Potentials for atomic negative ions

P. S. Ganas, L. P. Gately, and T. Arakelian

California State University at Los Angeles, Los Angeles, California 90032 (Received 24 April 1984)

For the purpose of astrophysical, aeronomical, and laboratory applications, we seek a precise independent-particle model for electrons in atomic negative ions from Z=3 up to Z=85. We obtain analytic potentials whose inner energy levels are close to the experimental levels of neutral atoms but whose last electron eigenvalue is adjusted so as to be in precise agreement with the electron affinity of negative ions. Systematic trends in the potential parameters are discussed.

I. INTRODUCTION

Negative ions play important roles in astrophysical, aeronomical, and laboratory phenomena. $^{1-4}$ For example, H⁻ is the major source of opacity in the continuum of the sun and many stars and plays a part in many stellar reactions. The negative ions O^- and O_2^- and others in Earth's upper atmosphere have important effects in determining the density of free electrons which influence radio communications and other aeronomical phenomena. In the laboratory, negative ions influence radiation from shock waves, the shape of gaseous discharge pulses and other experimental observations. Negative ions are used in tandem Van de Graaff accelerators for multiplying the energy of the accelerated particles. Although in most situations the abundance of negative ions is usually small compared to that of neutrals, the fact that they are electrically charged and that electron affinities of negative ions are small often amplifies their influence. In order to provide theoretical explanations of negative-ion phenomena it is desirable to have simple but accurate characterizations of their properties. The present work addresses this objective and is devoted to independent-particle model (IPM) descriptions of negative atomic ions from Z=3 up to Z = 85.

In pure atomic physics one is usually interested in finding the most precise theoretical characterization of one, two, or a few properties of the system. On the other hand, in applications of atomic physics very often approximate characterizations of many or all of the properties of the system are needed. In this context a negative ion may be regarded as the bound-state limit of the electronneutral atomic system. For example, the scattering of electrons from an atom A, and the bound-state properties of the negative ion A^- , can be considered as physical manifestations of the negative-energy (shell-model) and positive-energy (optical-model) states of the e-A system. Such a unified characterization is useful not only for the calculation of cross sections for photodetachment $(h\nu + A^{-} \rightarrow A + e)$ but also for the calculation of differential, total elastic, and various inelastic cross sections for electrons impacting on A atoms. These cross sections are needed as input data for various problems in applied physics. The IPM of electrons in central potentials is the simplest model for calculating the bound-state properties

(e.g., energy levels) and the scattering properties (e.g., cross sections) of atomic systems. Here all the physical results are extracted from the radial Schrödinger equation

$$-u''(r) + [V(r) + l(l+1)/r^2]u(r) = Eu(r), \qquad (1)$$

where V(r) is the potential of an electron in a negative ion, and E is the energy eigenvalue. For bound-state (shell-model) problems E is a negative number, for scattering problems (optical model) E is positive. In this work V(r) is assumed to have the form⁵

$$V(r) = -(2Z/r)\Omega(r) , \qquad (2)$$

where $\Omega(r)$ is the two-parameter (\mathscr{H} and d) screening function

$$\Omega(r) = [\mathscr{H}(e^{r/d} - 1) + 1]^{-1}.$$
(3)

For a neutral atom an electron at large distances moves in the potential of the positive ion it leaves behind. Thus the potential for large r is Coulombic, behaving like -2/r. For a negative ion an electron at large distances leaves behind a neutral atom. From Eqs. (2) and (3) the potential for large r is a Yukawa, behaving as $-(2Z/\mathcal{H})r^{-1}e^{-r/d}$. This potential falls off more rapidly than a Coulomb potential.

II. BINDING ENERGIES

The analytic IPM approach used in this work is similar to the approach which has been used to calculate electronic binding energies of neutral atoms⁶ and positive ions.⁷ One approach for determining the potential parameters dand \mathcal{H} is to tune the parameters so that the energy eigenvalues from Eq. (1) agree with the experimental values of the excited-state energies. This approach was used by Ganas and Green⁸ to achieve an IPM description of the rare-gas atoms. Unfortunately, excited states for negative ions are extremely rare, so that the procedure used by Ganas and Green cannot be applied to negative ions. Furthermore, no experimental information is available on the inner energy levels of negative ions, though some theoretical information on these levels does exist.⁹ In attempting to achieve a realistic IPM description of atomic negative ions, we have adopted the following procedure. We utilize the electronic binding energies of neutral atoms for which

