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The rearrangement collision problem of positronium formation into arbitrary n, l, m states by pos-
itrons from hydrogen atoms in the ground state has been investigated employing the first Born ap-
proximation and the-first-order exchange approximation. .It is shown that for fixed I, m, n times
the asymptotic cross section, if multiplied by the factor g 0(1 an —2), gives a good estimate of
the n cross section of the corresponding n, l, m state when n is not too low. For s state the first-
order-exchange-approximation results are greater than those of the first Born approximation. The
momentum-transfer cross sections in the first Born approximation overestimate the first-order-
exchange-approximation results throughout the energy range considered.

I. INTRODUCTION

Recent discoveries of the 0.51-MeV positron annihila-
tion gamma rays coming from' solar flares and from the
direction of the center of our galaxy have led to a consid-
erable interest in the problem of positron-atom collisions.
A knowledge of the cross sections of positronium (Ps) for-
mation in the positron —hydrogen-atom collision may pro-
vide much information regarding the environment at the
site of the origin of these gamma rays. Direct measure-
ments of the cross section for Ps formation into excited
states have now become possible with the development of
more advanced technology.

In the present work we intend to study the following
rearrangement collision process:

e++H(100)~Ps(n, l, m)+H+ .

We present our results in Sec. V and make our concluding
remarks in Sec. VI. Unless otherwise noted, we use atom-
ic units throughout our discussion.

II. THEORY

Let r& and r2 respectively denote the position vectors
of the incident positron and the target electron relative to
the proton which is assumed to be infinitely heavy and
situated at the origin of the coordinate system. The posi-
tron on collision captures the target electron to form a
bound state (positronium) in the final channel.

The time-independent Schrodinger equation is

(H E)%=0 . —

The Hamiltonian II of the system can be expressed in ei-
ther of the two forms:

In view of the practical difficulties in carrying out sophis-
ticated calculations for the Ps formation into highly excit-
ed states we here employ the first Born approximation
(FBA). In addition, we also present results in the first-
order exchange approximation (FOEA) which is an im-
provement over the FBA in that all terms of the first or-
der in the interaction potential as obtained from the two-
state approximation are retained in the expression of the
scattering amplitude.

It is well known that the FBA does not take into ac-
count the effect of the lack of orthogonality of the initial
and final bound-state wave functions. The FOEA, on the
other hand, makes allowance of this nonorthogonality of
the wave functions and thus leads to a more consistent
treatment of the scattering process.

The organization of the paper is as follows. In Sec. II
we give the general expressions of the scattering ampli-
tudes for Ps formation into an arbitrary n, l, m state in the
FBA and FGEA. In Sec. III we discuss the reduction of
the integrals occurring in the expressions of the scattering
amplitude. In Sec. IV we consider the case when n~ oo.

2p; " 2a " r2 x r~

1 2 1 2 1

2 ~ 2b
(2b)

1 2 —1

2b " x P(x) =efP(x), (3b)

where e; and ef are the eigenenergies of the initial hydro-
gen atom and the final positronium atom, respectively.

In the above expression p;,pI are the reduced masses of
the system in the initial and the final channel; p; =1 and

pf =2. We define the vectors p and x by p =( r i+ ri)/2
and x = r2 —r &. The reduced masses a and b in the initial
and final bound systems are 1 and —,', respectively.

The initial and the final bound-state wave functions
satisfy the following equations:

1 2 1
g(r2) =~;g(r2),

2a 2 r2
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In the two-state approximation the total wave function
4 can be expanded as

%=/(r2)F(r, )+P(x)6(p) .

As usual the total energy is given by

The total cross section (TCS) is evaluated by integrating
the above expression over the entire solid angle. The
momentum-transfer cross section (MTCS) may be calcu-
lated from the differential cross section by the relation

o (i~f)= f 1 — cos8 dQ.odQ E;
2IJ, s

(5a)
Several approximation methods have been developed in
order to calculate g(8) in Eq. (9), the simplest of which
results from the first Born approximation.

where K; and Kf denote, respectively, the initial and fi-
nal momenta.

