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It is demonstrated that correlated Gaussian geminals can be used with the same computational ef-

fort as products of Gaussian orbitals in the iterative solution of the two-electron integral

Schrodinger equation in momentum space. The most accurate energies E&zz and wave functions P'
ever constructed directly in momentum space are reported for H, He, and Li+.

I. INTRODUCTION

Quantum-mechanical state vectors in the momentum
representation play a pivotal role in the theory of Comp-
ton scattering. ' They are usually obtained by Fourier
transformation of the position (coordinate) representation
of the state vector because thousands of papers have been
published on the computation of approximate solutions
of the configuration-space Schrodinger equation for atoms
and molecules.

Momentum-space wave functions can also be obtained
by direct approximate solution of the integral Schrodinger
equation in momentum space. Apparently, less than 20
published papers have dealt with this approach. Since the
pioneering work of Fock on the H atom and of
McWeeny on Hq+, a number of studies on the problem
of one electron in the field of an arbitrary number of nu-
clei have appeared. Numerical methods for the solution
of the momentum-space Hartree-Fock equations for
many-electron systems have also been studied. Actual
calculations for many-electron systems have been restrict-
ed to the ground states of the helium atom ' and the Hz
and H3 molecules. " All of the work on He uses an itera-
tive procedure for the solution of the momentum-space
integral Schrodinger equation first employed by
Svartholm' in his treatment of nuclear systems.

This paper is concerned with obtaining approximate
solutions to the momentum-space integral Schrodinger
equation for the two-electron systems He, H, and Li+
using the Svartholm iteration starting from correlated
wave functions of high accuracy. A brief outline of the
Svartholm iterative procedure is given in Sec. II. The
wave functions chosen to start the iteration are described
in Sec. III after a motivational summary of previous cal-
culations on He. The calculation of the first-iterated
functions and half-iterated energies is described in Sec. IV
and numerical results are presented in Sec. V followed by
concluding remarks in Sec. VI. Atomic units are used
throughout this paper.

II. ITERATIVE METHOD OF SOLUTION

In the nonrelativistic and infinite nuclear mass approxi-
mations, the integral Schrodinger equation in momentum
space for a two-electron atom with nuclear charge Z may

be written as

(p 0 +p 1 +p 2 )4 ( P i, P 2 ) =A [ZI, (p ) +ZI2 ($ ) —I i z ( p )]

where

po ———2E,2

Ii(e)= f p 'V(pi -p p2)d p,
I2(P)= f p P(pi, pq —p)dp,

I,2(P)= f p P(p& —p, pz+p)dp,

(4a)

(4b)

(4c)

A,„=T„/W„,

and

A,„+i g2 ——W„ /T„+ i .

It may be shown that A,o,k&&2,A, ],. . . is a monotonically
decreasing sequence which converges to A, , the smallest
eigenvalue of Eq. (1). Also, the sequence P,P', . . . con-
verges to P, the eigenfunction of Eq. (1) corresponding to

In practice, the number of iterations performed is lim-

ited by the difficulties of performing the integrals in Eqs.
(5)—(7), and hence the iteration must be stopped at some
P' and some A, Of course, one may also vary parameters

and P(pi, pz) is the momentum-space wave function with
the two-electron spin function having been factored out as
usual.

Svartholm's iterative method' for solution of Eq. (1) is
based on the Gauss-Hilbert variational principle and the
Kellogg theory of iterated functions. ' In this procedure,
A, is regarded as an eigenvalue parameter and an initial
function P is chosen. Then for n=0, 1,2,. . . the follow-

ing objects are formed:

0"+'=(po+pi+p2. )
'

x [ZIi(p")+ZIp(p") —Ii2(p")],

W~= f P" +'(po+pi+pz)P""pi "p2 i

T„= "po+p]+pz "dp&dp2
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in P to minimize A, The quantity A,, is now a function
of p0 and the root of the nonlinear equation

p =(1+P12)g Ckexp( rzkp 1 p—kp2), (13)

A, , (p0) —m =0 (10)

yields, through Eq. (2), an upper bound F., to the true
ground-state energy.

For integer n, the energies E„are simply the variational
energies corresponding to the trial function P". However,
the energies E„+~~2 do not have any counterparts in the
usual Rayleigh-Ritz procedure. Thus an advantage of the
iterative procedure is that an improved wave function P"
may become available even if neither of the components
8'„and T„ that enter into the corresponding variational
energy E„are calculable.

