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Quasiparticle integral equations for the electron-hydrogen system
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Electron-hydrogen binding energy and scattering observables below the first excitation threshold

are calculated with three-body integral equations reduced to effective two-body Lippmann-

Schwinger-type equations by means of the quasiparticle method. The effective potentials occurring

in this formulation are determined in lowest-order and in first-order quasi-Born approximation

(QBA). In first-order QBA, our results are closely related to those obtained in the static exchange

approximation. Polarization effects are only partly contained in the low-order quasi-Born-

approximation terms considered, a fact discussed in the detailed analysis of our results.

I. INTRODUCTION

Coupled integral equations of the type proposed by Fad-
deev' have been widely used in nuclear three-body theory.
There, due to the short range of the two-body interactions,
various efficient expansion schemes have been developed
which allow the reduction of the original relations to
manageable effective two-body equations. It is the aim of
the present paper to study the applicability of this ap-
proach to electron-atom scattering problems, especially
the applicability to elastic electron-hydrogen collisions.

Until now only a few attempts have been made to work
with such techniques in the latter field, but standard
treatments, such as variational, ' polarized-orbital, '

and close-coupling methods, ' ' have been applied with
considerable success. ' By contrasting our results with
those obtained by means of these conventional methods,
considerable insight into the advantages and shortcomings
of coupled integral equations when applied to situations
with long-ranged Coulomb forces may be gained.

As mentioned, an essential step for the use of coupled
three-body integral equations in practice consists of reduc-
ing them to effective two-body relations which, after
partial-wave decomposition, become one-dimensional and,
thus, amenable to numerical calculations. Introducing
Faddeev-type integral equations for adequately chosen
transition operators, this has been achieved in an exact
and general way by Alt, Grassberger, . and Sandhas
(AGS). These equations represent the basis of the
following calculations of electron-hydrogen binding and
elastic scattering.

The 'effective potentials occurring in this quasiparticle
approach can be expanded into a series called the "quasi-
Born series. " In what follows, the lowest-order (O.QBA)
and the first-order (1.QBA.) quasi-Born approximation are
taken into account.

The high symmetry of Faddeev-type equations allows,
in particular, incorporation of the Pauli principle, and
hence exchange effects, in a natural and reliable manner.
On the other hand, the characteristic polarization effect

due to virtual excitations of the hydrogen target cannot be
expected to be included satisfactorily in 1.QBA. This
supposition is supported by a comparison of our results
with those obtained by means of the above-mentioned
conventional methods.

The paper is organized as follows. In Sec. II the essen-
tial aspects of the quasiparticle method are recalled and
the specia1 approximations used in this paper are
described. Section III contains the formalism specialized
to the electron-hydrogen problem, including symmetriza-
tion and partial-wave decomposition. Details of the nu-
merical treatment are explained in Sec. IV. There we also
present our results and compare them with those obtained
by standard techniques.

II. EFFECTIVE TWO-BODY EQUATIONS

To fix our notation and to make the paper self-
contained, we first briefly recapitulate the quasiparticle
formalism and describe in detail the two lowest-order
quasi-Born approximations.

A. Quasiparticle method

Let us consider three particles a,p, y interacting via
pure Coulomb potentials. We denote the relative momen-
tum between p and y by pa and the corresponding re-
duced mass by p~. The relative momentum between the
third particle a and the center of mass of the (p, y) sub-

system is denoted by k and the reduced mass of the
respective two fragments by Ma. The total interaction is
given by a sum of two-body Coulomb potentials Va,
where the index a indicates that the interaction takes
place between particles p and y (p, y&a).

Physical scattering processes in which a projectile n
collides with a neutral two-body bound system (p, y),
leading to an outgoing configuration of a free particle p
and a neutral two-body bound system (y, a), are described
by the transition amplitudes
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(kp) k

2Mp
" 2M

(2.2)

Here
I pa~ & is the bound-state wave function of the (p, y)

subsystem with binding energy E ~. The index I
denotes collectively all quantum numbers of the bound
state. The free movement of particle a relative to this

bound state is represented by plane waves
I
ka&. The

three-body transition operators Up occurring in (2.1) are
given by the Faddeev-type Alt-Grassberger-Sandhas
(AGS) equations

3

Up (z)=5p Go (z)+ g 5pyTy(z)Gp(z)Uya(z) (2.3)

where Go(z)=(z Hp) ' is —the resolvent of the free
three-body Hamiltonian Hp, and 5p ——1 —5p . The two-
body Coulomb Toperator o. f the y subsystem, acting in
the whole three-body space, fulfills the Lippmann-
Schwinger (LS) equation

Ty(z) = Vy+ Vy Gp(z) Ty(z) . (2.4)

Although the three-body problem is solved in principle
by (2.3), the numerical treatment of these equations is not
an easy task, because they are two dimensional after

I

~p., (kpk )=&kpl&@p. l Up (E+&0)lya & Ika&,

(2 1)

with the energies being restricted by the on-the-energy-
shell condition

partial-wave decomposition. However, it has been shown

by Alt, Grassberger, and Sandhas that Eqs. (2.3) can
be reduced to exact effective two-body equations (which
are one dimensional after partial-wave decomposition) for
off-shell extensions of the transition amplitudes (2.1).
These equations, in other words, hold for amplitudes
which are not restricted by the on-shell condition (2.2).

The starting point of this quasiparticle approach is the
splitting of the subsystem T operator (2.4) into a sum of
separable terms Ty and the rest Ty,

T (z)=Ty(z)+T'(z)
N

l7r;z&~y, „(z)&y~;z
I
+T,'(z) . (2.5)

r, s =1

The separable terms have to be constructed so that they
contain the bound-state poles and other dominant contri-
butions (quasiparticles) of Ty, in other words, that Ty be-
comes as small as possible. This requirement provides
some constraints on the otherwise arbitrary "form fac-
tors"

I
yr;z & and &ys;z

I

and "propagators" b,y „,(z). In
the particular case of a bound-state pole this implies that
at least one term of Ty reproduces the pole denominator
[via b,y~(z)] and the correct residue of Ty. Special
choices which fulfill these requirements are discussed
below [cf. Eqs. (2.11)—(2.16)]. Inserting (2.5) into the
AGS equations (2.3) and sandwiching them between

& k p I
&Pn;z

I
Go(z) and Gp(z)