In order to obtain the transition matrix element, the tri-
al wave function in Eq. (4) is substituted in Eq. (1). Then
multiplying both sides of the resulting equation by 1('( rz)
and performing the integration over r2 we obtain, em
ploying Eqs. (2a), (3a), and (5a),

A. FBA

g FBA(8) exp( i Kf—p+i.K ri)P.'( x )
2m

In the FBA, F(ri) is approximated by the plane wave

exp{ iK;.ri). Equation (9) thus takes the form

(V, +K; )F( r i) =2p; f g'(r2) g(rq}F(ri)d r2
&& V;„,P(r2)dx dp,

+2pf rz H —E x 6 p r2.

where the interaction potential V;„, may be taken either as
V;, the prior interaction or as Vf, the post interaction:

On multiplying by P*(x) and integrating over x we may
obtain in the same way the equation for 6 (p) as

P(x)6(p)dx
1'2

(13b)

In the present case the bound-state wave functions being
exact there is, however, no "post-prior" discrepancy. Sub-
stituting (13a) into Eq. (12) we get

+2pf f P*(x}(H—E)g(r2)F(ri)dx .

Equation (7) gets further simplified if one neglects the
self-coupling altogether. In such a case 6 (p ) satisfies the
equation

(Up+Kg)G(p)=2pf f P*(x)(H —E}g(r~)F(ri)dx .

I = f x 'exp[i(u r2 —p x)]p'(x)f(r2)d x dr~

r, exp~ ar2 — .x 'x r, x r, 16

Using Green s-function technique the transition amplitude
is then obtained as

g(8)= — f exp( —iKf p)P*(x)2'

&& (H —E)g(r2)F(r i)d x d p,

where 8 [=cos '(L; E'f)] is the scattering angle. Since
in the above expression F(r, ) is not known exactly, some
suitable approximate form for F(r i) is chosen for the cal-
culation of the scattering section.

The differential cross section (DCS) is obtained from
the relation

a=@;K;—Kf, p=K; pfKf—
It may be noted that the initial- and the final-state wave
functions, g(r2) and P(x), occurring in Eq. (12) are not
orthogonal. Consequently, a constant term when added to
the interaction potential V;„, gives a nonvanishing contri-
bution to the scattering amplitude which is rather unphys-
ical. This undesirable feature of the FBA is rectified in
the first-order exchange approximation (FOEA).

The FOEA is an attempt to improve upon the FBA by
retaining terms of the first order in the interaction poten-
tial occurring in the two-state coupled equations. It is
clearly seen from the Eq. (9) that if we substitute
F(r i) =exp(i K;.r i) m the right-hand side of Eq. (9) then
(P'„, +K; )F(ri) has a vanishing contribution to g(8).
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However, from Eq. (6) it is evident that this term should
contribute to the scattering amplitude. To take account of
the contribution of (V„,+If; )F(r, ) to the scattering am-

plitude we use, in the FOEA, Eq. (6) retaining only terms
up to the first ordeI' in the interaction potential. Thus we
usc

(V, , +If; )F(r1)=2@,; f dr2$" (r2) V;Q(r2)exp(iK; r1) .

(17)

The FOEA amplitude takes the form

g" (8)= — f exp( iK—I p+iK; r1)p*(x)
2m'

X VDQ(r2)dx dp,

Yvhcrc thc distorting potcnt1al V~ 1s given by

Vg)
——V; —U; .

series representation of the L, (x) we used a contour-
integral representation which reads as

L2l+1 (n +l)! exp[ —xr l(1—I)]
Ln+I X = — dt+ 2~1 r (1—r)2I+2tn I

The contour I includes the origin but does not enclose the
point t= l. The integration over r2 and x in the integral
I can be carried out analytically. The final result, apart
from some constant factors, reads as

I-[(a'+y1)(p'+y'„)'+ ] '(2p)'&I* ( —p)c,'+I 1(21'),

(25)

where C, (x) represents the Gegenbaur polynomials and
2)'=(p' —y'„)(p'+ y'„)

The results for the integrals J and A may be obtained
from the auxiliary integral M defined by

M= I'] cxp 5 A' r2 — x —+pili x r2 x

Ul is the average of the interaction potential V; over the
initial bound state, i.e.,

Ul ——f f*(r ') V;1tl(r')d r ' .