30 2958

FIG. 1. Plots of $d(\bullet)$, $\mathcal{H}(\circ)$, $\mathcal{H}/d(\bullet)$ vs Z. The straight lines through the \mathcal{H}/d data are the best linear fits for low (Z < 10), medium (10 < Z < 60), and high (Z > 60) values of Z.

abundant experimental information exists.¹⁰ We assume that if we take a neutral atom and add an electron to the last unfilled subshell to form a negative ion, the addition of the last electron does not significantly modify the binding energies of the inner electrons of the neutral atom. We determine the potential parameters d and \mathscr{H} by requiring the energy eigenvalues to be approximately equal to the binding energies of the inner electrons of the neutral atom, and the last electron eigenvalue to be precisely equal to the electron affinity of the negative ion. An automatic search for the best parameters was performed using a nonlinear least-squares search routine which adjusts the parameters in such a way as to minimize the quantity

$$\sum_{i} \left[w \left(E_{e} - E_{c} \right)^{2} \right]_{i} .$$
 (4)

Here E_e is the experimental electronic binding energy, E_c is the calculated energy eigenvalue, and w is the weight. In order to achieve the desired precision in matching the last electron eigenvalue to the electron affinity, it was necessary to use a weighting of $w = 1/E_e^3$ in this work. The potential parameters obtained in this way are plotted in Fig. 1. In Table I a comparison is given between the last electron eigenvalues obtained in this work, the values obtained from Hartree-Fock (HF) calculations,⁹ and the recommended values of electron affinities.⁴ It is clear that TABLE I. Comparison of last electron eigenvalues obtained in the present work [IPM(2) and IPM(1)] with the recommended values of electron affinities (EA), and the values from Hartree-Fock calculations (HF). IPM(2) and IPM(1) denote the results of two-parameter searches (d and \mathcal{H}) and one-parameter searches (d), respectively. All values are in rydbergs.