I
am;z & I

k &, one immedi-
ately obtains exact effective two-body equations of matrix
Lippmann-Schwinger form:

(k p, k;z)=F"p„(k p, k;z)+ g g f d ky P p„y, (k p, ky'', z)b, y „, z—
y=1 rs

(ky)' ~ ys, am ( y'~ kaiz)' r. (2.6)

The effective transition amplitudes and potentials are
given by

~p, (k p k )= & k p I
&P"

I
Go UpaGo I

am &
I
k &

(2.7)

and similar relationships hold true for the other quantities
in (2.5). A consequence of this is that instead of the prop-
agator b,y (z), its two-body restriction b, y(z —ky/2My)
occurs in (2.6). Comparison with (2.1) shows that only
those elements (2.7) correspond to the physical amplitudes
(2.1) for which the form factors

I
am;z& satisfy the on-

shell restrictions

~p, (k p k )= &k pl &Pn
I GoUp Go I

am &
I

ka& G,(E. )Iam;z=E. &
I
k.&= I@. & Ik.&, (2.11)

(2.8)

respectively, the Up being defined as solutions of the
AGS equations with Ty replaced by Ty,

3

Up =5p,Gp '+ g 5pyTyGpUy (2.9)
y=1

In the latter relations we have suppressed the evident z
dependence and will do so also in the following if no con-
fusion is to be expected. As mentioned above, Ty(z) is an
operator in the three-body space. It is related to the
genuine two-body transition operator Ty(z) which acts in
the two-body space of particles a,p&y, only, via

2

& ky I
Ty(z)

I
ky&=5(ky —ky)Ty z—,(2.10)

2My

and analogous ones for &pn;z I. Other separable terms,
introduced in (2.5) in order to get the correction Ty suffi-
ciently small, lead to elements (2.7) which do not corre-
spond to any physical transition process.

It is a characteristic feature of this reduction procedure
that it provides us with exact effective two-body equations
which, as in the genuine two-body case, are one dimen-
sional after partial-wave decomposition. In other words,
the original three-body equations are replaced by relations
well suited for practical applications. Let us mention that
Eqs. (2.3) and hence (2.6) not only yield the scattering ob-
servables, but, solving their homogeneous versions, deter-
mine also the bound-state problem.

Until now the reduction scheme has been kept com-
pletely general. For its application special choices of the
form factors and of the propagators in (2.5) are needed.
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One possibility consists in splitting first the potential Vz
according to

ferent parts of the spectrum, i.e., by writing

GoTr Go G——o Vr Gr(pr+ Qr) =GoT'yGo+ Go~'yGo .

v, =v', +v,'= g lx,„&x,„&x,„l+v,' (2.12) (2.17)

Ty ——Vy+ VyooT (2.13)

into a sum of separable terms and a nonseparable rest Vr
(this splitting may be made in a z-dependent way}. Then,
via (2.4), a corresponding splitting of Tr of the form (2.5)

is obtained, with the rest amplitude Tr being defined as a
solution of

Or„equivalently, representing the same kernel in the form

Gr VrGo, we may multiply from the left with the above
sum of projections. For details and further choices we
refer to Ref. 21. There, also the relationship with the
Feshbach formalism is exhibited. Although such choices

may be of interest in the Coulomb case too, they will not
bc studlcd 1n thc prcscnt investigation.

The form factors in Tr are related to the form factors

IX&, & in V'r by

B. Quasi-Born approximation

definitions. of tllc cffccflvc potclltlals (2.8)

Rnd the propagators g „, given by (2.16) provide us with

adequate stRl'flllg polllf, fol' djffcrcllt Rpproxlmatlon

schemes as, e.g., the separable expansion method or the
quasi-Born approximation (QBA). This has been dis-

cussed in detail in Ref. 23. We briefly recall the most im-

portant aspects of this discussion.
In the separable expansion method one chooses the

number Xz of separable terms in (2.12) so large that Vz,
and thus T&, too, can be neglected. Although this pro-
cedure results in very simple effective potentials, it has the
disadvantage that even for short-ranged two-body interac-
tions the dimension of the matrices in (2.6) is usually

comparatively high. This becomes much more serious in

the Coulomb case ' where the potential cannot be expect-
ed to be well approximated, if at all, by a reasonably low

numb«of separable terms.
In the quasi-Born-approximation method the number

Nz of separable terms is kept as small as possible. That
means only terms corresponding to dominant subsystem
structures are introduced. Of course, the rest amplitude
T& can no longer be neglected but has to be taken into ac-
count, e.g., perturbatively. By iterating (2.9}

I yr & =(1+TrGo} I Xr„&,

(yr I
=(X,„ l(1+GoT, ), (2

respectively, and the propagator matrix 6& is given by

(b,,-') =5 A,,„'—(x,„l(6,+G,T,'6, ) IX„& . (2.16)

(2.18)

and inserting this expansion in (2.8), we obtain the quasj
Born-Rpproxlmatlon series of tllc effective potential

oT Go
I
am &

I
" &+ ' ' ' (2.19)

Of course, those IX&„& corresponding to bound states
have to be chosen such that the form factors (2.14) associ-
ated with them fulfill the requirement (2.11).

The concept of starting from a splitting (2.12) of the
potential in order to obtain a corresponding splitting of
T& is suggested by the existence of several systematical
methods for choosing Vz which, at least for short-ranged
potentials, lead rather quickly to sufficiently small correc-
tion terms Vz and hence to small rest amplitudes T&.
It is the aim of the present investigation to study whether
a splitting of this type can be found which also in the
Coulomb case leads to sufficiently small rest terms. In
Sec. III the choice used in this paper will be discussed in
detail.

It should, however, be emphasized that the quasiparti-
cle approach is by no means restricted to expansion Up =&p Go
schemes of the potential. Any alternative method leading
to Rll adequate scpRl'Rtloll (2.5) I11Ry bc llscd Rs well. Ill
Ref. 21, e.g., the kernel of the AGS equations has been

split by multiplying with projections pr and Qr on dif-
I

(kpk )=5p &k pl &~n I'Gol™&1k &+ 2 5pr5r &kpl &&& IG
y=1

In lowest order (O.QBA), which corresponds to setting Tz ——0, we have

P p„' (k p k )=5p (k pl (Xp„ I
Go IX &

I

k &, (2.20)

as 1n thc separable expansion method.
In the 1.QBA of the effective potential the corrections linear in Tz have to be considered in addition. Thus the 1.QBA

consists of the nondiagonal terms (P&a),

~p",am(k p k }=~p'~',am(" p k~)+ g &k pl &Xpn I
GoTyGo IX&

y=1

and the diagonal terms (P=a),

r."„'. (k.', k.)= g 5,.(k.'I(X.„IG,T',G, IX. & Ik. &

(2.21)

(2.22)
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(see Fig. 1). The question of convergence of the quasi-
Born expansion for short-ranged potentials has been in-
vestigated in Refs. 23 and 25.