III. CHOICE OF STARTING FUNCTION P

One may pass from the position-space representation
g(rl, r2) of a state vector to its momentum-space repre-
sentation p( p 1, p2) via the Dirac-Fourier transform:

P(pl, p2)=(2n) fg(rl, r2)

Xexp[ —i( pi r 1+p2 r2)]d r 1 d r2 .

where P&2 is a permutation operator that interchanges the
coordinates of the two electrons. They were able to obtain
1I)' in terms of confiuent hypergeometric functions, as well
as numerical values of A, l&2 using only one-dimensional
quadratures. No simplifications of the Hamiltonian were
necessary in their work.

The correlated P chosen in this paper is more accurate
than that of Henderson and Scherr, but it will be shown
in Sec. IV that it is nonetheless possible to obtain P' and

k&~2 with an effort comparable to theirs. Our starting
functions are chosen to be of the form

1V

0 (Pl P2)=(2~ ) (1+P12) y dkek(pl P2)
k=1

where

(t'k(P1 P2)=exp[ —~k 'kk(21kp 1+ )k P2 28kP1 P2)]

in which

~k 40k( 1 8k ) (16)
Thus the accumulated expertise about approximate
position-space wave functions may help us choose a

p ( p 1, p2) with which to begin the iteration.
McWeeny and Coulson used the momentum-space

counterpart of the product of two 1s Slater orbitals as
their starting function:

$0 (p2+g2) —2(p2+a2) —2

which is variationally optimal for a =Z ——„and corre-
sponds to E0 ———a . They were unable to evaluate either
p' or A, 1&2. Since that time, progress has been made'
with this P only by introduction of simplifying assump-
tions about the Hamiltonian. Schreiber' and Lombardi'
have obtained P by approximating the Coulombic in-
terelectronic repulsion operator by the leading monopole
term of its Laplace expansion in position space. This is
equivalent to the assumption that the wave function is
purely radial: P(pl, p2) =P(pl, p2) and P(rl, r2) =g(i„r2).
Such an assumption leads to an integral equation different
from Eq. (1). Monkhorst and Szalewicz" have applied
the Svartholm iteration to the momentum-space Hartree-
Fock equations using the P of Eq. (12) as their starting
function. They were able to obtain both the first and
second iterated functions in a sequence that converges to
the Hartree-Fock wave function instead of the exact wave
function.

Henderson and Scherr used the Fourier transform of a
sum of products of spherical Gaussian orbitals as their
starting function:

and

Qk( r 1 r2) =exp[ —gk(7)kl 1+2)k 'r2+ 28k r l. r2)] (18)

Ck ——dk 5k

is a superposition of the correlated Gaussian geminals
first advocated by Boys' and Singer. ' An extensive
bibliography on Gaussian geminals may be found in a re-
cent paper. ' Note that in the special case where all the
8k =0, our p reduces to that of Henderson and Scherr. 9

IV. CALCULATIONS OF P' AND A, , i2

Inserting the 1I) of Eq. (14) into Eq. (5) leads, after
some algebra, ' to the following P':

0 (Pl P2) 2 (P0+P 1 +P2) (1+P12)
N

dkgk ok(P1~P2)~k(P1~P2) ~

k=1

where

(20)

»d gk & 0, ilk & 0, »d —1 & 8k & + 1 to ensure square in-
tegrability. The p of Eq. (14) is the Dirac-Fourier
transform of the following position-space wave function:

N

f (r„r2)=(2m )
' (1+P12) g Ckgk(rl, r2), (17)

k=1

w~ere

Xk(P„P2)=Zvlk '
f[gkvlk '(2)kP, —8kP2) ]+Zv)k f[gk9k(8kP1 2)k 'P2) ]—

in which

(ak +bk ) '"f[gk(ak+bk ) (&k pl bk p2)']
I

and

(21)

—1 —1
gk ~k 0k ~k 9k+8k k 'Qk +8k (22) f(x)=F( —,, —', ,x)= exp(xu )du

0
(23)
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TABLE I. Energies for several wave functions.

Atom

He

H

Li+

Wave function

HS1'
HS2'
HS3'

1 term
2 termb

16 term
Exact'

16 term
Exact'

16 term
Exact'

—Ep

2.301 0
2.556 6
2.851 1

2.570 9
2.816 3
2.903 40

0.527 59

7.279 41

2.903 72

0.527 75

7.279 91

—E

2.599 5 (2.5942)
2.781 5 (2.7755)
2.8915 (2.8818)
2.773 0
2.876 0
2.903 69

0.527 73

7.279 87

'Superposition of products of Gaussian orbitals, Eq. (13), from Ref. 9. The values in parentheses are
the EI~2 values calculated in this work using the linear and nonlinear parameters reported in Ref. 9 for
these three wave functions.
Superposition of correlated Gaussian geminals, Eq. (14). This work.