AtomNeutral atomNegative ionIPM(2)IPM(1)EAHFJLi2s2s2s²0.04560.04560.0291sB2p2p²0.02060.03060.03060.0319sC2p²2p³0.09320.09320.09320.0932sG2p42p50.10750.10750.1075sF2p52p60.24990.24990.24991Na3s3s²0.04010.02501ski3p²3p²0.0380.0380.0381ski3p²3p40.05460.05460.04601sb3p40.05460.05460.04600.02561sb3p43p50.15270.15250.12970.21481c13p53p60.26590.26590.29981sK4s4s²0.04850.04850.04850.02662cF3d²4s²3d²4s²0.01470.01470.11752vV3d²4s²3d²4s²0.01830.01840.01442cC3d²4s²3d²4s²0.01840.04850.02642cFo3d²4s²3d²4s²0.01840.01840.46052cFo3d²4s²3d²4s²0.01850.03150.01542cC3d²4s²3d²4s²0.01850.01550.03152cC3d²4s²3d²4s²0.01850.016450.46452cFo3d²4s²3d²4s²0.01150.00150.01152cC <td< th=""><th colspan="9">Configuration</th></td<>	Configuration								
j.Li $2s$ $2s^2$ 0.0456 0.0456 0.0456 0.0261 0.0291 s^B $2p$ $2p^2$ $2p^3$ 0.0932 0.2499 0.2493 0.2457 0.2457 0.2579 0.2579 0.2579 0.2579 0.2579 0.2599	Atom	Neutral atom	Negative ion	IPM (2)	IPM (1)	EA	HF		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ji	2.8	$2s^{2}$	0.0456	0.0456	0.0456	0.0291		
	sB	$\frac{2n}{2n}$	$2n^2$	0.0206	0.0206	0.0206	0.0319		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- م د C	$\frac{2n^2}{2n^2}$	$\frac{-r}{2n^3}$	0.0932	0.0932	0.0932	0.0972		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	°0	$\frac{2p}{2n^4}$	$2n^5$	0.1075	0.1075	0.1075	0.0572		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٥F	$\frac{2p}{2n^5}$	$\frac{2p}{2n^6}$	0.2499	0.2499	0.1075	0.2505		
	Na	35	$\frac{2p}{3s^2}$	0.0401	0.0401	0.2499	0.0017		
	A 1	30	$3n^2$	0.0338	0.0338	0.0338	0.0250		
	Si	$\frac{3p}{3n^2}$	$3p^3$	0.0008	0.0556	0.0558	0.0208		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1451 1-P	$3n^3$	$3n^4$	0.0546	0.1010	0.1010	0.0785		
	15-	$3n^4$	$3n^5$	0.1527	0.1525	0.0540	0.1407		
		$3n^5$	$3n^6$	0.1527	0.1525	0.1527	0.2140		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I/CI	5p 4s	$\frac{5p}{4s^2}$	0.2059	0.0368	0.2059	0.2330		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T i	$3d^24s^2$	3d ³ 4s ²	0.0308	0.0308	0.0308	0.0204		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2211 V	$3d^{3}4s^{2}$	$3d^44s^2$	0.0368	0.0147	0.0147	0.11/5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 V	3 d ⁵ /s	$3d^{5}An^{2}$	0.0308	0.0308	0.0308	0.2714		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24C1 Ea	2 d ⁶ / a ²	3a 4s $3d^74a^2$	0.0465	0.0483	0.0483	0.0000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$3d^{7}4s^{2}$	2 184 a ²	0.0185	0.0184	0.0184	0.4005		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27C0	34 4s $2 484a^2$	$5a 4s^{-194}$	0.0315	0.0515	0.0515	0.4908		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28111	5a 4s 2 104a	$3a^{-}4s^{-}$	0.0845	0.0845	0.0845	0.4/10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29Cu	5a ~ 4s	$3a^{-4}s^{$	0.0901	0.0901	0.0901	0.0411		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 Ga	$4p^{4}$	4 <i>p</i> ⁻	0.0221	0.0221	0.0221	0.0017		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 