Besides the low dimension of the matrix equation (2.6),
the quasi-Born method is characterized by the fact that all
subsystem partial-wave contributions which are not con-
tained explicitly in Tr enter the effective potentials via
Tr H. owever, the computation of the effective potentials
in 1.QBA becomes much more time consuming.

As discussed, Sturmian functions are used to construct
T~. They are defined as energy-dependent eigenstates of
the two-body I.S kernel Go V, normalized to unity, for
arbitrary two-particle energy E,

Go(E )V
~ q „(E )&=7] „(E ) q „(E )& . (3.1)

Then the "ideal choice" form factors are given by

(3.2)

III. SPECIALIZATION TO THE
ELECTRON-HYDROGEN SYSTEM

and the strength parameters in (2.12) are fixed via

A. „(E )&X „(E ) ~i' (E )&=&„ (3.3)

In the following sections we apply the general formal-
ism of Sec. II to the scattering of electrons off hydrogen
atoms.

A. Choice of form factors

In this section we work in the two-particle space only.
Since no confusion is to be expected, the labeling with a
hat, as used in Eq. (2.10), is suppressed. However, when
going over to the three-body space, the momentum 6
function and the energy shift occurring there must be
added (see, e.g., Ref. 20).

According to (2.12) the subsystem interactions have to
be approximated by separable terms such that the rest V'

can be taken into account perturbatively. Weinberg's
"ideal choice" is well-known to work efficiently in the
short-range case. The calculations of Ball, Chen, and
%'ong show that in the Coulomb case the expansion into
Sturmian functions leads to a very slowly convergent or
even nonconvergent series. Hence we use only the first
term of this expansion needed to simulate via T' the sub-
system ground-state pole. With this choice our O.QBA is
identical with the ls approximation of Refs. 3 and 4
which allows comparison with our results. The use of just
this choice of T~ is also suggested by the results of Refs.
3 and 4. According to these references the zeroth order is
already a good approximation for S waves in the spin-
singlet channel, which means that at least in this case it is
justified to take into account T~ perturbatively. In the
other cases the first term of the Sturmian expansion is not
a good approximation. Here it only serves as a means to
reduce the dimension of the three-body equations. Conse-
quently the correction due to T' should be remarkable.
To study whether the first order correction in T' leads to
a sufficient accuracy is the aim of the following numerical
investigations in Sec. IV.

An important property of this choice is that the rest po-
tential V~ defined via (2.12) acts on the form factors ac-
cording to

(3.4)

T' V' (3.5)

is made which otherwise would not be justifiable. In the
following we restrict ourselves to subsystem energies
below the first excited state n=2. Hence, according to
this prescription only one separable term has to be intro-
duced in each of the attractive potentials. Corresponding-
ly, in the repulsive potential we also take one separable
term representing an electron-electron quasiparticle (for
this terminology, see Ref. 27).

In coordinate space the two-body interactions are

V (r )=+ (3.6)

It should be noted that for this choice the on-shell condi-
tion (2.11) is automatically fulfilled.

The infinitely many eigenvalues are all positive (nega-
tive) for attractive (repulsive) Coulomb potentials as long
as E~ (0. If E~ coincides with one of the hydrogen bind-
ing energies E „, the corresponding Sturmian function is
just the respective bound-state wave function, and
ri „(E „) equals 1 in the attractive, and —1 in the repul-
sive case. This in particular means that, at a fixed nega-
tive energy, t) „~ & 1 can occur only for a finite number
of eigenvalues. To obtain in the attractive case a suffi-
ciently small rest term T', at least those Sturmian func-
tions have to be incorporated in T' for which il „)1

within the energy range under consideration. Then the
poles of T (E ) at E =E „show up solely in T'. In the
repulsive case we may similarly construct T~ from all
Sturmian functions belonging to large negative eigen-
values, q~„( —II. This is, however, less compelling be-
cause of the absence of (dominant) bound-state poles. It
is, however, important if the additional approximation

(a) (b) and the corresponding eigenvalue equations (3.1) read

(c)

n~ ~ra
(tU
(e)

n~ I~m

(r)

FIG. 1. Diagrammatical representation of the various contri-
butions to the effective potentials in 1.QBA. Semicircles indi-
cate the form factors.

il~ E r
(3.7)

Here the Coulomb parameter is defined by y~= +@ e /a~
and ic is given by a =( 2p~E~)'~ . The minus sign—al-
ways refers to the electron. -proton subsystem and the plus
sign to the electron-electron subsystem. The relative coor-
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dinate between the particles P and y is denoted by r .
From the solution of (3.7) one obtains for the eigenvalues

0!
ga„(Ea)=—,n =1,2,3, . . . .

n

The corresponding normalized eigenfunctions are

$,„1 (r,E )=y, ,l(r, E )&1 (&-, ),

(3.8)

/=0, 1, . . . , n —1, I = —l, . . . , /,

„1(r,E )= (2~a)1 (n —l —1)!
2n [(n +l)!j

X CXP( —aara)(2aara) L„+1' 1(2aara),

3/1 1

~a 100(Pa~Ea) +
m.(p +~ )

(3.10)

A general expression for thc parameters A,«can bc calcu-

lated from (3.3),

and the propagator (2.16) becomes

~.,„(E.)=&„=5„, , (3.12)
'g~yg P~8 +88 K~

Equation (3.12) shows explicitly that all bound states
which are contained in the separable parts of (2.5) (a=1
or 2) give rise to poles with residues equal to 1 at the cor-
responding b1ndxng cncI'g1cs.

8. Electron-hy'dIogcn 1Btcgx'l,l equat1ons

In the following we use atomic units (a.u.), i.e., energies
Rl'c measured 111 ulllts of c /a0, 00 bclllg tllc Bohr 1Rdllls.

