PHYSICAL REVIEW A

VOLUME 30, NUMBER 6

DECEMBER 1984

Different forms of direct- and exchange-scattering amplitudes
for the ns-n,s transition in electron-hydrogen collisions

Sasabindu Sarkar and Mitali Chakraborty
Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032, India
(Received 4 January 1984)

A simple series-expansion form for the direct-scattering amplitude (involving real quantities)
T,‘,ils_,,zs is given in the case of the n;s-n,s transition in the electron—hydrogen-atom collision.

Another form for T,',i1 55 consisting of few terms, is derived when the initial-state quantum num-

ber n; is small. When the quantum numbers n; and n, are very large, the dominant part of T,‘fl sys

can be reduced to a single oscillatory trigonometric term, and this leads to some interesting features .
of the differential cross section. Simple integral forms for T, "'iﬁ-"zs in the above-mentioned cases are

also given. Expressions are further obtained for the exchange-scattering amplitude T,f’l‘s.,,zx, which

includes terms of orders O (85 ") and O(B5?), with Bo=k?+n3? =k3+n7? where k, (k) is the
initial (final) electron momentum. We also derive exact expressions for T5;.,; and TT;.3. All calcu-

lations are done in the first Born approximation.

I. INTRODUCTION

A general expression of the direct-scattering amplitude
for the nis-n,s transition is presented in the form of a
series “expansion” expressed as a function of momentum
transfer A in the case of the electron—hydrogen-atom col-
lision. This series converges rapidly as A increases. The
different coefficients of the above expansion are deter-
mined by evaluating certain series characterized by »n; and
n,. For large values of n, and n, these coefficients are
reduced to very simple expressions. The present calcula-
tion for the scattering amplitude also holds for transitions
involving high Rydberg states (having large quantum
numbers n) of atoms other than hydrogen since these
states can be assumed to be hydrogenic. The scattering
amplitude can be alternately expressed as a double integral

over the range 0—27 for finite values of n; and n, and as’

a simple form of single integral only when both n; and #n,
become infinitely large and A is not too small. For
n;— o, ny—w, and A values that are not small the
scattering amplitude can also be expressed in terms of a
dominant part, which is proportional to sin’(4/A), and

the remaining part, consisting of small terms. This shows

that for not very small A, different maxima in the expres-
sion for the scattering cross section are almost equally
spaced when plotted as a function of 1/A and further-
more, the cross section monotonously decreases for A
about greater than 8/7. All the maxima of differential
cross sections in these cases can further be grouped into
two distinct series of maxima, which will be discussed in
detail in Sec. IV. We also give some compact expressions
for the direct-scattering amplitude for 1s-ns and 2s-ns
transitions involving few terms both for finite and infinite
values of n. We mention that Saha and Sil' have ex-
pressed the nys-n,s scattering amplitude in the form of a
hypergeometric function where the variable is a compli-
cated quantity involving four factors which are complex
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quantities and depend upon A, nil, and nyl In con-
trast, our results are explicitly expressed in terms of real
quantities having a simple dependence on A. Saha and
Sil' have not done any detailed numerical calculations
based on their results, as was done in this paper. We also
note that Massey and Mohr? have given a different form
of the scattering amplitude in the particular case of a
transition from a ground state to an excited state. In this
case, Landau and Lifshitz® have used parabolic coordi-
nates to express their result in terms of appropriate para-
bolic quantum numbers.