'K. Frankowski and C. Pekeris, Phys. Rev. 146, 46 (1966).

is a confluent hypergeometric function. ' Note that when
all the 8k =0 the above P' reduces to that given by Hen-
derson and Scherr. An algebraic formula for Wo can be
obtained' and the calculation of Ti can be reduced' to a
single one-dimensional quadrature. In the special case
that all the 8k =0, the formulas for Wo and Ti reduce to
those given by Henderson. ' ' However, the computation-
al effort involved in numerical work with P and A, i&& is
essentially the same whether or not the L9k's are zero.

V. RESULTS

As a first step, the computations of Henderson and
Scherr were repeated' for each of the three P 's of the
form (13) for which they tabulated linear and nonlinear
parameters. Their "interpolated" nonlinear parameters

were not used because no corresponding linear parameters
were given. As can be seen from Table I, our calculated
values of EI&2 lie between 5 and 10 millihartrees above
their EI&2 values. These discrepancies can be attributed
partly to the less-accurate quadrature used by them and
partly to a small algebraic error on their part.

Table I also reports Eo and EI&2 for 1-, 2-, and 16-term
P 's of the form (14) for He. These P 's were variationally
optimized' with respect to all the (Ck,gk, rIk, 8k) parame-
ters to minimize Eo. Originally we had planned to use
the Fourier transform of the best 16-term wave function
reported by Poshusta, ' but we discovered that his param-
eters had not been properly optimized. Therefore we per-
formed a careful optimization with repeated and alternat-
ing use of the conjugate direction method of Powell and
the quasi-Newton method of Fletcher. Precautions to

TABLE II. 16-term wave functions for helium. In this and all subsequent tables the parameters
serve to define i)) via Eqs. (14)—(16) and (19), 1( via Eqs. (17) and (18), and P' via Eqs. (15), (16), and
(19)—(23). o is a scale factor which ensures that f satisfies the virial theorem, and the requisite factor
of o. has already been incorporated in the Ck. The notation A( —n) means A &10 "in this and all
subsequent tables. o.= 1.000023 157 773.

Ck

23.142
17.297
15.142
12.762
4.5716
4.1201
4.0864
3.6280
1.5280
1.4694
1.3279
1.1818
5.9431(—1)
5.8169(—1)
2.9556(—1)
2.7406( —1)

1.0000
37.974
8.8235
2.2128

16.483
1.1206
5.2673
1.7395
9.4714
3.8294
1.5803
1.1394
3.6160
1.5507
1.8840
1.7537

—9.1316(—1)
2.2808( —3)
9.6287( —4)
1.2932(—1)
2.0879(—3)

—7.1306(—1)
6.2901(—3)
7.9803(—2)
4.4024( —4)
9.9758(—3)
5.2959(—2)

—5.7116(—1)
—2.7228( —3)

5.1985(—2)
3.0430(—1)
1.3495(—1)

—1.751 783 181 217(—1)
1.979 673 096 630(—1)
5.076 369 840 966(—1)
6.340 978 907 610(—1)
2.007 585 069 357(—1)

—2.055 838 800 345(—1)
6.901 086 242 048( —1)
9.965 723 414 332(—1)
1.117496 479 693(—1)
5.497 096 714 246( —1)
8.968 829 761 697(—1)

—9.263 129 489 482( —2)
1.676 512 602 867(—1)
3.992 914766 678(—1)

—2.949 136 827 473(—2)
7.834 309 794 628( —2)
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TABLE III. 16-term wave functions for H . See the heading to Table II for further explanation.
o.= 1.000017094 531.

2.8798
2.5834
2.4141
9.6S28( —1)
7.3289(—1)
6.1039(—1)
5.4738(—1)
2.9736(—1)
2.7521(—1)
2.2471(—1)
1.5182(—1)
1.1325(—1)
1.0764( —1)
9.3527( —2)
4.4447( —2}
4.2778( —2)

1.0635
9.7931

51.040
2.1210
8.0306

30.728
1.2002
1.7140
4.8645

14.861
1.2909
1.5640
3.6857
8.6037
1.7871
4.2127

—8.5174(—1)
2.4075( —2)

—7.6145(—3)
1.8354(—1)
1.2070( —2)
1.4973(—3)

—6.3871(—1)
1.3637(—1)
2.1178(—2}

—2.1259(—3)
—4.5030(—1)

7.5911(—2)
2.3514(—2)

—9.7138(—4)
1.1862(—1)

—6.1919(—3)

2.677 383 327 376(—2)
—3.320 430 356 170(—2)
—1.231 S89 642 926(—2)
—5.661 629 089 259(—2)
—3.813 148 584 167(—2)
—9.051 876 416 704( —3)

2.640 970 8]4 876(—2)
—5.898 343 498 764( —2)
—4.134 837 501 070(—2)
—9.869 661 031 178(—3)