The scattering amplitude in this case reads as

FOEA{8)= "f(I+J+~)= FBA{8)+"f
2~ 2%

with the help of the relation

J=M iy 0

(26)

(27a)

(27b)

M= f exp( iKf p+—iK; r1)p*(x)U;g(r2)dxdp . (21)

In order to evaluate the Ps-formation cross section in the
FOEA we use Eq. (20) which is similar to that first de-
rived by Feenberg in the case of e -H collision. The ex-
pression of the e -H scattering amplitude as obtained by
Bell and Moisciwitsch using a variational principle con-
tains some additional terms; their contribution is, howev-
er, negligible.

The initial and the final bound-state wave functions are
giveIl by

In the integral M we use the expression for U;, the static
potential of the hydrogen atom, given by

U; =r1 '(1+ylr1)exp( —2y1r1) .

In order to evaluate the integral M given. by Eq. (26),
we, however, use the technique outlined by Roy et ah. to
obtain

f '(ZW)II;* (9')
dy] o

X „C„ I 1(2))
dh

+ ~(2l+ I)C,+I 2(ri)„,(2&)

1/2
71

exp( —y 1r), y1 ——1

4{X)=Anim {X) =&nlm&nI(&»im «»

(22a) where

W = c7(l —z) —p,
co =(y1+a z)(1—z)+y2z,
g2 (~2+a 2 )n —I —1(~2+ 2

)
n —I —1—

R„I(x}=xlexp( y„x)L2'++11(2y„x), y—„=ifin .

Thc normalizat1on constant %~I~ 1s glvcn by

(2y„)'+' y„(n —I —1)!
(n + l)! n (n + 1)!

(23)

Yj~(8,$) represents the spherical harmonics, and L, (x) is
the associated I aguerre polynomial. Instead of using the

Q ] =P~ —Q) ~ a 2 =P~ +co,

2) =(P'+m' —y'„) [(W +a1)(W'+a, )]

IV. ASYMPTOTIC (n ~~1) CASE

It has been observed that the Ps-formation cross sec-
tions into different angular momentum (l,m) states obey
the same scaling law as proposed by Roy et ah. in case of
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dh)
jl(z2)

86]co
+ 2 2

i'd+i(Z2)

( +co )z2
(29b)

where

I

S =n g(1 nr )—
2 v2fP'

f

f P f

(~'+ra )

2f ]

~'+y i
d, =(ab) "+"exp

a =P' +(y„—co)

b =P' +(y„+co)
( 8 3/2( ~ )I2l + I

It may be noted that as n~oo, y„—+0 and S '~n . It
is seen that the asymptotic [n o ']„„for a particular

p-H collision. The scaling law enables one to estimate the
various cross sections with a knowledge of the asymptotic
n 3 cross section for Ps formation.

These asymptotic n cross sections may be found from
the limiting values of the integrals when n ~ 00 ..

[S 'I]„=2C(y)+a ) 'p ' + j'I(z))F(' ( —p),
(29a)

[S 'M]„

angular momentum state if multiplied with
o(1 —n a ) gives a good estimate of the n cross

section of the corresponding n, l, m states when the value
of the principle quantum numbers n is not too small.

V. RESULTS AND DISCUSSIONS

We have computed results for the differential, total,
and momentum-transfer cross sections for the Ps forma-
tion into an arbitrary n, l, m state from the ground state of
atomic hydrogen. The energy range considered is
E =20—1000 eV.

For the evaluation of the M integral numerically we use
Gaussian quadrature method. Convergence of the result
is tested by increasing the mesh points and finally we use
32 quadrature points. The integrated cross sections have
also been obtained using the Gaussian quadrature method.
%'e use cosO, 0 being the scattering angle, as integration
variable. As the main contribution to the integrated cross
sections comes from the forward direction, we employ a
sufficient number of mesh points to get convergent re-
sults. We keep 40 quadrature points throughout our cal-
culation. As a check on our general program the FBA
values obtained earlier by Sil et al. and the ground-state
Ps-formation cross sections in the FOEA of Mandal and
Guha' have been reproduced.