Ge	4p	4 <i>p</i> - 4	0.0882	0.0877	0.0882	0.0856		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 AS	$4p^{4}$	4 <i>p</i> 4 D ⁵	0.0588	0.0588	0.0588	0.1342		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 5 e	4p	4 <i>P</i> *	0.1485	0.1484	0.1485	0.2025		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35BT	4 <i>P*</i>	4 <i>p</i> °	0.24/3	0.2493	0.2473	0.2776		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 K D	5S	$5s^{2}$	0.0357	0.0357	0.0357	0.0131		
$_{41}Cr$ $4a^25s^2$ $4a^35s^2$ 0.0368 0.0368 0.0368 0.0368 0.0104 $_{41}Nb$ $4a^45s$ $4a^45s^2$ 0.0735 0.0735 0.0735 0.0735 0.0309 $_{42}Mo$ $4a^45s$ $4a^45s^2$ 0.0735 0.0735 0.0735 0.0735 0.0735 0.0735 $_{41}Ru$ $4a^55s^2$ $4a^45s^2$ 0.0515 0.0515 0.0515 0.0389 $_{44}Ru$ $4a^75s$ $4a^75s^2$ 0.0809 0.0809 0.0809 $_{45}Rh$ $4a^45s$ $4a^45s^2$ 0.0882 0.0882 0.0382 $_{47}Ag$ $4a^{10}s^2$ $4a^{10}s^2^2$ 0.0958 0.0958 0.0958 0.0383 $_{47}Ag$ $4a^{10}s^2$ $a^{10}s^2^2$ 0.0921 0.0221 0.0221 0.0411 0.0441 0.0382 $_{47}Ag$ $4a^{10}s^2$ $5p^2$ 0.0958 0.0958 0.0958 0.0383 $_{95}N$ $5p^2$ $5p^2$ 0.0221 0.0221 0.0221 0.0411 $_{95}Sh$ $5p^5$ $5p^6$ 0.2250 0.2257 0.2250 0.2583 $_{55}Cs$ $6s$ $6s^2$ 0.0347 0.0347 0.0347 $_{75}La$ $5d^46s^2$ $5d^46s^2$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^46s^2$ $5d^46s^2$ 0.0368 0.0368 0.0368 $_{75}Re$ $5d^56s^2$ $5d^56s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^66s^2$ $5d^76s^2$ 0.04	39 Y	$4d5s^{-2}$	$4d^{2}5s^{2}$	0.0050	0.0010	0.0	0.0098		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 Z r	$4d^{2}5s^{2}$	$4d^{3}5s^{2}$	0.0368	0.0368	0.0368	0.1004		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41Nb	$4d^{-}5s$	$4d^{+}5s^{2}$	0.0735	0.0735	0.0735	0.0309		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42M0	$4d^{\circ}5s$	$4d^{5}5s^{2}$	0.0735	0.0735	0.0735	0.0109		
4_4 Ru $4d^75s$ $4d^75s^2$ 0.0809 0.0809 0.0809 4_5 Rh $4d^85s$ $4d^85s^2$ 0.0882 0.0882 0.0882 0.0377 4_6 Pd $4d^{10}$ $4d^95s^2$ 0.0441 0.0441 0.0441 0.0382 47 Ag $4d^{10}5s$ $4d^{10}5s^2$ 0.0958 0.0958 0.0938 0.0383 4_9 In $5p$ $5p^2$ 0.0221 0.0221 0.0221 0.0419 50 Sn $5p^2$ $5p^3$ $5p^4$ 0.0772 0.0772 0.0772 0.1449 5_2 Te $5p^4$ $5p^5$ 0.1449 0.1451 0.1449 0.1929 5_3 I $5p^5$ $5p^6$ 0.2250 0.2257 0.2250 0.22583 5_5 Cs $6s$ $6s^2$ 0.0347 0.0347 0.0347 5_7 La $5d^56s^2$ $5d^26s^2$ 0.0441 0.0441 0.0441 7_4 W $5d^46s^2$ $5d^56s^2$ 0.0110 0.0110 0.0110 7_6 Os $5d^66s^2$ $5d^56s^2$ 0.0110 0.0110 0.0110 7_6 Cs $5d^66s^2$ $5d^96s^2$ 0.1564 0.1564 0.1564 7_9 Au $5d^166s$ $5d^96s^2$ 0.1697 0.1697 0.1697 7_1 Ir $5d^96s$ $5d^96s^2$ 0.1697 0.1697 0.1697 8_1 H $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 8_3 Bi $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 8_4 Po $6p^5$ <td>43 I C</td> <td>$4d^{3}5s^{2}$</td> <td>$4d^{6}5s^{2}$</td> <td>0.0515</td> <td>0.0515</td> <td>0.0515</td> <td>0.3387</td>	43 I C	$4d^{3}5s^{2}$	$4d^{6}5s^{2}$	0.0515	0.0515	0.0515	0.3387		