(3.9)

the L,„+I'
1 being the Lagucrre polynomials. In contrast

to the hydrogen bound-state problem, normalizable solu-

tions of (3.7) exist for each energy because the interactions

(3.6) appear there as being modified by energy-dependent

factors q«(Ea). At the binding energies of the hydrogen

atom, (3.7) becomes the usual bound-state Schrodinger

equation with 1/ „=1,and the solutions (3.9) are then the
bound-state wave functions of the hydrogen atom.

From (3.6) and (3.9) one finds the form factors (3.2) in

momentum space by Fourier transformation, the first one

bc1ng glvcn by

We also insert for the reduced masses the values

p&
——p2 ——1, p3 ———,, and M1 ——M2 ——1, M3 ——2. Let us con-

s1dcr an incoxmng clcctx'on I which collidcs with a hy-
drogen atom in the ground sta,tc. Then the total energy in
a.u. is E= —,(kl —1), and from (3.8) it follows for the
first attractive eigenvalue (a= 1 or 2) that l/al(E) & I in
thc elastic scattcr1Ilg x'cglon —

2 Q Z Q —
8 . Hcncc, 1Q

agreement with the discussion following Eq. (3.4), we
build up the separable part of the interaction V with the
corresponding form factor (3.10) and the parameter A, 1.
That is, we explicitly take into account the dominant hy-
drogen ground state in the effective propagators of Eqs.
(2.6). Further inspection of (3.8) shows that for three-
body energies ——„' (E & ——,

' also the magnitude of the
first repulsive eigenvalue 1/sl(E) becomes larger than one.
In order to guarantee that in the elastic scattering x'egion
the absolute values of a// eigenvalues of the rest kernel
Go V are smaller than one, we extract the corx'esponding
separable term from the, repulsive interaction, too.

As Usual, wc ncglcct tile proton spin, aIld choose as sp1n
basis the eigenstates of the total spin S. Thus, we distin-
guish between a spin-singlet (S=O) and a spin-triplet
{S=l) channel described by corresponding amplitudes

Due to conservation of the total spin, these two
channels are decoupled and we are left with three coupled
equations for each of them.

Due to the fact that the incoming electron "1"and the
ta1 get electron 2 ax'c 1nd1stlngulshablc, wc have to con-
sldcx' thc syITlmctrizcd amplitude

~'(k', k) =~1 (k', k) —(-I)'-'~'„(k', k) (3.13)

l

being composed of the direct and the exchange ampli-
tudes. In complete analogy to (3.13), symmetrized effec-
tive potentials have to be used in the final equations.

Since in our calculations the separable parts of the
two-body interactions (quasiparticles) have been chosen to
contain only s-wave components, as discussed after Eq.
(3.5), the total angular momentum is given by the angular
momentum I. between the thix'd particles relative to the
respective quasiparticles. Expanding the amplitude (3.13)
into Legendre polynomials PL, (x), the corresponding
partial-wave amplitudes u~p are defined by

Mp (k'„k)= g (21. +1)M~(k', k)PI (cos8),
7T L 0

(3.14)

wltll 8 being tllc scattering angle. After completing tllc
partial-wave decomposition of the effective potentials in

analogy to (3.14), one finally arrives at a single one-

dlmcnslonal cqUatlon for each tr1plct partial-wave ampll"
tudC,

2' (k' k E)=F' (k' k E)+ I dk"(k") F' (k', k";E)Z (E——'(k") )2' (k" k E) (3.15)
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Wi(k' k.E)=P (k' k E)+ f dk"(k") P (k' k" E)h (E ——'(k") )M (k" k E)

+2 f dk "(k") F"i3(k',k";E)83(E——'(k") )Mii(k", k;E),
~;,(k', k;E)=m'„(k', k;E)+ f" dk"(k") P '„(k',k";E)b,,(E ——,'(k") )W (k",k;E)

+ f dk"(k") &33(k', k";E)Z3(E ——,'(k") )M„(k",k;E) .

The propagators occurring in (3.15)—(3.17) are given by

(3.16)

(3.17)

1 —[(k") —2E]' (3.18)

b,3(E ——,'(k") )=
1+2[(k")'/4 —E]'" (3.19)

(3.20)

The effective potentials are described in detail in the Appendix.
Let us add some comments. Equation (3.18) shows explicitly that the bound-state pole at the two-body energy

Ei ————,
' leads to a branch cut in (3.15)—(3.17) for three-body energies E) ——,'. Since in the singlet channel an

electron-electron quasiparticle can be formed [see the comments following Eq. (3.5)], the corresponding transition ampli-
tude W3~ has to be taken into account, which gives rise to a higher dimension of the matrix equation in this case. We
furthermore notice that the diagonal term P 33' arising in 1.QBA admits the decomposition [see (A7)]

8 I [(k 3 ) —4E](k 3 4E) I
'i-

n'I[(k', )'—4E]'~'+(k', —4E)'~'I'(k', —k, )'

The first term contains the Coulomb po«nti»
—1/ir (k 3

—k3) between the proton and the electron-
electron subsystem which in coordinate space reads as
v 3 (p 3 ) = —2/p3, p 3 being the corresponding relative coor-
dinate. It is. due to this singularity in (3.20), which arises
from the infinite range of U3, that the numerical treat-
ment of the singlet channel requires much more effort
than the triplet case, where an analogous term is forbid-
den by the Pauli principle.

IV. RESULTS AND DISCUSSION

In this section we give details of the numerical treat-
ment and compare our results with those obtained by oth-
er methods.

A. Numerical methods

The integral equations (3.15)—(3.17) have been
transformed to matrix equations by means of Gauss-
Legendre quadrature rules and solved numerically by the
Gauss-Jordan algorithm. We furthermore make the addi-
tional approximation T~ = V' (a=1,2,3) which allows
the evaluation of all effective potentials in 1.QBA analyti-
cally. For the strong nuclear interactions this has been
shown to work very well. In the present case, due to the
smallness of the electric force, this approximation should
be justified even better in the repulsive electron-electron
subsystem. Remarkable corrections, however, are to be
expected in the attractive electron-proton subsystems
(when going to higher orders of the quasi-Born expansion)
due to virtual target excitations contained in T'. The or-
der of magnitude of this polarization effect is discussed

I

A =M" '+A" (4.1)

where the contribution of the center-of-mass Coulomb po-
tential U3

———2/p3 is contained in A " '. The rest term
M' consists of the shorter-ranged parts only, and thus
does not give rise to numerical problems. A simple alge-
braic manipulation leads to the nonsingular equation

I

below (see Fig. 16) and will be studied more thoroughly in
a subsequent publication. A first report of these results
has been given in Ref. 30.