A. Differential cross sections

Even though the ground-state Ps-formation calculation
of Mandal and Guha' in the FOEA exists, there is, how-
ever, no such calculation on the excited-state Ps forma-
tion. The FOEA corrects the problem of nonorthogonali-
ty between the initial and final bound state wave functions
and it seems to represent an improvement over the FBA.
In their study Sil et al. discussed the behavior of the
FBA DCS for excited ns and np states while Mandal and
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Guha' using FOEA showed the formation cross section
only in 1s state. Since this is the first apphcation of the
FOEA for calculating the excited-state Ps-formation cross
sections, it will be useful to compare FBA DCS with their
FOEA counterpart for the asymptotic ( n~ ao) states.
These are, however, typical results —the DCS for any ex-
cited discrete state is qualitatively similar.

In Fig. 1(a) we plot the asymptotic n DCS
[n doldQ]„ for Ps formation into the s state at
E= 100 aIld 500 eV. FI'OIn Flg. 1(a) I't Is evident tllat tile
FBA DCS exhibits a zero at the scattering angle around
26' for an incident energy of E= 100 eV. The angular po-
sition of the zero moves towards the forward direction as
E increases; at E=500 eV it is around 22'. It has been
observed that the zero position of the angular distribution
in the FBA for discrete states remains nearly constant ir-
respective of the value of the principal quantum number
n. Gn the other hand in the FOEA, the DCS for E& 200
eV does not predict any such zero. The same feature has
also been earlier noted by Mandal and Guha' in their
study of Ps formation into the ls state. The origin of this
zero in the DCS is due to the mutual cancellation of the
contribution of the attractive and repulsive part of the in-
teraction potential. But for 1=1, as shown in Fig. 1(b),
the sum of the contributions of all m-degenerate states
produces a kink instead of a zero. This occurs due to the
fact that the different m-valued amplitudes show zeros at
different scattering angles and their accumulated results
yield this kink. This feature is also true for the l&1
states DCS [see Fig. 1(c)] in both the FBA and FOEA.
Vhth the increase in positron impact energy the DCS
curves fall steadily from a forward peak. Inspection of
Fig. 1 reveals that the FBA results, except near the for-
ward direction, lie well above their FQEA counterpart.
The large-angle behavior is quite different in that the
FOEA results drop off more rapidly than their FBA
counterparts. It is interesting to note that the magnitude
of the cross section decreases rapidly with increasing I.
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FIG. 2. Differential cross sections in units of a+sr for the Ps
formation into aH bound states of the positronium atom at
E=25, 50, and 100 eV.

60

Figure 2 represents the DCS for the Ps formation into
all bound states of the positronium atom at E=25, 50,
and 100 eV. In obtaining these results we use the follow-
ing relation:

dIrnl

dQ
, all n =11=0

co 4 1 2+En 'XH
n=6 1=Or =0 n'

I dIT@ I
n&

dA

TABLE I. The total Ps-formation cross sections (n.ao) into different angular momentum states. Exponents of multiplication fac-
tors of 10 are indicated by superscripts.

300

1 0 3.342 3.384 0.847 0.959 O.4S8-' O.611-' 0.251 0.383 0.368 0.605

0.228
0.222

0.243
0.113

0.112
0.570

0.127
O.4O1-'

0.905
0.185

0.361
0.526-"

O.S13-'
o.sos-'

O.84O-'
0.712

O.549-'
0.660-'
0.562 '

O.S93-'
0.324
0.443

0.331
0.191-'
0.124

O.377-'
0 131
0.955

0.211-'
0.662-'
0.262-'

0.277
0.657
O.241-'

0.110
O. 188-4
O.422-'

0.166-'
O.233-'
0.451-'

0.15S-4
0.180
0.279

0.2S4-'
0.254
0.334

O.213-'
0.276-'
0.313
O.704-'

0.231
O. 134-'
0.248-'
0.659-'

0.139
0.838
0.727
O. 141-'

O.159-'
0.568
0.533
O. 12S-"

0.899
0.296
O. 157-'
O.2O5-'

0.118
0.293
0.144
O. 194-'

o.468-4
0.842 —'
O.254-'
O. 194-'

O.7O7-4
O. 1O4-'
O.271-'
0.197

0.659
O.8O6-'
0.169—'
O.89S-"

0.108-4
0.113
0.201
O.973-"

'First Born approximation.
"First-order exchange approximation.
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We have restricted the value of I such that l &4 since the
contributions of the higher angular momentum states to
the sum are negligible. It is evident from the figure that
the contributions from the hlghcl excited states strikingly
improve the shape of the curve (see also Fig. 1), particu-
larly near the cross-section minima. A similar prescrip-
tion for the p-H system" yield results which are in good
agreement with the available experimental findings.