4_{45} Rh $4d^{5}Ss$ $4d^{5}Ss^{2}$ 0.0882 0.0882 0.0882 0.0882 0.0377 4_{6} Pd $4d^{10}$ $4d^{9}Ss^{2}$ 0.0441 0.0441 0.0441 0.0382 4_{7} Ag $4d^{10}Ss$ $4d^{10}Ss^{2}$ 0.0958 0.0958 0.0958 0.0938 $4gIn$ $5p$ $5p^{2}$ 0.0221 0.0221 0.0221 0.0441 0.0382 $g_{0}Sn$ $5p^{2}$ $5p^{3}$ 0.0919 0.0919 0.0919 0.1210 $s_{1}Sb$ $5p^{3}$ $5p^{4}$ 0.0772 0.0772 0.0772 0.1449 $s_{2}Te$ $5p^{4}$ $5p^{5}$ 0.1449 0.1451 0.1449 0.1929 $s_{1}St$ $5p^{5}$ $5p^{6}$ 0.2250 0.2257 0.2250 0.2583 $s_{5}Cs$ $6s$ $6s^{2}$ 0.0347 0.0347 0.0347 $s_{7}La$ $5d^{5}6s^{2}$ $5d^{4}6s^{2}$ 0.0441 0.0441 0.0441 $r_{4}W$ $5d^{4}6s^{2}$ $5d^{4}6s^{2}$ $5d^{4}6s^{2}$ 0.0441 0.0441 0.0441 $r_{4}W$ $5d^{4}6s^{2}$ $5d^{5}6s^{2}$ 0.0041 0.0441 0.0441 0.0441 $r_{4}W$ $5d^{4}6s^{2}$ $5d^{5}6s^{2}$ 0.0110 0.0110 0.0110 $r_{6}Os$ $5d^{5}6s^{2}$ $5d^{5}6s^{2}$ 0.0809 0.0809 0.0809 $r_{7}Tr$ $5d^{5}6s^{2}$ $5d^{6}6s^{2}$ 0.1697 0.1697 0.1697 $r_{7}Tr$ $5d^{5}6s$ $5d^{9}6s^{2}$ <td>44Ru</td> <td>4d'5s</td> <td>$4d'5s^2$</td> <td>0.0809</td> <td>0.0809</td> <td>0.0809</td> <td></td>	44Ru	4d'5s	$4d'5s^2$	0.0809	0.0809	0.0809			
$_{46}Pd$ $4d^{10}$ $4d^{2}5s^{2}$ 0.0441 0.0441 0.0441 0.0382 $_{47}Ag$ $4d^{10}5s$ $4d^{10}5s^{2}$ 0.0958 0.0958 0.0958 0.0383 $_{45}In$ $5p$ $5p^{2}$ 0.0221 0.0221 0.0221 0.0211 0.0211 0.0211 0.0211 0.0419 $_{50}Sn$ $5p^{2}$ $5p^{3}$ 0.0919 0.0919 0.0919 0.0919 0.1210 $_{51}Sb$ $5p^{3}$ $5p^{4}$ 0.0772 0.0772 0.0772 0.1445 $_{52}Te$ $5p^{4}$ $5p^{5}$ 0.1449 0.1451 0.1449 0.1929 $_{53}I$ $5p^{5}$ $5p^{6}$ 0.2250 0.2257 0.2250 0.2583 $_{55}Cs$ $6s$ $6s^{2}$ 0.0347 0.0347 0.0347 $_{71}La$ $5d^{6}s^{2}$ $5d^{2}6s^{2}$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^{4}6s^{2}$ $5d^{2}6s^{2}$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^{4}6s^{2}$ $5d^{5}6s^{2}$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^{4}6s^{2}$ $5d^{5}6s^{2}$ 0.01010 0.0110 0.0110 $_{76}Os$ $5d^{6}6s^{2}$ $5d^{6}6s^{2}$ 0.1176 0.1176 0.1176 $_{78}Pt$ $5d^{9}6s$ $5d^{9}6s^{2}$ 0.1697 0.1697 0.1697 $_{71}In$ $5d^{10}6s$ $5d^{10}6s^{2}$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^{3}$ $6p^{4}$ 0.0809 </td <td>45Rh</td> <td>4<i>d</i>°5s</td> <td>$4d^{\circ}5s^{2}$</td> <td>0.0882</td> <td>0.0882</td> <td>0.0882</td> <td>0.0377</td>	45Rh	4 <i>d</i> °5s	$4d^{\circ}5s^{2}$	0.0882	0.0882	0.0882	0.0377		
47 Ag $4d^{10}5s^{2}$ 0.0958 0.0958 0.0958 0.0958 0.0958 0.0383 49 In $5p$ $5p^{2}$ $5p^{2}$ 0.0221 0.0221 0.0221 0.0221 0.0419 50 Sn $5p^{2}$ $5p^{3}$ $5p^{4}$ 0.0919 0.0919 0.0919 0.0919 0.1210 5_1 Sb $5p^{3}$ $5p^{4}$ 0.0772 0.0772 0.0772 0.0772 0.1449 5_2 Te $5p^{4}$ $5p^{5}$ 0.1449 0.1451 0.1449 0.1929 s_1 I $5p^{5}$ $5p^{6}$ 0.2250 0.2257 0.2250 0.2583 s_5 Cs $6s$ $6s^{2}$ 0.0347 0.0347 0.0347 5_7 La $5d$ $6s^{2}$ $5d^{2}6s^{2}$ 0.0441 0.0441 0.0441 7_4 W $5d^{4}6s^{2}$ $5d^{4}6s^{2}$ 0.0110 0.0110 0.0110 7_6 Os $5d^{5}6s^{2}$ $5d^{6}6s^{2}$ 0.0809 0.0809 0.0809 7_7 Ir $5d^{7}6s^{2}$ $5d^{8}6s^{2}$ 0.1176 0.1176 7_8 Pt $5d^{9}6s$ $5d^{9}6s^{2}$ 0.1697 0.1697 8_1 TI $6p$ $6p^{2}$ 0.0221 0.0221 0.0221 8_2 Pb $6p^{3}$ $6p^{4}$ $6p^{5}$ 0.1397 0.1399 0.1397 8_5 At $6p^{5}$ $6p^{6}$ 0.2058 0.2062 0.2058	46Pd	4 <i>d</i> ¹⁰	$4d^{9}5s^{2}$	0.0441	0.0441	0.0441	0.0382		