After partial-wave decomposition, our effective poten-
tials are essentially given by combinations of Legendre
polynomials of the second kind and their derivatives. Due
to this fact the numerical calculations required not much
computing time. For instance, one singlet partial-wave
amplitude in 1.QBA took 80 sec of CPU (central process-
ing unit) time on an IBM model 370/168 computer for
the claimed accuracy.

In order to determine the three-body binding energy of
H from the homogeneous version of (3.16) and (3.17),
the zero of the determinant of 1 —M, M being the kernel
of (3.16) and (3.17), has been evaluated. To calculate the
transition amplitudes in the elastic scattering region, the
propagator-pole singularities have been regularized by a
subtraction method. Stability has been found, for in-
stance, in the singlet channel in 1.QBA, to four decimal
places with 48 mesh points.

Numerical problems arose from the Coulomb singulari-
ty in the diagonal part (3.20) of the effective interaction.
It has been treated by the following subtraction method.
The integral equation (3.17) is reduced to a nonsingular
equation plus some singular integrals by splitting the ker-
nel A into the sum
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A cot 6g(a.u.)
~1.QBA

i—0. QBA
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—v aria ti onal

1.5- 04-

1.0-

0.5- static exchange

0.QBA

—1.QBA

0.2-

02 03 05 06

k &(au. )

0. 1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 2. Singlet S-wave elastic electron-hydrogen phase shifts
as a function of k2 in O.QBA and in 1.QBA. For comparison
variational (Ref. 9) and SEA results (Ref. 14) are included.

-02-

FIG. 4. Plot of k cot'5a vs k2 in O.QBA and in 1.QBA.
References as in Fig. 2.

w (k;)= P (k;)+ g wJM(k;, k~ )w (kj )
J+l

A (k;) —g wjM" '(k;, kj)
J+I

+w;A '(k;, k;) u(k;), (4.2)

where m; are the weights belonging to the discrete Gauss
points k;. For simplicity we suppressed the second vari-
able in ~ and P . The singular integrals

A (k )= dk'A " '(k k') (4.3)
0

have been determined with a k;-dependent integration
mesh, adapted to the special form of the integrand.

B. Phase shifts, scattering lengths, and three-body
binding energy

In Figs. 2 and 3 we have plotted the singlet ('5o) and
triplet ( 5o) S-wave phase shifts, and in Figs. 4 and 5 the
corresponding results for k cot +'5o, in O.QBA and in
1.QBA. For comparison we also show the values obtained
by variational methods and the static exchange approxi-
mation (SEA).' The 1.QBA is related ' to the SEA.
Both have in common that they contain only the hydro-
gen ground-state explicitly and allow for electron ex-
change processes, but differ completely in the off-shell
treatment of their respective effective potentials.

In Table I we present our results for the H binding en-
ergy E~ and for the singlet ('a) and the triplet ( a)
scattering lengths, in O.QBA and in 1.QBA. For compar-
ison we include the corresponding values obtained by vari-
ational methods, ' close-coupling approximations, '

and integral equation techniques as well as an experi-

3.0-

2.5-

2.0-

1.5—

3

xchange

0.6

0.4

0.2

Cat

~0.QBA
/

1.QBA

k'(au. )

1.0-

0.5- 0.QBA

1,QBA

-0.4

I 1

0.5 M~~ Q7

static exchange

variati onal

0. 1 0.2 0.3 0.4 0.5 0.6 0, 7

FIG. 3. As in Fig. 2, but for the triplet channel. FICx. 5. Same as in Fig. 4, but for the triplet channel.
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TABLE I. H binding energy, and singlet and triplet scatter-
ing lengths in O.QBA and in 1.QBA. Comparison is made with

results obtained by other techniques and with an experimental
value for the three-body binding energy.

E~ {a.u. )

O.QBA

—0.5255

1.QBA

—0.5172 —0.62'
—0.5315'
—0.543'

—0.525
—0.52775
—0.52773

'a (ao) 6.32 7.22 4.0'
6.337"
5.6'

5.965g

8.095'
7.5'

6.742"

'a (ao) 3.12 2.43 2.7'
3 112"
2.2'

1.769g

2.35'
2.33'
1.893"

'Separable approximation, Ref. 2.
"Separable approximation, Ref. 6.
'Separable expansion, Ref. 3.
Variational, Ref. 8.

'Reference 5.
Experiment, Ref. 32.

gVariational, Ref. 9.
"Separable approximation, Ref. 4.
'Static exchange, Ref. 14.
'Close coupling (1s-2s), Ref. 15.
"Close coupling (1s-2s-2p), Ref. 16.

mental value for the three-body binding energy. Tables
II and III list the S-wave phase shifts. Here, in addition,
a close-coupling calculation' has been included which
simulates the full effect of the electric dipole polarizabili-
ty of the hy'drogen ground state by means of a pseudo-
state.

In O.QBA, our singlet phase shifts come very close to
the variational results, and the singlet scattering length
looks quite reasonable, even compared to a three-state
close-coupling calculation. ' For the H binding energy
the agreement of this lowest-order approximation with
variational and experimental results is particularly
good. This has already been found in the rank-one ap-
proximation of Ref. 3, which coincides with our O.QBA.

Thus the binding of the second electron to the hydrogen
atom can be well described by a pure exchange potential.

Although the singlet results in 1.QBA deviate more
from the variational values they are still acceptable. Of
particular interest is the agreement (cf. Table II) between
the 1.QBA singlet phase shifts and those obtained by a
close-coupling calculation' which incorporates polariza-
tion effects due to the virtual excitation of the target elec-
tron into higher bound states and the continuum, using
the 2p pseudostate given in Ref. 33. Investigation of the
various parts of the effective potential (see Fig. 1) reveals
that each of them is the origin of a sizable correction to
the O.QBA. However, a complicated cancellation mecha-
nism makes the overall correction small as compared to
the individual contributions, and repulsive, thereby in-
creasing the deviation from the variational results. Conse-
quently, the higher QBA's must again provide some more
attraction, a behavior which is reminiscent of the oscilla-
tory convergence found in the separable expansion
method. '

The triplet 5-wave phase shifts in O.QBA are much
smaller than the variational results, especially at higher
energies, . and the corresponding scattering length is too
large. This is not surprising since the electron-electron in-
teraction is completely neglected in this approximation;
i.e., the presence of the second electron is taken into ac-
count only indirectly via the Pauli principle. Since the
first-order corrections are dominated by the repulsive
Coulomb interaction between the electrons, the O.QBA is
considerably improved by adding these effectively attrac-
tive corrections in 1.QBA. At low energies the agreement
between the 1.QBA and other theoretical results is now

quite reasonable. However, the discrepancies become
larger with increasing energy, indicating that the 1.QBA
needs further improvement at higher energies. This could
have been anticipated since the magnitude of the largest
eigenvalue of the rest kernel Go V', which determines the
convergence of the QBA series, approaches unity as we
come close to the first excitation threshold.

