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A simple series-expansion form for the direct-scattering amplitude (involving real quantities)

T„,„, is given in the case of the nls-n2s transition in the electron —hydrogen-. atom collision.
1 2

Another form for T„,„„consisting of few terms, is derived when the initial-state quantum num-
1 2

ber nl is small. When the quantum numbers nl and n2 are very large, the dominant part of T„",„,
1 2

can be reduced to a single oscillatory trigonometric term, and this leads to some interesting features
of the differential cross section. Simple integral forms for T„,„,in the above-mentioned cases are

1 2

also given. Expressions are further obtained for the exchange-scattering amplitude T„'",„„which
1 2

includes terms of orders O(po ') and O(po ), with po ——k &+nz ——k22+n ~, where k~ (kz) is the
initial (final) electron momentum. We also derive exact expressions for T2", 2, and Tl", 3, . All calcu-
lations are done in the first Born approximation.

I. INTRODUCTION

A general expression of the direct-scattering amplitude
for the nis n2s trans-ition is presented in the form of a
series "expansion" expressed as a function of momentum
transfer 5 in the case of the electron —hydrogen-atom col-
lision. This series converges rapidly as 6 increases. The
different coefficients of the above expansion are deter-
mined by evaluating certain series characterized by n ~ and
n2 For larg. e values of n, and n2 these coefficients are
reduced to very simple expressions. The present calcula-
tion for the scattering amplitude also holds for transitions
involving high Rydberg states (having large quantum
numbers n) of atoms other than hydrogen since these
states can be assumed to be hydrogenic. The scattering
amplitude can be alternately expressed as a double integral
over the range 0—2m. for finite values of n i and n 2 and as'
a simple form of single integral only when both n i and ni
become infinitely large and b, is not too small. For
n~ —+00, n2~oo, and 6 values that are not small the
scattering amplitude can also be expressed in terms of a
dominant part, which is proportional to sin (4/5), and
the remaining part, consisting of small terms. This shows
that for not very small b„different maxima in the expres-
sion for the scattering cross section are almost equally
spaced when plotted as a function of I/b, and further-
more, the .cross section monotonously decreases for 5
about greater than 8/~ All the m.axima of differential
cross sections in these cases can further be grouped into
two distinct series of maxima, which will be discussed in
detail in Sec. IV. We also give some compact expressions
for the direct-scattering amplitude for 1s-ns and 2s-ns
transitions involving few terms both for finite and infinite
values of n. We mention that Saha and Sil' have ex-
pressed the nis n2s scattering amp-litude in the form of a
hypergeometric function where the variable is a compli-
cated quantity involving four factors which are complex

quantities and depend upon 5, nq ', and n2 '. In con-
trast, our results are explicitly expressed in terms of real
quantities having a simple dependence on A. Saha and
Sil' have not done any detailed numerical calculations
based on their results, as was done in this paper. We also
note that Massey and Mohr have given a different form
of the scattering amplitude in the particular case of a
transition from a ground state to an excited state. In this
case, Landau and Lifshitz have used parabolic coordi-
nates to express their result in terms of appropriate para-
bolic quantum numbers.