It may be noted that the evaluation of the exchange-
scattering amplitude for the simplest system of an elec-
tron scattered by a hydrogen atom in the first Born ap-
proximation is much more difficult than that for the
direct-scattering amplitude, as it involves six-dimensional
integrations which have been evaluated in closed form by
Corinaldesi and Trainor* in the case of 1s-1s, 1s-2s, and
1s-2p transitions. Using their procedure we calculate
exchange-scattering amplitudes for the particular cases of
2s-2s and 1s-3s transitions. The above-mentioned ex-
change integrals have been simplified by Ochkur’® by ex-
panding the exchange-scattering amplitude (given in
first-order formulation) in inverse powers of the momen-
tum of the projectile electron and retaining terms of
lowest order. The general formula for first-order
exchange-scattering amplitude for the ns-n,s transition
as derived in this paper is expressed in a form so as to in-
clude terms (depending upon momentum transfer) of
OBy and O(B;?) where By=ki+n;i=k3+ni2
We may point out that the derivation of explicit expres-
sions for both direct- and exchange-scattering -amplitudes
in the case of n;s-n,s transition is carried out by taking
appropriate combinations of repeated parametric differen-
tiations® of a “characteristic function.” The above-
mentioned term of O(By ') corresponds to the usual
Ochkur’ approximation. Shakeshaft’ has given an ap-
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proximate form for the correction term (in first-order cal-
culation) to the Ochkur’ approx1mat10n, which corre-
sponds to a term of O(By 2) as evaluated in this paper.
He has further approximately evaluated second Born
correction terms in the case of 1s-1s and 1s-2s transitions
and has shown that these correction terms have greater
contributions than the usual Ochkur’® term, especially in
the forward direction. In our numerical calculation we
have found that the term of O (S5 ?) (as determined in the
present paper) receives increasingly s1gn1ﬁcant contribu-
tions compared to the usual Ochkur® approximation [of
O(B;1)] term as the momentum transfer i mcreases Some
investigators®—! have improved upon Ochkur’s’ method
by adopting Glauber’s'! eikonal approximation procedure
so as to account for the usual distortion of plane waves as
used in Ochkur’s’ approximate treatment. Byron and
Joachain® have investigated the range of validity of first-
order calculations (as done in this paper) as compared
with the numerical calculation based on the eikonal ap-
proximation (which contains contributions from all orders
of perturbation theory) for the inelastic exchange-
scattering process e~ + He(11S)—e ™ + He(23S). They
have observed that the eikonal correction to the first-order
Born approximation result (as discussed in this paper) de-
creases with an increase in either projectile energy or
scattering angle. At 500 eV incident electron energy they
have found that at 10° and 15° the eikonal results agree
well with the Born approximation, although at smaller an-
gles, 0° and 5°, the differences are quite appreciable.

Recent advances!?!? in experimental techniques for the
production of polarized electron projectiles, polarized
atomic targets, and the detection of polarization of the
colliding system and sometimes also of the emitted pho-
ton after the collision enable us to investigate experimen-
tally both (spin) exchange scattering and direct scattering
in electron-atom collisions. Laser-excited atomic beams
also provide us with a method'* !> to study scattering pro-
cesses (superelastic) for which n;>n, in ns-n,s transi-
tion.

II. DIRECT-SCATTERING AMPLITUDE

The direct-scattering amplitude for the s-state transi-
tion nys—n,s in electron—hydrogen-atom collision is
given by

AT, 1 1
T"'Il-“”zs (2m)~ ’ fe‘ roq;:z(rl) ‘;;)—1—_70—]

XW, (r))dTdT . (2.1

In 2.1) ¥, (r{) and ¥, (ry) are initial and final bound-

state wave functions and 1/ry; —1/7¢ is the interaction
potential, and the momentum transfer is

A=K,—k,.. 2.2)
The hydrogenic s-state wave function ¥, ; is given by
W, =N, e &} (2rhy) ; 2.3)

where the normalization constant for the n,s-state wave
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function, N, 18

1 2
Var n3nn,!

Now a typical term of the associa}t:ed Laguerre polynomial
£y (2rhy) in Eq. (2.3), rPe " 6

. can be written® as
(—l)P(d/dK )Pe "™ This enables us to express W, s in

the following form mvolving parametric differentiations:®

Ny, =

Py
(n)| d —rA
’ll_annlnl 2 Pll dll " (2.4)
In (2.4) we have
Py
(n)) (ny—1)
= |2 : 2.5)
! ny | (ny—1—=py)plpy+ 10
and
)\.1=1/n1 . (2.6)
A. Direct-scattering amplitude T,‘,‘ls_,l ,
for the ns-n,s transition
Using the relation
2m? [ oL yr ar,
To1
PA(Ty—T
=@2m [ £ T R, dT
ro1
=(21r)—34—7§ T g
2 d 1
=——an [AZ+A2 2.7
and those given by (2.1) and (2.4) we obtain for n,s%n,
1
Ty sonys=— - AZN,,IN nynyngln,!
ny—1ln,— d pr+py+1
X 2 2 F, l
Pi=0p;3=0 2 | dA
x | 2.8)
A2 A? )

which involves repeated parametric differentiation of the
characteristic function given by (2.7), where A in (2.8) is
given by
1
)\, 7\.1—*‘)\.2 —+ I (2.9)
ni ny
Let us define the function
p