In Figs. 6—9 we compare the P- and D-wave singlet
('5, , '5z) and triplet ( 5» 5z) phase shifts with the corre-
sponding variational' '" and SEA (Ref. 14) results. In
O.QBA the effective potential gives no contribution at all
to triplet scattering whereas in the singlet case only the ef-
fective electron exchange interaction is operative. It is,
therefore, not surprising that the lowest-order QBA is in-

TABLE II. Singlet S-wave elastic electron-hydrogen phase shifts at various electron momenta k.
Results obtained in O.QBA and in 1.QBA are compared with the SEA (Ref. 14), the ls-2p pseudostate
close-coupling (Ref. 18), and variational results (Ref. 9).

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

O.QBA

2.5367
2.0480
1.6800
1.3993
1.1801
1.0055
0., 8633
0.7445

1.QBA

2.4651
1.9608
1.6035
1.3373
1.1301
0.9642
0.8280
0.7126

SEA

2.396
1.870
1.508
1.239
1.031
0.8690
0.7441
0.6512

1$-2p

1.637

1.131
0.959
0.829
0.734

Variytional

2.553
2.0673
1.6964
1.4146
1.202
1.041
0.930
0.886
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TABLE III. Triplet S-wave elastic electron-hydrogen phase shifts at various electron momenta k
computed in O.QBA and in 1.QBA as compared with the SEA (Ref. 14), the Is-2p pseudostate close-
coupling (Ref. 18), and variational results (Ref. 9).

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

O.QBA

2.8299
2.5205
2.2149
1.9130
1.6122
1.3068
0.9852
0.6231

1.QBA

2.8994
2.6612
2.4304
2.2082
1.9939
1.7834
1.5683
1.3319

2.908
2.679
2.461
2.257
2.070
1.901
1.749
1.614

1s-2p

2.498

2.102
1.930
1.776
1.639

Variational

2.9388
2.7171
2.4996
2.2938
2.1046
1.9329
1.7797
1.643

sufficient for L & 1. The P and D-wave phas-e shifts are
determined to a large extent by the higher subsystem
states which are not contained in the O.QBA. Indeed, a
considerable improvement is achieved by incorporating
the latter at least partially via the 1.QBA. The close
agreement between the 1.QBA and the SEA (Ref. 14) D
wave phase shifts in both spin channels and over the
whole energy range, which can be seen most clearly by
comparing the corresponding numerical values in Table
IV, is remarkable.

The P- and D-wave phase shifts are very sensitive to
the various diagrams of Fig. 1. In contrast to the singlet
S wave, the corresponding contributions now add up to a
relatively large total 1.QBA correction. However, the
1.QBA phase shifts are still smaller than the variational
results and, for the reason mentioned above, the
discrepancy becomes more pronounced for higher ener-

gies. By calculating the first-order effective potentials
with the full T' instead of making the approximation
T' =V~, the influence of the higher subsystem states can
easily be investigated within the quasiparticle approach.
Indeed, when the difference T~ —V~ is approximated by a
sum of separable terms the corrections arising from each
of them can be calculated separately. First numerical esti-
mates confirm the expectation that the approximation

T' =V~ becomes worse with increasing energy, especially
when approaching the first excitation threshold. The D
wave in particular is strongly influenced by the hydrogen-
ic 2p state, reflecting the fact that the polarizability of the
hydrogen ground state, to which this subsystem state con-
tributes substantially, becomes more important for larger
L.

C. Differential and total cross sections

dO

dQ
(2L +1)~ (k, k;E)PL (cos8)

I.=0

are plotted separately in Figs. 10—13 for two different en-

ergies of the incoming electron. For comparison we in-
clude the SEA cross sections determined from the corre-
sponding S-, P , and D w-ave phase sh-ifts given in Refs.
14 and 15.

All cross sections in this section are given in units of
mao, where ao denotes the Bohr radius. Because of the
fast convergence of the partial-wave series (see Table V)
all scattering amplitudes could be determined sufficiently
accurately with less than 10 partial waves. The singlet
and triplet contributions to the differential cross section,

2

'&) (rad)

0.5
A'~ (a.u. )

0.6
0.7

~7 (rad)

vari afi onal

—0.05- vari afi onal

0.3- ~stati c exchange

—0.10-
1.QBA

—0.15 exchange

—0.20- 01-

—0.25
I

01
I

02
I

03
I

04 05
1

0.6 0,7

k'(au)

FIG. 6. Singlet I'-wave elastic electron-hydrogen phase shifts
as a function of k in O.QBA and in 1.QBA, as compared with
variational (Ref. 10) and SEA results (Ref. 14).

FICs. 7. Triplet I'-wave elastic electron-hydrogen phase shifts
as a function of k in 1.QBA. References as in Fig. 6.
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0.06-

004- vari a fiona(

TABLE IV. Singlet and triplet D-wave elastic electron-

hydrogen phase shifts as a function of the electron momentum
k. Comparison is made between the I.QBA and the SEA (Ref.
14).

0.02-

-0.02-

0. 1 0.2 0.3
A'(a. u.)

0.5 0.5 . 0.7

1.QBA

static exchange

2S+1g
L

0.3
0.4
0.5
0.6
0.7
0.8

I.QBA

—0.0006
—0.0019
—0.0041
—0.0066
—0.0084
—0.0083

SEA

—0.0005
—0.0017
—0.0039
—0.0070
—0.0106
—0.0139

FIG. 8. As in Fig. 6, but for the D wave. The variational re-

sults are from Ref. 11.