S. Total cross sections

Our computed results for the integrated Ps-formation
cross sections into different angular momentum states for
some low-lying discrete states (n =1—4) at various in-

cident positron energies are shown in Table I. For I=O
states FOEA results are always greater than those of the
FBA. As E increases the percentage difference between
these two sets of results increases. It is to be mentioned
that at E=25 eV the contribution from the amplitude
g" and (Mpf/2m. ) for the s state are nearly equal at
large angles whereas at 8=0' the magnitude of the g" ~

is 13% larger than that of (Mpf/2~); both having the
same sign. The FOEA amplitude being the sum of these
two terms gets more contribution in the forward direction
and consequently it enhances the DCS in the forward
direction. This may be due to the fact that in the FOEA
the contribution of the additional term U;, an average in-

teracting potential that mimics the short-range forces,
dominates thc s wave consldcl'ably. As E lncrcRscs thc
percentage difference between the FBA and FOEA results
for excited state Ps formation increases. As an example,
for 8s states at E=20 eV their difference is —8%
whereas at E=300 eV it is almost 39%.

For the l= 1 state except at low energies (E & 100 eV)
the FOEA results overestimate their FBA counterparts.
At low energies for the l= 1 and m=0 state we noticed
that the g amplitude changes sign twice while

(A"pf /2m ) changes sign only once throughout the energy
range considered. The angular position (00) at which this

change occurs is quite different in both the amplitudes.
As a result this minimum shifts considerably in the
FOEA amplitude. It is interesting to note that the max-
imum contribution to the integrated cross sections come.
from the range 0—Igo of the scattering angle. The contri-
butions from the I= 1 and I =+1 states* amplitudes are
very small, in that in the forward direction they have zero
contributions, compared to the 1=1 and I=0 states; the
contribution of both the g" and (A pf/2m) are oppo-
site in sign and consequently the FOEA amplitude be-

comes much smaller compared to the FBA amplitude.
In Table II we show the sum of the contributions from

different angular momentum (l,m) states to the total Ps-
formation cross sections into higher excited states at
E=. 20—1000 eV. As the formation cross sections drop
off rapidly with the rise of I values, we retain the value of
I up to 4 throughout our discussion. The discrete-state

(n =1—16) results in both the approximations being cal-
culated using relations (14) and (20) whereas the asymp-
totic results as n ~ ao are obtained employing the limiting
expression given by Eq. (29).

As mentioned already, we have noted that at moderate
or high incident energies, apart from a factor
n [ g'„o(1 rn )] t—he cross section remains more

or less unchanged with the increase of n. As a conse-

quence, the asymptotic n cross section [n o„I]„ .for a
particular angular momentum state if multiplied by the
factor g„' 0(1 rn ) gives —a good estimate of the n

cross sections for Ps formation into the corresponding n, I

state provided the value of the principal quantum number

n ls not too small. Thc scaling law reads as

(32)

In order to .use the above relation a knowledge of the
asymptotic n cross section is essential. We tabulate
[n 0'„~]„ in Table III at various incident positron ener-
gies ranging from E=20 to 1000 eV.

TABLE II. Total n' Ps-formation cross sections (mao).

10 Exp.'

50.0

200.0

500.0

1000.0

b
a
1
a
b

b

b

b

b

3.342
3.38S
1.648
1.781
0.464
0.545
0.458
0.611
0.251
0.383
0.275
0.491
0.317
0.591

3.602
2.843
2.389
2.178
0.759
0.797
0.698
0.872
0.331
0.489
0.314
0.557
0.347
0.648

3.417
2.595
2.471
2.188
0.823
0.847
0.754
0.931
0.348
0.512
0.322
0.571
0.353
0.6S9

3.334
2.502
2.493
2.185
0.845
0.865
0.775
0.952
0.355
0.521
0.325
0.575
0.356
0.663