It may be noted that the evaluation of the exchange-
scattering amplitude for the simplest system of an elec-
tron scattered by a hydrogen atom in the first Born ap-
proximation is much more difficult than that for the
direct-scattering amplitude, as it involves six-dimensional
integrations which have been evaluated in closed form by
Corinaldesi and Trainor in the case of 1s-ls, 1s-2s, and
1s-2p transitions. Using their procedure we calculate
exchange-scattering amplitudes for the particular cases of
2s-2s and 1s-3s transitions. The above-mentioned ex-
change integrals have been simplified by Ochkur by ex-
panding the exchange-scattering amplitude (given in
first-order formulation) in inverse powers of the momen-
tum of the projectile electron and retaining terms of
lowest order. The general formula for first-order
exchange-scattering amplitude for the n ls-nzs transition
as derived in this paper is expressed in a form so as to in-
clude terms (depending upon momentum transfer) of
O(po ') and O(po ) where po k, +ni ——k2+n——i
We may point out that the derivation of explicit expres-
sions for both direct- and exchange-scattering amplitudes
in the case of n&s-n2s transition is carried out by taking
appropriate combinations of repeated parametric differen-
tiations of a "characteristic function. " The above-
mentioned term of O(Po ') corresponds to the usual
Qclikur approximation. Shakeshaft has given an ap-
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proximate form for the correction term (in first-order cal-
culation) to the Ochkur approximation, which corre-
sponds to a term of 0(PO ) as evaluated in this paper.
He has further approximately evaluated second Born
correction terms in the case of 1s-Is and 1 s-2s transitions
and has shown that these correction terms have greater
contributions than the usual Ochkur term, especially in
the forward direction. In our numerical calculation we
have found that the term of 0 (Po ) (as determined in the
present paper) receives increasingly significant contribu-
tions compared to the usual Ochkur approximation [of
0 (Po ')] term as the momentum transfer increases. Some
investigators '0 have improved upon Ochkur's method
by adopting Glaubcr s clkonal appl ox1IIlat1on proccduI'c
so as to account for the usual distortion of plane waves as
used in Ochkur's approximate treatment. Byron and
Joachain have investigated the range of validity of first-
order calculations (as done in this paper) as compared
with the numerical calculation based on the eikonal ap-
proximation (which contains contributions from all orders
of perturbation theory) for the inelastic exchange-
scattering process e + He(l 'S)~e + He(2 5). They
have observed that the eikonal correction to the first-order
Born approximation result (as discussed in this paper) de-
creases with an 1ncI'case 1Il c1tllcl pI'ojcctllc energy o1
scattering angle. At 500 CV incident electron energy they
have found that at 10' and 15' the eikonal results agree
well with the Born approximation, although at smaller an-
gles, 0' and 5', the differences are quite appreciable.

Recent advances' ' in experimental techniques for the
production of polarized electron projectiles, polarized
atomic targets, and the detection of polarization of the
colliding system and sometimes also of the emitted pho-
ton after the collision enable us to investigate experimen-
tally both (spin) exchange scattering and direct scattering
in electron-atom collisions. Laser-excited atomic beams
also provide us with a method * to study scattering pro-
cesses (superelastic) for which ni &nz in nis-nzs transi-
tion.

The direct-scattering amplitude for the s-state transi-
tron n&s~n2s 1n electron —hydrogen-atom collision is
g1vcn by

function, E„,is

In (2.4) we have

(n i —1)!

(&1—1 —S'i )lail(S i+1}! (2.5)

Ai ——I/ni . (2.6)

A. Direct-scattering ampIitude T„,„,I 2

for the n ~s-n2s transition

Using the relation

~01

i h. ( ro—r &)

=(2m} I e ' 'd rod r,
P0(

(2 )
1 4ir lk'I i APid~-

Q2

(2.7)

and those given by (2.1) and (2.4) we obtain for n i &n1
1

f

2+622
X„X„n~n2n1. n2.

n& —1 n2 —I ]7~+72,+ &

p) =0p2 =0

Now a typical term of the associated Laguerre polynomial
W„', (2r A, i ) in Eq. (2.3), r~e ' can be written6 as

( —1)i'(d/dk, i}"e '. This enables us to express qI„,, in

the following form involving parametric differentiations:

n) —1
(&i ) d -r1, ,

Pj

V„=N„,nini! g Fp, e ' . (2.4)
pl ——0 1

T„,, „,, =(2ir) J e 4*„(ri) (2.&)

which involves repeated parametric differentiation of the
characterlstlc fililctloil giveil by (2.7), w11ele A, iil (2.8) is
glvcn by

ql„, =X„,e 'W„' (2rA, ,), (2-3)

where the normalization constant for the n, s- t tse awave

In (2.1) %„(ri) and V„(ri ) are initial and final bound-

state wave functions and I/r0I —11/r0 is the interaction
potential, and the momentum transfer is

(2.2)

The hydrogenic s-state wave function 4„,, is given by

Let us define the function

d
2ih dA,

(2.9)
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A= —I/(A, +ih) .

