inserting again zero-order solutions in the rhs of Eq.
(3.32), and solving the resulting (inhomogeneous) differen-
tial equation, one arrives at the "first-order" approxima-
tion:

9 t —1/3
r, (t) =Z&t lnt ———Z~ —+B,t+B2,—2 2 —3

V 2 V2

(3.33)

where B1 and B2 are arbitrary constants. Matching again
solution (3.33) with Eq. (3.10) at t=tc, B, and B2 are
determined in a similar manner

B(
——— Z 3 C2 tcI' +—(Z2 —Z ) )tc2P ~ 2 /3 1 2 1/3 1

3 3 8 Etc

(3.34)

First term in Eq. (3.29) comes from the interaction with
net charge of the (coupled) remaining pair, whereas the
second term corresponds to the monopole-dipole interac-
tion. By matching the solution (and its derivative) with
that from Eq. (3.11), at t =tc, one obtains

1,/3
2 9 1/3 1 —Z

O'Etc 28'E' 'r
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ZPC tg2j3+ 1
(Z Z )t2/3

3 ' ' 3

(3.35)

Fcrst-electron energy at t =t~ Is then

=12 Z 1
r;(tw) — +

ri(&w) ri(tw)+&2(rw)
(3.36)

Neglecting the thiro term in Eq. (3.36), we write (second
electron being practically free)

r i(rw) —2Z/&i(rw)
r' z(rw)

(3.37)

Substituting the corresponding expressions from Eqs.
(3.29), (3.21), and (3.33)—(3.35) into Eq. (3.37), one arrives,
after some lengthy but straightforward algebra, at the re-
lation

C2 Fi (Z,B——) F2 (Z, 5 )
—E"—

L

(3.38)

To recapitulate the results from Secs. IIIB and IIIC:
we have eva1uated the final-energy distribution within
(small) intervals

jV
O«r 2&&& 2 « (3.39)

IHIII

2
&&t,2 &&I,2&E ~

(3.40)

which appear unifo~. One may estimate with a fair con-
fidence that e& 2"-4/5E (or, equivalently, e~ 2"-I/5E)
(see Ref. 18), so that both examined intervals comprise ap-
proximately 2/5 of the total energy range. As for the in-
termediate region,

(3.41)

formidable mathematical difficulties preclude at present a
definite conclusion from being reached, but on the basis of
the present calculations it seems reasonable to believe that
the region (3.41) is by no means exceptional and that a
complete analysis would give an overall uniform distribu-
tion. This belief is also supported by the fact that a less
elaborate calculation, with SCZ extended up to r~ (not
expounded in the present work) provides for Eq. (3.38) an

expression identical to that of Eq. (3.23).

We omit writing the explicit dependence of the constants
F&, F2 on Z and 5, because of somewhat arbitrary deter-
mination of the numerical value of the latter, which pre-
cludes a reliable comparison between Eqs. (3.23) and
(3.38). However, apart from this, one can see that the re-
lation (3.38) retains all essential features of Eq. (3.23), in
particular the linear dependence of Cz on e. Hence, we
conclude that in the extreme asymmetrical case one again
has a random partition of the available total energy be-
tween escaping electrons.

D. Concluding remarks

IV. DISCUSSIGN

A. The quasiergodic hypothesis

Vinkalns and Gailitis were first to evaluate numerical-

ly the final-energy distribution, calculating dC2/de in the

free zone, by varying Cz values. They obtained a linear
dependence of Cz on e~(e2) not only within the ionization
interval, but somewhat outside it as well. Their rederiva-
tion of all principal Wannier's results gave a new impetus
to the near-threshold studies and a series of both experi-
mental and numerical investigations have been undertak-
en. In the latter a new approach has been adopted by
making use of classical three-body computer codes, by
which a complete scattering process is examined, by vary-
ing one of the system parameters in the initial configura-
tion, at fixed values of the integrals of motion (E and the
angular momentum 1.). The classical trajectories method,
being completely deterministic, provides a casual link be-
tween a particular value of a single initial scattering pa-
rameter (such as a position of the atomic electron on its
Kepler orbit) and C2 value at the beginning of the evolu-
tion of the final-state configuration. All computations
have shown that if an initial parameter varies uniformly
within the range which corresponds to an ionization inter-
val, so does C2. Thus, classical trajectory method con-
firms Wannier s quasiergodic hypothesis, at least in the
relevant part of the phase space. It is interesting to note
that the original Wannier's argument rests on quite an op-
posite model: an almost chaotic type of motion of both
electrons within the strong-interaction (quantum-
mechanical) zone. That the outcomes of both determinis-
tic (classical trajectory) and indeterministic (quantum-
mechanical) models appear the same is another peculiar
feature of the near-threshold ionization.