1.181 921 355 115(—2)
—3.059 306 620 704( —2)
—2.118219070 958(—2)
—6.854 177 628 108(—3)
—3.666 679 948 966(—3)
—3.963 989 030 906(—3)

avoid numerical instabilities arising from approximate
linear dependence were taken. ' We were able to obtain a
variational energy Eo= —2.9034048 which is about a
millihartree lower than the variational energy
Eo ———2.902 446 obtained by Poshusta. ' Ironically
enough, Poshusta ' had presented his own parameters as a
reoptimization of the parameters of Longstaff and
Singer, who had obtained a variational energy
Eo ———2.90233. This experience with the 16-term wave
function should serve as a forceful demonstration of the
fact that multidimensional global minimization is a very
difficult process and that none of the numerical algo-
rithms currently available can guarantee convergence to
a global minimum. We do not make any claim that our
parameters correspond to a global minimum. Since this
optimization is a difficult process, we have considered it
worthwhile to report the parameters for the 16-term P
for He in Table II. Note that a scale factor 0. that ensures

that P satisfies the virial theorem has already been incor-
porated in the Ck but not in the gk. o is given separately
for inclusion in the gk to avoid having to tabulate the
latter to 13 significant figures. Similar 16-term wave
functions for H and Li+ are reported in Tables III and
IV, respectively. These parameters serve to define P via
Eqs. (14)—(16) and (19), g via Eqs. (17) and (18), and P'
via Eqs. (15), (16), and (19)—(23).

Returning to Table I, it can be seen that the more accu-
rate the Eo, the greater the relative improvement
(Eo —E,„„,)/(E&i2 —E,„„„)obtained by a half-iteration.
Note further that the P' functions defined by Eq. (20) and
the parameters in Tables II—IV are even more accurate
than is indicated by the E&i2 values reported in Table I.
This is so because the variational energies E& correspond-
ing to P' are necessarily lower than E&iz. It is also im-

portant to note that no optimization of any of the param-
eters to minimize E

& i2 was carried out, unlike in the work

TABLE IV. 16-term wave functions for Li+. See the heading to Table II for further explanation.
o.=0.999 989 837 049 0.

C

52.705
49.061
41.813
40.690
14.035
13.511
11.488
7.6137
5.4079
4.6347
4.1646
2.3786
1.8660
1.7953
1.0866
7.8096(—1)

42.408
9.9546
1.0397
2.2667

17.617
5.7121
1.7564
1.1162
3.9475
9.7742
1.5897
3.7194
1.3660
1.4680
3.2998
1.5028

]l. .0260( —3)
7.7226( —4)

—8.9049(—1)
7.4682( —2)
2.3727(—3}
2.9386(—3)
6.7759(—2)

—7.2536(—1)
1.0815(—3)
1.7035(—3)
4.2559(—2)
9.0124(—3)

—1.6997(—1)
—5.1822(—2)
—4.8325(—4)

3.9765(—2)

—6.588 257 693 390(—1)
—1.744 788 642 473

5.454 566 337 362( —1)
—2.4S4 997 368 340
—7.264 727 500 107(—1)
—2.428 456 590 900
—3.702 152 587 673

4.536 483 235 045( —1)
—2.150403 006 886
—4.609 152 227 833(—1)
—3.959 544 794 961
—1.133930 352 454

2.072 147 338 137
—4.180091 584050
—1.836 948 144 148(—1)
—3.277 403 114080( —1)
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of Henderson and Scherr. Finally, it is interesting to
note that while the 16-term P decreases in accuracy as Z
is increased (Eo —E,„„,=0.16, 0.32, and 0.50 millihartree,
respectively, for H, He, and Li+), the 16-term P' per-
forms somewhat more uniformly with Z
(Et~2 —E,„„,=0.02, 0.03, and 0.04 millihartree, respec-
tively, for H, He, and Li+).

VI. CONCLUDING REMARKS

It has been shown that the use of correlated Gaussian
geminals of the form (14) presents no computational diffi-
culties greater than those encountered with the sum of
products of Gaussian orbitals (13) when one attempts to
solve the two-electron momentum-space integral
Schrodinger equation (1) by the Svartholm iteration (5).
The 16-term half-iterated energy E&~2 obtained for He is

by far the most accurate value ever obtained directly in

momentum space, and the 16-term (b' is likely the most
accurate momentum-space wave function for He ever con-
structed by any technique. The E~~2 and (b' reported for
H and Li+ are of similar accuracy and represent the
first such calculations done directly in momentum space.

Extension of this work to two-electron multinuclei sys-
tems such as H2 and H3+ in the Born-Oppenheimer ap-
proximation is straightforward. The prospects for a fully
nonadiabatic treatment of three-particle systems such as
the positronium anion e e+e also seem good. Both
these possibilities are under active study in our laboratory.
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