Xsin (I+@)tan (2.12)

We note that the 1/ro term of the interaction potential
does not contribute to the integral of Eq. (2.1) or to the
expression given by {2.8) because of the orthogonality of
'Il„,(ri ) and %„,(r i } when ni&nq. However, the term in-

volving 5„,„ in (2.13) corresponds to the 1/ro part of the

interaction potential which contributes to scattering am-

phtude when the initial and final-bound-state wave func-
tions are identical. In (2.13) g, +i is defined by the rela-
tion (2.12) and the associated numerical coefficient {in-
dependent of b, ) is given by

(2.14)
P~ P2=~ —Pl

2&6 (nin2) ~

y+n2 —2
(n), n2)

gZ+iI'Z
r=0

The direct-scattering amplitude can now be written as the
following series summation:

For small values of ni and n2, the relation (2.13) for
T„",„,is simple enough. We can also represent T„,„,n (s-n2$ n )s-n2s

by the following form involving the double integral
(ni~n2):

(2.15)

where

A "+'(r + 1)!E,

2 n& —1

Nl
2

712

r

n2

e —Ige lZdy d~
2

(2.16)

(2.17)

(r+1)!
(pi+1)!(r+1—p', —1)!

1 2~ —i (P2+1—r —1+P
&
+1—1)z —(P —P' —1+»X

X e dz
2m 0

In (2.17) we assume k & 2. Keeping in mind the relations (2.14) and (2.5) we have also

1 (n, —1)! 2 'i n! P2+1

2(r+1)! (n, —p, —I)!p,! n, (n, —q, —I)!(p,+I)!
P)zP) ~Pg

r

1 2' 2n

2(r +1)! o o

—lg

Pl 1

.
n, —1

.

1+ 2
n2

e
—iz (e i++ e iz)i'+ ie —lge izd~ d+/(2 )2

Be Tgg g yg g fOf' pl 1 y8& ~ i|N
d

1

When both ni and n2 are infinitely large and r
(=p, +pz) is small compared to n, or n2, F„definebdy
(2.14) and {2.5) can be replaced by

keeping in mind the fact that ( n; —1)!/[n, . '(n,. —1
—p;)!]=1 for p; «n; (i=1,2). In the above case I.
occurring in (2.15) is replaced by I." (=L for ni, n2~ oo

or equivalently A, ~O). Using (2.16), (2.11) for i(,~0, and
(2.19) we can write

V

i 2~ Si

2d 0 6 2I exp —cos e'~d &/2m (2.21)

X(1+e 'i')" +'e'aditi (2.19)

2 "+ (2r +1)!!
r!(r+2)! (2r+2)!!

(2.20}

(1+ 'y)"+'
2n [(ri+ 1)i]2 o if the contribution from terms for values of

r «n i +np —2 (whele n i ~ oo, n2 —+ oo, OI A~0) to tile
exact value of T„,„,is much greater than that from then &s-n2S

remaining terms in (2.13},and this is possible if b, occur-
ring in the expression for (2.12) and (2.13) is not very
small. In the above case the direct-scattering amplitude is
given by the following single integral for n&, n2~ {x}..
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~d
n]s n2s

1 1

n 6 (n|n2) i

8 cos (P/2)cos cosP dP/2m .
0

(2.22)

We obtain another reduced form of T„,„,for infinite-
1

"
2

ly large values of ni and nz or equivalently A, ~O by
I

keeping in mind the following facts. In the expression for
F„given by (2.20) the variation of the factor
(2r+1)t!/(2r+2)!! with r becomes very small beyond
some very large value of r, say s (=2s'+ 1). The quanti-
ty 1/[r!(r +2)!] in (2.20) tends to the value 1/[(r + 1)!]
when r becomes large. Using the above facts, the relation
tan '(b, /A, )~n./2 as A, ~O, and the equations (2.12),
(2.13), and (2.20), we obtain approximately when b, is not
very small and for A, ~O

2f +2
2 1 (4s'+3)!! . 2 4 ' 1, 8 1 1 1

sin —+ —1 '
(n, n ) (4&'+4).". 5, 6 2 (2r'+1)! (2r'+2)

X, , ", "—
1

(2r'+2) (4r'+3)!! (4s'+4)!!
(2r'+3) (4r'+4)!! (4s'+3)!! (2.23)

The relation (2.23) has interesting consequences to be dis-
cussed in Sec. IV.