_ |4 1
&= | an A2 4 A2
p
SN T - VR S ¢
%A A (—A+A%), (2.10)
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where
A=—1/(A+iA). 2.11)
Then
gp=5 P IAPH —(R*P+1]
| 1 (p+1)/2
=(—nPE | ——
A 4-A
X sin (1+p)tan“1—§—]. 2.12)

The direct-scattering amplitude can now be written as the
following series summation:
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We note that the 1/ry term of the interaction potential

. does not contribute to the integral of Eq. (2.1) or to the

expression given by (2.8) because of the orthogonality of
¥, (ry) and ¥, (r{) when n;n,. However, the term in-

- volving 8, ,, in (2.13) corresponds to the 1/r part of the

interaction potential which contributes to scattering am-
plitude when the initial and final-bound-state wave func-
tions are identical. In (2.13) g, is defined by the rela-
tion (2.12) and the associated numerical coefficient (in-
dependent of A) is given by

F,= E z F(n )F(n2

Py Pp=r—p;

(2.14)

For small values of n; and n,, the relation (2. 13) for
d
Ty s-nys is simple enough. We can also represent T,,ls nys

by the following form involving the double integral

1 4 ny+ny,—2 ("1’”2) (n ~n ):
TE gnys=— F, 1712 )
S 22 A% (n1n2)3/2 2 &r+t d 2 1 .
] Tnls-nzs:_ P2A2 (nys )3/2 21A(L —L%*), (2.15)
+8 . (2.13)
"t where
|
n1+n2—2~
L= 3 K"*Xr+1)F, (2.16)
r=0
2 ny—1 n . 11 ~
1 2 2w 2 = | 2~ i |2 eV te” A
_ | — “ —iy < —iz _ : e Ve
=15 I, ‘l—f—nlAe k} L —Re "% [1 p e Vefdydz . (2.17)
In (2.17) we assume k >2. Keeping in mind the relations (2.14) and (2.5) we have also
h= S 1 (m—D (2 " ny) L Potl (r+1)!
e, 2r D (mi—pi=Dipl [y | (ry—pa—Dlipy+ 1! (pi +1DIr +1—pj —1)!
2 —i —_p— ’ —1)z 2 . ot
% ?1_ f 7Tt 1or—l4py+1-Dz 31_ f o PP 1+1>{dy
1 w o P I LT . ‘
“sesmndo Jo +Ze*’y‘ I o™ | (eVef) TlePeldy dz/(2m) 218)

B. T,‘.’l,_,,z, for ny,n;— o

When both n; and n, are infinitely large and r
(=p1+p;) is small compared to n; or n,, F, defined by
(2.14) and (2.5) can be replaced by

-3 3 2

71 py=rep, P11+ Dipalpr + 1)

1 2 :
- & 1 igyr+1
2 [(r1+1)!]2f° (1)

X(14e~ )y +leitdy (2.19)

2+ (p 41
= : 2.20
ri(r +2) 2r +20M ( )

[

keeping in mind the fact that (n;— 1)!/[n:’i(ni—1
—pill=1 for p;<<n; (i=1,2). In the above case L
occurring in (2.15) is replaced by L ® (=L for ny,n,— o
or equivalently A—0). Using (2.16), (2.11) for A—0, and
(2.19) we can write ‘

w_ L[ 8i 20| s
L>= A exp A L cos l d /2w (2.21)
if the contribution from terms for values of

r<<ny+n,—2 (where n{— 0, Hy—> 0, Of A—0) to the
exact value of T,,ls -n,s is much greater than that from the

remaining terms in (2.13), and this is possible if A occur-
ring in the expression for (2.12) and (2.13) is not very
small. In the above case the direct-scattering amplitude is
given by the following single integral for n,,n,— oo:
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Td — 1 —1_
RS M T T 264 (n1n2)3/2
2
X fo cos —@—S—WL cospdd/2m .
(2.22)