3$

0.3
0.4
0.5
0.6
0.7
0.8

0.0008
0.0028
0.0068
0.0130
0.0213
0.0309

0.0008
0.0029
0.0070
0.0135
0.0223
0.0327

As the energy increases, the singlet cross section in
1.QBA becomes smaller for all scattering angles (cf. Figs.
10 and 12). Although lying always below the 1.QBA, the
SEA result shows a similar behavior. The difference be-
tween these two approximations comes mainly from the
difference between the corresponding P wave phas-e shifts.
The inclusion of the partial waves L )3 in the 1.QBA
cross section is less substantial because of the fast conver-
gence of the partial-wave series. The O.QBA is deter-
mined essentially by the effective electron exchange poten-
tial. Since the latter is insufficient to produce reasonable
singlet phase shifts for L &0 (see Figs. 6 and 8), it can be
anticipated that the shape of the cross section in 1.QBA is
more realistic than that in O.QBA.

As mentioned already, the triplet differential cross sec-
tion in O.QBA contains only an S-wave contribution and,
thus, is isotropic (see Figs. 11 and 13). In 1.QBA the total
shape of the angular distribution is much more sensitive
to a variation of the energy than in the singlet channel.
However, we find a good agreement with the SEA results.
The strong reduction of the cross section in the forward
direction at very low energies is caused by the P wave,

'~, Pad&

which dominates the scattering in this energy region. To-
ward higher energies the D wave also becomes important
(even more than in the singlet channel, as a comparison of
Figs. 8 and 9 shows). Hence, the cross section becomes
smaller at large scattering angles and slightly larger in the
forward direction. The minimum, mainly produced by
destructive interference of the S, P, and D wave, is shifted
towards larger angles. The discrepancy between the
1.QBA and the SEA in this case can be attributed essen-
tially to the different S- and P-wave phase shifts.

In Figs. 14—16 we compare the total differential cross
section,

dO 1 dCT 3 dO

dA 4 dA 4 dQ
(4.5)

in different approximations and at various energies with
experimental results. For energies less than 3 eV the
large experimental cross section at large scattering angles
(see Fig. 14) can be explained by the dominance of elec-
tron exchange. Our separable approximation (O.QBA)
gives reasonable results for 0~120', demonstrating that
the scattering in this region can be well described by a
pure exchange potential. At smaller scattering angles
however, higher subsystem states and consequently

0.0 7-

0.06-

0.05-

0.04-

vari ati onal

stati c exchange

TABLE V. Example of convergence of the partial-wave
series (3.14) in I.QBA. The elastic electron-hydrogen singlet
and triplet amplitude in forward direction at an electron
momentum k=0.8 is tabulated as a function of the number NL
of partial waves included.

0.03-

0.02-

0.01-

0. 1 0.2 0.3 0.4 0.5 0.6 0. 7

FIG. 9. As in Fig. 7, but for the D wave. References as in
Fig. 8.

NL

—0.015 66
0.008 60
0.009 92
0.009 59
0.009 45
0.009 42
0.009 41

ImW

—0.013 54
—0.020 20
—0.020 22
—0.020 22
—0.020 22
—0.020 22
—0.020 22

—0.007 28
—0.029 35
—0.034 24
—0.035 11
—0.035 26
—0.035 28
—0.035 28

Imm'

—0.029 89
—0.035 33
—0.035 48
—0.035 49
—'0.035 49
—0.035 49
—0.035 49
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y~ (0)
(rt a~~ jsI.) d (O)

j~a&~/sr)

1.8-

(
~0 QBA.

1.QBA

03-

PIG. 10. Singlet contlibution to thc differential CIoss sections

for elastic electron-hydrogen scattering in O.QBA and in 1.QBA.
Comparison is made with the SEA (calculated from the phase

shifts of Refs. 14 and 15).

higher-order QBA contributions are important to repro-
duce the experimental results. Here the 1.QBA differs
considerably from the O.QBA and repmduces the experi-
mental data much better. For a further improvement of
the 1.QBA at very low energies presumably an improve-
ment of the P- and D-wave phase shifts would be suffi-
cient. '

With increasing energy the experimental cross section
becomes smaller for 8~60 whereas it gmws rapidly at
small scattering angles (see Fig. 15). In contrast, due to

50o

FIG. 12. As in Fig. 10, but for higher electron bombarding

energy.

the behavior of its triplet contribution, the differential
cross section in O.QBA decreases at all angles more rapid-
ly than the 1.QBA and lies finally almost everywhere out-
side of the experimental errors. Furthermore, the
minimum (in this approximation determined only by the
singlet contribution) changes its position in the opposite
direction as compared to the experiment.

The results obtained in 1.QBA, on the other hand, de-

crease at large scattering angles in the same way as the ex-
perimental values and lie at all energies well within the ex-
perimental errors. Furthermore, the position of the
minimum is shifted in the right direction, i.e., toward

yo (1)
& o~"~ ~„-( Q2i~.&

E= 6. 7eV

0.8-

FIG. 11. Same as in Fig. 10, but for the triplet channel. PIG. 13. Same as in Fig. 12, but for the triplet channel.
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yn &"'o' '~ QO

dA 0
—(&a Isr)

2. 1

E= 2.2eV 1.9 E= 8.7eV

1.6

1.7

O, QBA 1.3 -i

1.5

1.3

1.QBA stati c exchange

1.0

0.7— 1.QBA

u

o

O.C

0.QBA

60o 120 180'

60' 120 180

FIG. 14. Full differential cross section for elastic electron-
hydrogen scattering in O.QBA (dashed line) and in 1.QBA (solid
line). Also shown are the SEA values (obtained from the phase
shifts of Refs. 14 and 15) (dashed-dotted line) and the experi-
mental results of Ref. 35.