C. Ti, and T2,

3 and 8 occurring in above equations are

2 =tan '(b. /A, ),
8 =tan '[Ai/(1+AR )],

(2.30)

(2.31)

For small values of n„T„,, „,, is expressed in the fol-

lowing alternative form with the help of the relations (2.5)
and (2.8):

2

where

Ag ———
n2

2

(A,'+ b, ')
(2.32)

d n2
~n -~ s =&n &n n2 2l i ]. t1 2 1 2

1

2ih and

n( —1 p&
(ni)

pi ——0
[A (1+A) ' —c.c.], n2

when n2 —+oo we have

2

(I,'+ b, ')
(2.33)

where

(2.25)
and

T&, „,,——N&N„, n2n2!exp(2A~ ) Y~ 0 (2.34)

n2

and c.c. stands for complex conjugate. From (2.24) we ob-
tain

T2, „,——4N2N„, n2n2!exp(2Ag )( Yg 0+ —, Yg i),
where

(2.35)

d n2
Tis-n s =NiNn

2 2 2

2
1—&~,0 and

Yx0 ——
I
A

I
sin( —2A —2Az) (2.36)

and

d n2
~2s-n s 4+2+n n2n2.

2 2 2

2
1 1n2

&~,0+ 2 2 &~, i

Y&, =2[—
I
A

I

'sin( —3a+2A, )

+
I
A

I
sin( —4A +2Az)] . (2.37)

where

X~,o=
I
A I'

I
1+A

I

' »n[ —»+(n2 —I)&]

and

X„=—2IAI'
I

1+AI"' '»n[

+(n2 1)
I
A14

I
1+A

I

&&sin[ —4A +(nq —2)B] .

(2.27)

(2.28)

(2.29)

III. EXCHANGE-SCATTERING AMPLITUDE

In the case of exchange scattering for the n &s-n2s tran-
sition, Joachain' has observed that if one neglects multi-
ple scattering terms one can tentatively write, to first or-
der in the interaction 1/r, 2, the following expressions for
exchange-scattering amplitude:

T„'",, „,=(2m. ) (exp(ik2. r2)%„(r, )
I
r,2'

XI exp(ik&. r&)+„(r2)) . (3.1)

Taking the Fourier transform of 1/r&2 in momentum
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space one gets for the 1s-1s transition

Tl -1 Tl -& (~1 ~z)
l &, =z, =1

where

(3.2)

P=A)(k )+Az)+Az(kz+A)),

X =b, (k(+Az)(kz+A))

+(Afk( —Azkz)(kz+k, , —k, —Az) .

(3.7)

(3.8)

4A, ]A,2 BA, g BX2
(3.3)

Following the procedure of Lewis' we can write the func-
tion A occurring in (3.3) in the following form:

d = —2m CD,
P'[~f+(p —kz)'][~3+(p —1 i)'l

X'+p'=(k ]+A,zz)(kzz+A, z)[6z+(A, , +Az)z] . (3.9)

A. Exchange-scattering amphtudes T„'",„,l 2

for pl ls-El2$ transltlon

The above relations lead to the following useful compact
form for X +P:

where

D = —tan-'(X/p) = ——+tan-'(p/X),
2

(3.4)

(3.5)

(3.6)

Using (24) f« the hydrogenic wave function we can
calculate exchange-scattering amplitude T„",„,by taking

appropriate parametric differentiations of the characteris-
tic function given by (3.4) [as in the derivation of the rela-
tion (2.13) for T„",, „,, ] and consequently of the quantities

C, D, p, X, and 1/(X +p ). We obtain

~ex
~ n&s-n&s

2 1

H (n&nz) ~

(g,F„,)+ z (b, +A, )F, (+A,
po

' "
po

4A, )A,2 + —r+2 E,+
Q2

4A, ~Az(r +2) +2A. (r + 1)
Q2

+(r+1)(r+2) F„+,

2A(r +2)' 2~(~z —~1) — (~]—&z)(r +2)+ ++2+ F, ) —2
Q2 +2

I', +2

4A, 4(r +2) &r
Gp+]+ z G +z+ z G„+3 + z [—(A~ —Az) (r +1)F„+&—(A& —Az)(r+1)F„+z]

D„„[A)A zF+o.—,
'

AF( ——,
'

(A (
—Az)F)+ Gz], (3.10)

where

) ~j, +~2D„„=——+tan-'
nln2

= —tan-' —, (3.11)

F„=g g (P) Pz)F~~' Fpz'—
Pl P2 ——r —Pl

(nl ) (n&)6,= g g P)PzFp,
'
FJ,

'

(3.12)

(3.13)

h, =— (r+1) cos (r +2)tan
(gz+ gz)1/z (3.14)