We obtain another reduced form of T,,ls -n,s for infinite-

ly large values of n; and n, or equlvalently A—0 by
|
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keeping in mind the following facts. In the expression for
F* given by (2.20) the variation of the factor
2r+1D1/(2r +2)! with r becomes very small beyond
some very large value of 7, say s (=2s’ 4+ 1). The quanti-
ty 1/[r!/(r +2)!] in (2.20) tends to the value 1/[(7 + 1)!1]?
when r becomes large. Using the above facts, the relation
tan~(A/A)—7/2 as A—0, and the equations (2.12),
(2.13), and (2.20), we obtain approximately when A is not
very small and for A—0

2r'+2

d 2 1 @s'43n | .54 N 52'(_1),, 8 1 1 1
nys-nys = 7Y (nyn,)32 (4s'+4)N A o A 2 2r'41) (2r'+2)
(2r'+2) (47" +3) (45'+40M
—1]. 2.23
X (2r'+3) (4r'+4) (45’30 ] ] @23
T
The relation (2.23) has interesting consequences to be dis- A and B occurring in above equations are
cussed in Sec. IV. .
A =tan""(A/A), (2.30)
C. Tisn and T4, B=tan"'[A;/(1+Ag)] 2.31)
For small values of n;, T, ,‘,’ls_,, ,s is expressed in the fol-  where
lowing alternative form with the help of the relations (2.5)
and (2.8): Ag= |2 |Rg=— |2 |2 (2.32)
2 ny ny | (A24A?)
d : 1 \ ny 1
Tnl-n2s=Nn1Nn2n2n2'nlnl- -'2" —EI-K and
Py 2 -~ 2 A
() - A= |— |Aj=|— |——; 2.33
X 2 : Ig}f [A21+A)" 7 —cc], ™ |n, (A*4+4%) =
h
2.24) when n,— o« we have ~ ,
where Tls-nzs =N1N,,2n2n2!exp(2AR )YA,O (2.34)
2 ~ and
A=—=A (2.25) ~ .
hy Th_nzs=4N2N,,2n2n2!exp(2AR X Yk,0+7YA,1) , (2.35)
and c.c. stands for complex conjugate. From (2.24) we ob- h
tain where
2 Yio=|A|%in(—24 —2A;) (2.36)
2
Tl.\' nys = N N n2n2 7 XXA’O (2.26) and
and Yy 1=2[— | A|3in(—34 +2A;)
) 1 i 1 + | A |%in(—44 +2A;)] . (2.37)
TS, nys =4N2Ny non,! BN Xao+ ) - X1 |
(2.27) III. EXCHANGE-SCATTERING AMPLITUDE
In the case of exchange scattering for the n,s-n,s tran-
where sition, Joachain!® has observed that if one neglects multi-
Xpo=|A| 2|14A| nz-lsin[— 24 +(n,—1)B] (2.28) ple scattering terms one can tentatively write, to first or-

and

Xy =—2|A|®|[14+A|™ 'sin[—34 +(n,—1)B]

ny—1

+(ny—1)|A|* | 14+A|

Xsin[ —44 +(n,—2)B] . (2.29)

der in the interaction 1/7;,, the following expressions for
exchange-scattering amplitude:
Tols- ,,ZS_(27T)"3(exp(iEZ‘FZ)\P,,Z(rl) |rit
X|exp(iE1‘?1)Wnl(r2)). 3.1

Taking the Fourier transform of 1/r;; in momentum
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space one gets for the 1s-1s transition
Tl.r 1s —'Tls ls()"l)}"Z) | A=Ay=1

4

gl A PR (3.2)

where
18 8
4A1A, OA; OA,

A= (3.3)