B. Classical versus quantum-mechanical model

We discuss briefly the existing controversy as for the
actual mechanism of double escape near threshold. We
restrict ourselves to Z=1 case. The classical Wannier
model describes the process as continuously evolving in
time and it is easy to show that within this picture, at
"sufficiently small" total energy, it is the symmetrical
configuration only that allows for double escape. The
other interpretation ' takes a quantum-mechanical point
of view and regards the interaction between outgoing par-
ticles as (presumably) instantaneous exchanges of virtual
photons. Final states with e& -e2 may be achieved via dif-
ferent intermediate states, however, as represented by
Feynman diagrams in Fig. 2.

Now, if at E=O the slower electron appears closer to
the core Z, it must undergo at least one more (in addition
to that already suffered in promoting the bound electron
into the continuum) interaction with the other electron, so
as to attain more energy from the latter. However, an
ionization amplitude is a sum of all corresponding ampli-
tudes associated with relevant diagrams in Fig. 2. Wan-
nier classical model corresponds (but is not equivalent) to
case (a), whereas Coulomb-dipole model corresponds to
the second half of the process (b) (above the broken line).
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(c)

FIG. 2. Feynman diagrams for two electron final-state in-

teractions (see text).

We shall not consider here the question whether the sum
of the amplitudes for the higher-order processes, like (b),
(c), etc., is competitive with that of the process (a), but
note only that if it is the case, then the linear approxima-
tion, which implies angular correlations, ceases to be
relevant to either of the approaches, the classical, as ex-
pounded here, and quantum-mechanical one. ' For if the
faster electron appears much further from the ion than
the slower one, at the very beginning of SCZ, the less en-

ergetic particle is obliged in no way to run away in oppo-
site direction.

A counterpart of the classical trajectory model should
be a complete quantum-mechanical theory, such as the
close couplin-g method, by which higher-order effects,
a; —+a'~a" —+. . .~af, with obvious notations, are ac-
counted for. Here, intermediate states may be both
discrete and continuous ones. However, such a formid-
able task is still beyond our reach at present, just as is the
case with the full analytical solution of the classical
three-body problem.

It is interesting here to note that in the case of the
model potential

z z 1V= — — +2 2rt r2 (rt+r2)

t2/3+ C t4/3+ C t —1/3 (A2)

Equation (Al) can be written as

d 6 2ZE 3b 1

dt at (A3)

with tern1s with C3 C4 as small perturbations, and with
coefficients

' 1/3

, b=C4, c=C3/C4 . (A4)

We assume that solution of Eq. (A3) does not, differ stg-
nificantly from that without the second term, and write

~ =t"+& =~'"+&, & «t" .

Inserting the function (A5) into (A3) one obtains

(A5)

6zb 6bcz+
a t a4t I g4t4/3 —II

General solution of the inhomogeneous Eq. (A6) can be
easily found and one has

We seek a solution of Eq. (3.2) without higher-order
terms on rhs,

d 6 2Z~
dt

with r as a given function of time, according to Eqs.
(2.15), (2.16), and (2.22),

' 1/3

investigated by Jacobi, the energy distribution can be de-
rived analytically, and turns out to be uniform.

b, , =C,(ti'+P, t' I'+P, tp '+P, tt'+'~'—),
where I'& is an arbitrary constant and

~2=- ~. l8»& ~0-3 ZE-3",
P, = —3.1744&& 10—'

g '~'ZE . (A8)
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To fix the idea about the magnitude of improvement in-
troduced by additional terms in Eq. (A2), we take Z =1,
E=0.02 a.u. , and get

b, i
——Cp(0. 968 17+4.893 91 && 10 )E

The second number in the parentheses, which appears as
the improvement, turns out to be about 5% of the (stan-
dard) first term.
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