$_{49}$ In $5p$ $5p^2$ 0.0221 0.0221 0.0221 0.0211 0.0419 $_{50}$ Sn $5p^2$ $5p^3$ 0.0919 0.0919 0.0919 0.0919 0.1210 $_{51}$ Sb $5p^3$ $5p^4$ 0.0772 0.0772 0.0772 0.1445 $_{52}$ Te $5p^4$ $5p^5$ 0.1449 0.1451 0.1449 0.1929 $_{53}$ I $5p^5$ $5p^6$ 0.2250 0.2257 0.2250 0.2583 $_{55}$ Cs $6s$ $6s^2$ 0.0347 0.0347 0.0347 $_{77}$ La $5d 6s^2$ $5d^2 6s^2$ 0.0441 0.0441 0.0441 $_{74}$ W $5d^4 6s^2$ $5d^4 6s^2$ 0.0441 0.0441 0.0441 $_{74}$ W $5d^4 6s^2$ $5d^6 6s^2$ 0.0110 0.0110 0.0110 $_{76}$ Os $5d^6 6s^2$ $5d^7 6s^2$ 0.0809 0.0809 0.0809 $_{77}$ Ir $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 0.1176 $_{78}$ Pt $5d^9 6s$ $5d^9 6s^2$ 0.1697 0.1697 0.1697 $_{74}$ II $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}$ Pb $6p^2$ $6p^3$ 0.0809 0.0809 0.809 $_{83}$ Bi $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}$ Po $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}$ At $6p^5$ 0.2058 0.2062 0.2058 0.2058	47 Ag	$4d^{10}5s$	$4d^{10}5s^2$	0.0958	0.0958	0.0958	0.0383		
$s_0 Sn$ $5p^2$ $5p^3$ 0.0919 0.0919 0.0919 0.0919 0.1210 $s_1 Sb$ $5p^3$ $5p^4$ 0.0772 0.0772 0.0772 0.1445 $s_2 Te$ $5p^4$ $5p^5$ 0.1449 0.1451 0.1449 0.1929 $s_3 I$ $5p^5$ $5p^6$ 0.2250 0.2257 0.2250 0.2583 $s_5 Cs$ $6s$ $6s^2$ 0.0347 0.0347 0.0347 $s_7 La$ $5d 6s^2$ $5d^2 6s^2$ 0.0441 0.0441 0.0441 $r_4 W$ $5d^4 6s^2$ $5d^4 6s^2$ 0.0441 0.0441 0.0441 $r_4 W$ $5d^4 6s^2$ $5d^6 6s^2$ 0.0110 0.0110 0.0110 $r_6 Os$ $5d^6 6s^2$ $5d^6 6s^2$ 0.0809 0.809 0.809 $r_7 Ir$ $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 0.1176 $r_8 Pt$ $5d^9 6s$ $5d^9 6s^2$ 0.1697 0.1697 0.1697 $r_9 Au$ $5d^{10} 6s$ $5d^{10} 6s^2$ 0.0221 0.0221 0.0221 $r_8 Pb$ $6p^2$ $6p^3$ 0.0809 0.809 0.809 $s_3 Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $s_8 At$ $6p^5$ 0.1397 0.1399 0.1397 $s_8 At$ $6p^5$ 0.2058 0.2062 0.2058	49 In	5p	$5p^2$	0.0221	0.0221	0.0221	0.0419		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50Sn	$5p^2$	5 <i>p</i> °	0.0919	0.0919	0.0919	0.1210		
$_{52}$ Te $5p^4$ $5p^5$ 0.1449 0.1451 0.1449 0.1929 $_{53}$ I $5p^5$ $5p^6$ 0.2250 0.2257 0.2250 0.2253 $_{55}$ Cs $6s$ $6s^2$ 0.0347 0.0347 0.0347 $_{57}$ La $5d 6s^2$ $5d^2 6s^2$ 0.0368 0.0368 0.0368 $_{73}$ Ta $5d^3 6s^2$ $5d^4 6s^2$ 0.0441 0.0441 0.0441 $_{74}$ W $5d^4 6s^2$ $5d^5 6s^2$ 0.0441 0.0441 0.0441 $_{75}$ Re $5d^5 6s^2$ $5d^6 6s^2$ 0.0110 0.0110 0.0110 $_{76}$ Os $5d^6 6s^2$ $5d^7 6s^2$ 0.0809 0.0809 0.0809 $_{77}$ Ir $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 $_{79}$ Au $5d^{10} 6s$ $5d^{10} 6s^2$ 0.1697 0.1697 $_{81}$ TI $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}$ Pb $6p^2$ $6p^3$ 0.0809 0.0809 0.809 $_{83}$ Bi $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}$ Po $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}$ At $6p^5$ 0.2058 0.2062 0.2058	51 S b	$5p^{3}$	5 <i>p</i> *	0.0772	0.0772	0.0772	0.1445		