Po ——k)+iz ——kz+A, ( .2 2 2 2 (3.15)

The quantities F„and g„occurring in (3.10) are defined by (2.14) and (2.12).
For infinitely large values of n ~, n2 and for a not very small value of 6, the expression for exchange-scattering ampli-

tude reduces to the form
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~ex
n ]s ngs

where

g„F„"&+ 2 b, F„&+(r+1)(r+2)F„"+i—Gr"+i+ '

2 Gr+3 2 3 G2
4(r +2) „m 4

2.(n)n2)'~ Po Pp 2 pb,
(3.16)

G."=f'"='o (r —+ 1)f'"=' i

In (3.17)f,"is given by

2P 1 2
(1+ ip)r(1+e ip')—r+2reirpdy

r!(r+2r)! 2n

(2r +2~ 1)!!—
(2r +2~)!!r!(r+2r)!!

The quantity F„occurring in (3.16) was already given by (2.20). We have also

F,"=f".=i.

(3.17)

(3.18)

(3.19)

(3.20)

B. Tq", z, and T~", 3,

Using the relation (2.4) to generate the 2s-state wave function and the relations (3.3) and (3.4) we obtain the exact ex-

pression for the exchange elastic scattering amplitude in first-order approximation for the metastable 2s state of hydro-

gen:

1 1
2s2 4 +

~)~2 ki ——2,2
——1/2

8 2 7 6 8 2+ +
p 2 3 4 p2 g2

2 3 2——+
Q ~2 ~3

1 19 9
p3 g2 g4

6 3 2
2 p4 Q2

3 1 9 1

2a4 a 16 P'
1 1

2 g4

where

a=1+6

D22 16 1 1 16 9 3

p2 g2 p3 g2 g4 p4
8—

3 1 3 1 3

8 p' 2 ~2 2~4

—1+ 2 3
g2 2g4

(3.21)

(3.22)

In a similar manner we obtain the inelastic exchange-scattering amplitude for the 1s-3s transition:
r

4 2a 2 a'
»~2

8 1 27
3v3m2

'

pp 32
3 5

2(xp 2{xp
2+ 3

1 1 3 9.', +P', 8 2~
9 7 1+

2+p 2cxp Rp
2 3

1 1 15 1 9 3 1 1 11+ 3
—— 2+ 4+ —

2 +
po 2 4bo ho 4ap 8ap pp 8 3b,o

29 5

9ho 6ho CXp

1 1

2Po3 81
5 23 175 35

g2 6g4 48g6 16g8

1 27 1 31 9 1

Pp 166,p 4Pp 4b, p 4b p 3Pp
3— 1 11 19 25

8ho 126p 96ho

1

54pp

5 17 5 95 35
2+

12~p 4~o 48~o 48~o
(3.23)



FIG. l. Reduced direct differential cross section do /dQ=[(n~n2) /g~]h do /dQ for excitation of the n2s (n, =2—5) state of
hydrogen. from the ground state ( n ~

——1) by electron impact, plotted as a function of momentum transfer 6 at 300 eV incident electron
encl gy.

FIG. 2. Reduced d'0~/dQ vs 5 in the case of 2s-n2s ( n2 ——3—5) transition for 393 eV incident electron energy.
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60——(1+—, ) b.

&o= &+no (3.25)

The expressions D22 and D ocTh 2q an i3 occurring in (3.21) d

2 —2 an i = &~ ~2= 3 ~ respcct1ve&y
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and the other showing the dependence of Po times ex-
change differential cross section on 6 in the case of the
2s-2s transition. In Fig. 6 we have plotted reduced ex-
change differential cross section versus 5 using the ex-
pression given by (i) the particular relation (3.21) for 2s-2s
transition consisting of terms of all possible order in
powers of 1/Po, (ii) the term 0(1/Po) of the general rela-
tion (3.10) corresponding to the Ochkur term, and (iii) the

full general relation (3.1O) consisting of terms of 0(1/Po)
and 0(1/Po). In the case of Fig. 6 the reduced do'"/d0
is defined as (nin2) (Po/gi)da'"/dA. As is evident from
Fig. 6, the correction to the Ochkur term is quite appreci-
able as 5 increases.

In all cases considered in this paper incident electron
energy is taken to be 300 eV. The physical quantities ap-
pearing in this paper are expressed in atomic units.
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