Following the procedure of Lewis!” we can write the func-
tion A4 occurring in (3.3) in the following form: :

T dp = —27%CD ,
PUM+B—K P +(B—K1)]
(3.4)
where
c=1/X, (3.5)
D=—tan"(X/B)=— % +tan~'(B/X) , (3.6)

|

ex
Tn 1518

2 |7
17.2 (n1n2)3/2
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B=A(k3+A3)+ Ay (k3 +AD), (3.7)
and
=Ak?+A)(k34+AD)
+(AIk3 Ak K+ A3 —k2—2D) . (3.8)

The above relations lead to the following useful compact
form for X2+ %

X2 4 BP=(k3+ADK3+AD[AZ+ (M +2,)7] . (3.9)

A. Exchange-scattering amplitudés T,‘,”l‘,_,, 58

for ns-n,s transition

Using (2.4) for the hydrogenic wave function we can
calculate exchange-scattering amplitude T,f’l‘s -nys DY taking
appropriate parametric differentiations of the characteris-
tic function glven by (3.4) [as in the derivation of the rela-
tion (2.13) for T¢ 151, s] and consequently of the quantities
C, D, B, X?, and 1/(X2+Bz) We obtain

4M A AN Ao (r +2)+20%r +1)
2 [ (gr r—l)+B_0 ‘ A2+}"2)Fr——1+}\' [ : +%r+2 F,+ — A2 +(r +1)(r +2) |F, r+1
r
N 2M(r +2)? 2MA—Ay) ~ 5 (M —A)(r +2) -
’_—“‘Az r+2 _‘—“‘Az r+1— T r+2
4 4(r +2 ~
Gr+1+ A2 Gr+2+——r'Ai2__)—Gr+3 B [""(A'l_kz (r+1) r+1—(7\.1—A2)(r +1)F,+2]
0
4 ~
+“BTA3'Dn1n2[7»17\2F0+%7»F1—%()&1—7»2)171+Gz] s (3.10)
0
where
A+A A
__T 1T -18
Dy, =—~ +tan A = tanT o, (3.11)
~ (n, ) (n ) )
F=3 3 (p1—p)F, , (3.12)
Py Prp=r—p;
(n) _(ny)
G=3 3 p:F'F, (3.13)
Py Pr=r—p,
1 3 (—=1)r! 1. 1A (r+1) 1A
T T Toyon el e e o e Ly 614
and
Bo=k?+A3=k3+A%. (3.15)

The quantities F, and g, occurring in (3.10) are defined by (2.14) and (2.12).
For infinitely large values of n,n, and for a not very small value of A, the expression for exchange-scattering ampli-

tude reduces to the form
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2 1 1 © &_ 2 © © 4(7‘ +2) © _17'__ 4 0

T'?‘(s'"zszn;{(n1nz)3/2 »3_0ng“1+ Bs AFZi A D 420650 = Gl + A? T2 B3A’ GF |
(3.16)

where ,
Ge=f"o—(r+1f\7, . (3.17)

In (3.17) £\7 is given by

(3.18)

(r) 2’ 1 2 idyr, —igyr+2r,itd
f7 =;'(_r+—2;—)'——277; 0 (1+e*®)(1+e~"?) e'™d¢

(2r +27—1N '
. 3.1
(2r + 20 l(r 4270 (3.19)
The quantity F,° occurring in (3.16) was already given by (2.20). We have also

=23r +27

Fe=fr_,. (3.20)
B. T;§-2s and T?s(-éls

Using the relation (2.4) to generate the 2s-state wave function and the relations (3.3) and (3.4) we obtain the exact ex-
pression for the exchange elastic scattering amplitude in first-order approximation for the metastable 2s state of hydro-