3.252
2.412
2.510
2.179
0.867
0.882
0.796
0.974
0.361
0.529
0.328
O.S80
0.358
0.667

3.241
2.401
2.512
2.178
0.870
0.884
0.798
0.976
0.362
0.530
0.328
0.581
0.358
0.668

3.235
2.395
2.513
2.177
0.872
0.885
0.800
0.978
0.362
0.530
0.328
0.581
0.358
0.668

3.232
2.391
2.514
2.177
0.872
0.885
0.800
0.978
0.363
O.S31
0.328
0.581
0.358
0.668

3.229
2.388
2.514
2.177
0.873
0.886
0.801
0.979
0.363
0.531
0.328
0.581
0.358
0.668

3.222
2.381
2.516
2.176
0.875
0.887
0.803
0.981
0.363
0.532
0.329
O.S82
0.358
0.668

'First Born approximation.
"First-order exchange approximation.
'The integer in this column is the inverse power of 10 to be multiplied with the numbers in the corresponding row.
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FIG. 3. Momentum-transfer cross sections in units of mao for
the Ps formation in the ground state.
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C. Momentum-transfer cross sections

The MTCS provides an even more stringent test of the
models. Since the MTCS is a weighted integral of the
DCS which deemphasizes small-angle scattering, it is ex-
pected that the cross section would be much more sensi-
tive to the short-range interaction. Figure 3 represents the
ground-state MTCS as a function of the incident positron
energy in the FBA and the FOEA. Throughout the ener-

gy range considered the FBA values remain much higher
than their FOEA counterpart. This may be attributed to
the fact that the elastic MTCS are very sensitive to the
large-angle scattering; the FBA amplitudes in that region
are much higher than those of the FOEA. We notice that
the same feature is shown by the result for Ps formation
into n=2 states.

VI. CQNCI. USIQN

In the present study we employed a class of first-order
approximation theory, namely the FBA and the FOEA, to
investigate the Ps formation into arbitrary excited states
in e + H(1,0,0) scattering. Previously, the Ps-formation
cross sections in the FOEA were available only for the 1s
state. We have compared the results as obtained in the
FBA and FOEA for Ps formation into various excited
levels.

The angular distributions in the FBA for s states ( l=0)
show a zero at some scattering angle and it moves towards
the forward direction as the value of E increases. The
zero position of the angular distribution does not, howev-
er, depend on the value of n in that for any excited states
it remains almost the same. At E & 200 eV the FOEA re-
sults exhibit a zero in the DCS for s-state Ps formation,
but from our observations at E=200, 500, and 1000 eV
we find no such zero or minimum in the angular distribu-
tions. For higher angular momentum states (l & l) the
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angular distributions do not predict the existence of such
a zero either in the FBA or in the FOEA.

We have also presented the results for DCS for Ps for-
mation into all possible bound states using the scaling law.
However, as of now there are no experimental results for a
comparison. As already mentioned, we have reproduced
the results previously reported in Refs. 9 and 10. In the
present study the minimum projectile energy considered is
20 eV. However, the earlier observation of Mandal and
Guha has shown that at low energies the FOEA results
for the ground-state Ps formation are lower than the cor-
responding FBA values. This is in agreement with the
rigorous results on the Ps formation obtained by the low

energy s- and p-wave calculations' for Ps formation in
the 1s state. These calculations predict that at low ener-

gies the Ps-formation cross sections are considerably
lower than the FBA results. The FOEA is expected to
yield results much better than their FBA counterpart
since the FOEA rectifies some of the inadequacies en-

countered in the FBA and, moreover, the FOEA accounts

for a certain amount of distortion owing to the presence
of the distorting potential VD in the interaction.

The formation cross sections into highly excited states
do satisfy the n, law irrespective of the incident energy.
At high incident energies the Ps-formation cross sections
are larger than the FBA results. Even at E= I keV the
ground-state Ps-formation cross sections in the FOEA do
not agree with the FBA results; their difference is -5%.
The use of the asymptotic (n ~~1) cross sections in es-
timating the discrete-state results with the help of the
"scaling law" [see Eq. (32)] is discussed. The
momentum-transfer cross sections that are essential for
the analysis of the results of the swarm experiments are
also presented.
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