FIG. 16. Full differential cross section for elastic electron-
hydrogen scattering in O.QBA (dashed line) and in 1.QBA (solid
line), as compared with the experimental results of Ref. 35. The
dashed-dotted line has been determined by using the 1.QBA
phase shifts for L=O, 1, and 2 and the phase shifts (4.6) for
L&2.

larger angles (caused by the triplet contribution). In the
forward direction, the 1.QBA changes only slowly and lies
even for intermediate energies much below the experimen-
tal cross section. Since an improvement of the S-, P-, and
D-wave phase shifts leads only to a comparatively small
modification of the 1.QBA cross section, it becomes evi-
dent that a better incorporation of the higher subsystem
states via higher order QBA contributions is necessary to

tV a20isr)

1,7-

ua
~o;dk

(2L +3)(2L +1)(2L —1)

(O) ( Qo)

describe the scattering at small angles correctly.
For the energies considered, the polarizability of the hy-

drogen atom by the field of the incoming electron is a sig-
nificant effect, which infiuences the scattering primarily
at small angles. The phase shifts for larger angular mo-
menta are dominated by the induced polarization poten-
tial, which is given by —a~/2p, with the dipole polari-
zability of the hydrogen ground state being nd ——4.5ao. In
order to get some idea of what might be expected from an
inclusion of this effect we replaced for L & 3 the 1.QBA
results by the phase shifts obtained from the asymptotic
form 1

50-

~.3

l. l

,QBA

static exchange

30-

20-

10-

BA

8A

0.7- 3 static exchange

0 g O. QBA
2-

A2(a.U.)

600
I
1

180o

FIG. 15. Same as in Fig. 14, but for higher electron bom-

barding energy.

0. 1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 17. Singlet contribution to the total cross sections for
elastic electron-hydrogen scattering vs k in O.QBA aud in

. 1.QBA. For comparison the SEA results are included.
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I
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06 07
FIG. 18. As in Fig. 17, but for the triplet channel.

Figure 16 shows the difference between the cross section
calculated in this way and by means of the 1.QBA. Since
also the lowest partial waves need further improvement, a
full agreement with the experimental data can, of course,
not be expected. However, the improvement for 8 ~ 30' is
cons1derable.

Figures 17 and 18 display the singlet and triplet contri-
butions to the total cross section,

FIG. 19. Total cross section for elastic electron-hydrogen
scattering vs k in O.QBA and in 1.QBA, as compared with the
SEA (Ref. 14) and the experimental results of Ref. 38. Also
shon are the variational values (obtained from the phase shifts
of Refs. 9—12).

the 1.QBA represents a much more realistic description of
the experimental cross sections over the whole energy
range below the first excitation threshold. Whereas the
short-range effects are well reproduced in this approxima-
tion, the treatment of the polarization effects is still unsa-
tisfactory and has to be improved by calculating higher-
order QBA contributions.

as a function of k in different approximations. Our total
elast1c cross sect1ons,

I ~(0)+ 3 ~(1) (4.8)

are plotted in Fig. 19 and compared with the SEA, varia-
tional, and experimental results. As can be seen from
these figures and from Table VI, our total cross sections
in O.QBA and in 1.QBA are comparable to those obtained

by standard techniques and agree well with the experi-
mental data. The agreement between the corresponding
triplet contributions in 1.QBA and in the SEA is most re-
markable (see Fig. 18).

In conclusion, we can say that the QBA method turns
out to be a useful procedure for the treatment of the
electron-hydrogen problem. As compared to our O.QBA,
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APPENDIX

In this appendix we have collected the analytic expres-
sions of the effective potentials used in our numerical cal-
culations. As (a) of Fig. 1 shows, in the O.QBA only ex-
cllaIlgc dlaglaIIls aI'c considered. By 1Ilscrtlllg thc folII1
factors (3.10) into (2.20), one ends up with the simple ex-

p1 ess1on

1s-2p1.QBAO.QBA

TABLE VI. Total cross sections for elastic electron-hydrogen scattering in O.QBA and in 1.QBA at
various electron momenta k, as compared vnth some close-coupling results (Refs. 14, 15, and 18).

k SEA 1 s-2s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

60.57
45.24-

32.70
23.56
16.75
11.57
7.64
4.80

56.47
37.46
25.53
18.54
14.08
10.90
8.39
6.25

62.1

37.8
24.5
17.5
13.3

62.3
37.8
24.9
18.0
13.8 14.68

11.93
9.68
7.85
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(p) ~
&

~ Pa(P PPa )
Wp (k 'p, ka;E) =+&tia

Ir Pt3(Pa+P a)

. where the relative momentum p is a linear combination

of the external momenta, Pa=kti+Pa/myk . Here we
introduced for convenience the abbreviations

a/2

(A2)

and p p defined in an analogous way. The minus sign in
(Al) has to be taken if a= l. We should mention that the
general expression (Al) can also be used to investigate
other three-body Coulomb systems, such as (e+,e,e+),
(e +, e,p), (p,e,p), . . . (see Ref. 6).

The nondiagonal terms in I.QBA (2.21) contain in addi-

T,'=V,'= V, —V', . (A3)

S'Ilce the contributions (c) and (d) of Fjg. 1 vaIllsh wjth
our specia! clloice of form factors we have to consjder
only the analytical representation of (b). Usjng (A3)
write it as

~i =~t" ~g'=&p. ~,g,.(~p'.y) ~p'."), (A4)

where the two-body Coulomb potential Vy is contained in
P p ', and the separable part Vy of the two-body interac-
tion in Wt)y'. With the special choice for Vy discussed in
Sec. III A and the abbreviations (A2) we obtain

tion to the lowest-order contributions those which are
linear in Ty. These correction terms have a much more
complicated structure than the O.QBA. In order to reduce
their complexity wc made the approximation

)3/2
P " '(k' k E)= I d'&

7T' (P y
—Py)'[(PII)'+(P P)']'(P +P )'

where

16P~~ (P@ )3/2 E /My 2E—
~'Py [(p't3)'+(p t3)']'(p' +II

Pp-, - Pa-, k, Py ~ k Py~
m~ Wp f/~ fn p

In addition to the nondiagonal terms, the 1.QBA contains the diagonal contributions depicted in (e) and (f) of Fig. 1.
From (2 22) one obtajns, jn analogy to (A4), in the approximation (A3) the decoinposition

p-(I) g y g (y (cy) y (sy))

y

The explicit expressions are

2( —i —)3/2
~(sy)(k k .E) Pa p aPa 1' d3~ 1

Ir'(k' —k )' [(p' )'+(p')']'(p'+p')'

(A7)

(AS)

4( —' —)3/2
~(sy)(k, k E) Pa P aPa

7T Py
d K

K /M 2E—
[(p' )'+(p ' )']'(p'+p ')'

with the relative momenta p ~, p being given as

The minus (plus) sign has to be taken for Vy being attrac-
tive (repulsive). The representation (AS) shows clearly the
Coulomb singularity for k ~= k discussed in Sec. III B.
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