gen:
ex 1 1 3 1 3 |+
as=—7 |1+ | [1+755— |4
BE Tt | 2 90 23% | a=p=122
sz, 7 6], 8[2_ 2 3 2
472 B @ ad ot B A a o &
1 19 9 15 6 312 3 1 1 1
+l33 _A2+A4 a o +B4 A2 2AY a +16BS _A2+A4”
Dy 116 1 1 16 9 3 2 3
— | SS5+5 88—+ |+ |- 1+5 -7
A BZ AZ +B3 AZ A4 B4 ‘A2 2A4
31 |3 1 3
= -t , 3.21
TR |2 ar T oA } 3.21
where
a=1+A%. (3.22)
In a similar manner we obtain the inelastic eXchange-scattering amplitude for the 1s-3s transition: ’
ex 1 4 2 3 2 9% |-
3= = 7 l+553+55737 |4
1s-3s 3,‘/:_5 77_4 3 87\2 + 27 67\,% A1=1, }y2=1/3
__ 8 Jfrz2z)_ 3 5 1 1349 9 7 1
3V3a% | | By 32 203 22} ab B2 8 |2A2 200 20} o
Sy st 9 3, 111 29 5 1
B2 | 4A2 T A} 4ap B8ad | BE 8 |3A3 9AF 6AS o
11 {_ 5 23 175 35
255 81 A2 " 6AF  48AS  16A8
Dy | 1| 27 A3t 9 | L1 19 25
Ay | B2 | 1603 | 4B} 4A% " 4A¢ 35| 3 8A3  12A8  96A§
1 5 17 . 5 95 35
_=2_ + — — , (3.23)
T Sag | T3 T 1282 Tand T 4gal  48Ad ]
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FIG. 1. Reduced direct differential cross section do?/dQ=[(nn,)*/g}1A*do?/d Q. for excitation of the n,s (n,=2—5) state of
hydrogen from the ground state (n;=1) by electron impact, plotted as a function of momentum transfer A at 300 eV incident electron
energy.

: _525—55

T st35 V2sas

10°

Reduced

1074

5 I | | 1 | | I
1
0 1 2 3 4 5 7 9 10

A
FIG. 2. Reduced do?/d Q) vs A in the case of 2s-n,s (n,=23—>5) transition for 300 eV incident electron energy.




30

where
A%=(1+%)‘2A2 , (3.24)
ap=1+A}. (3.25)

The expressions D,, and D;3; occurring in (3.21) and
(3.23) are obtained from that of D, ,, [see (3.11)] by set-

ting A=A, = % and A =1, }uzz%, respectively.

IV. NUMERICAL RESULTS AND DISCUSSIONS

It is evident from (2.13) that direct-scattering amplitude
T,‘fl s-n,s multiplied by the factor (n1n,)*"*(A%/g;) and
g1=—2A/(A24+A?)? tends to a constant value when
momentum transfer A becomes extremely large in the case
of electron—hydrogen-atom collisions. Ir. Figs. 1—3 we
plot the reduced do?/dQ=(n;n,)*(A*/g})do?/dQ for
direct scattering in electron-hydrogen collisions. These re-
duced differential cross sections are represented graphical-
ly as a function of A for 1s-ns (n=2—5) and 2s-ns
(n =3—75) transitions in Figs. 1 and 2, respectively. It ap-
pears from these diagrams that the number of maxima (or
minima) depends upon the initial-state quantum number
and is rather independent of final-state quantum number.

4
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In Fig. 3 we plot the reduced do/dQ versus A for the
transition 9s-10s (involving large quantum numbers) us-
ing the general formula (2.13) for T,‘,ils_,,zs. In Fig. 3 and

also in Fig. 4, which involves infinitely large quantum
numbers characterizing the transition, we find the pres-
ence of two series of maxima. The height of certain max-
imum of one series (called the first series) is always less
than that of the adjacent maximum belonging to the other
series (called the second series).

In Fig. 4 we plot reduced do?/d Q= (nn,)*A%do?/
dQ versus 1/A for the transition n;s-n,s when both n;
and n, are infinitely large using the formula (2.22) given
in the form of a single integral over finite real domain,
which is valid except when A is very small. Now the sim-
plified formula (2.23) is equivalent to the above-
mentioned formula defined by (2.22). The first term in
the square brackets of (2.23) for T,‘fls_,,zs, sin?(4/A), is an
oscillating quantity having positive sign and the remain-
ing portion (expression as the difference of two quantities)
in the square brackets is of opposite sign and of magni-
tude less than 1 if A is not too small. In the above case
minima and maxima of Ty s-n,s are of opposite sign. As

a consequence of this fact the minima (or maxima) of
T,‘fls_nzs lead to the first series (or the second series) of

10

10° | | 1 I | [
00 02 04 06 08 10

FIG. 3. Reduced direct differential cross section defined as in Fig. 1 for the 9s-10s transition as a function of momentum transfer

A at 300 eV incident electron energy.
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maxima of do/d} related to square of T,‘,’ls_,,zs. Keeping

in mind the above discussion we find from (2.23) and Fig.
4 that the reduced do®/dQ monotonously decreases
beyond A=8/7 and there is no maximum belonging to
the first series beyond A=A’'=4/7. From (2.23) we fur-
‘ther find that the maxima are equally spaced when plotted
against 1/A. The spacing between one maximum (belong-
ing to the first series) and the adjacent maximum (belong-
ing to the second series) is 7/8, when the differential cross
section is plotted against 1/A. The above feature of equal
spacing holds quite well in the case of Fig. 4 and also ap-
proximately in the case of Fig. 3. This spacing between
two adjacent maxima is 0.392 829 and 0.4352 in Figs. 4
and 3, respectively, compared to the above theoretical
value 7/8=0.392699. The position of the last maximum
of the first series with respect to A is at A'=1.144763
and 1.144 732 in Figs. 4 and 3, respectively, where the cor-
responding theoretical values of A is A’=4/7=1.273239.

A study of the relations (2.13) and (3.10) shows that A’
times the term of O(1/f,) of exchange-scattering ampli-
tude is “equal” to B, (= k2 +A3=k3+A3) times the
direct-scattering amplitude for the transition n;s-n,s
(nys4n,). The term of O(1/fB,) corresponds to the
Ochkur approximation. The above ‘“equality” does not
hold in the case of elastic scattering due to the presence of
the term involving 8, ,, in (2.13). In Fig. 5 we display

two curves, one showing the variation of A* times the
elastic direct differential cross section with change in A

FIG. 4. Reduced direct differential cross section defined by
%(nlnszsd 0/dQ [equal to the square of the integral occur-
ring in (2.22)] plotted as a function of 1/A for the n,s-n,s tran-
sition where both n; and n, are extremely large in the case of
electron-hydrogen collision at 300 eV incident electron energy.
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FIG. 5. Reduced differential cross section for 2s-2s elastic
scattering of electrons by atomic hydrogen as a function of
momentum transfer A at 300 eV incident electron energy. —-—,
the variation of A*(nn,)* times elastic direct differential cross
section with change in A; ——, the dependence of Bi(ni,ny)?
times exchange differential cross section on A.
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FIG. 6. Reduced exchange differential cross section

do*/dQ=[(nn,)*/g?1B3do*/dQ for 2s-2s elastic exchange
scattering of electrons by H atoms as a function of momentum
transfer A at 300 eV incident electron energy for the following
cases. , considering term of O(1/8B,) in the exchange-
scattering amplitude; ——, for terms of O(1/8,) and O (1/85)
in the exchange-scattering amplitude; — — —, calculated from
Eq. (3.21) which incorporates terms of all possible order in 1/5,.
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and the other showing the dependence of B3 times ex-
change differential cross section on A in the case of the
2s-2s transition. In Fig. 6 we have plotted reduced ex-

change differential cross section versus A using the ex-
" pression given by (i) the particular relation (3.21) for 2s-2s
transition consisting of terms of all possible order in
powers of 1/, (ii) the term O (1/f,) of the general rela-
tion (3.10) corresponding to the Ochkur term, and (iii) the

full general relation (3.10) consisting of terms of O (1/8,)
and O(1/B%). In the case of Fig. 6 the reduced do*/d
is defined as (n,n,)*(B3/g3)do™/dQ. As is evident from
Fig. 6, the correction to the Ochkur term is quite appreci-
able as A increases.

In all cases considered in this paper incident electron
energy is taken to be 300 eV. The physical quantities ap-
pearing in this paper are expressed in atomic units.
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