$_{53}I$ $5p^3$ $5p^6$ 0.2250 0.2257 0.2250 0.2250 $_{55}Cs$ $6s$ $6s^2$ 0.0347 0.0347 0.0347 $_{57}La$ $5d 6s^2$ $5d^2 6s^2$ 0.0368 0.0368 0.0368 $_{73}Ta$ $5d^3 6s^2$ $5d^4 6s^2$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^4 6s^2$ $5d^4 6s^2$ 0.0441 0.0441 0.0441 $_{75}Re$ $5d^5 6s^2$ $5d^6 6s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^6 6s^2$ $5d^7 6s^2$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 $_{78}Pt$ $5d^9 6s$ $5d^9 6s^2$ 0.1697 0.1697 $_{79}Au$ $5d^{10} 6s$ $5d^{10} 6s^2$ 0.0221 0.0221 $_{81}Tl$ $6p$ $6p^2$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	₅₂ Te	5 <i>p</i> ⁴	5 <i>p</i> ⁵	0.1449	0.1451	0.1449	0.1929		
$_{55}Cs$ $6s$ $6s^2$ 0.0347 0.0347 0.0347 $_{57}La$ $5d 6s^2$ $5d^2 6s^2$ 0.0368 0.0368 0.0368 $_{73}Ta$ $5d^3 6s^2$ $5d^2 6s^2$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^4 6s^2$ $5d^5 6s^2$ 0.0441 0.0441 0.0441 $_{75}Re$ $5d^5 6s^2$ $5d^6 6s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^6 6s^2$ $5d^7 6s^2$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 0.1176 $_{78}Pt$ $5d^9 6s$ $5d^9 6s^2$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10} 6s$ $5d^{10} 6s^2$ 0.0221 0.0221 0.0221 $_{81}Tl$ $6p$ $6p^2$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ 0.2058 0.2062 0.2058	53I	5p ³	5 <i>p</i> °	0.2250	0.2257	0.2250	0.2583		
$_{77}La$ $5d 6s^2$ $5d^26s^2$ 0.0368 0.0368 0.0368 $_{73}Ta$ $5d^36s^2$ $5d^46s^2$ 0.0441 0.0441 0.0441 $_{74}W$ $5d^46s^2$ $5d^56s^2$ 0.0441 0.0441 0.0441 $_{75}Re$ $5d^56s^2$ $5d^66s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^66s^2$ $5d^76s^2$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^76s^2$ $5d^86s^2$ 0.1176 0.1176 0.1176 $_{78}Pt$ $5d^96s$ $5d^96s^2$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10}6s$ $5d^{10}6s^2$ 0.0221 0.0221 0.0221 $_{81}Tl$ $6p$ $6p^2$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ 0.2058 0.2062 0.2058	55 Cs	65	$6s^2$	0.0347	0.0347	0.0347			
7_3 Ta $5d^36s^2$ $5d^46s^2$ 0.0441 0.0441 0.0441 7_4 W $5d^46s^2$ $5d^56s^2$ 0.0441 0.0441 0.0441 7_5 Re $5d^56s^2$ $5d^56s^2$ 0.0110 0.0110 0.0110 7_6 Os $5d^56s^2$ $5d^76s^2$ 0.0809 0.0809 0.0809 7_7 Ir $5d^76s^2$ $5d^86s^2$ 0.1176 0.1176 0.1176 7_8 Pt $5d^96s$ $5d^96s^2$ 0.1564 0.1564 0.1564 7_9 Au $5d^{10}6s$ $5d^{10}6s^2$ 0.1697 0.1697 0.1697 8_1 Tl $6p$ $6p^2$ 0.0221 0.0221 0.0221 8_2 Pb $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 8_3 Bi $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 8_4 Po $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 8_5 At $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	57La	$5d6s^2$	$5d^{2}6s^{2}$	0.0368	0.0368	0.0368			
$_{74}W$ $5d^46s^2$ $5d^56s^2$ 0.0441 0.0441 0.0441 $_{75}Re$ $5d^56s^2$ $5d^66s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^56s^2$ $5d^76s^2$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^76s^2$ $5d^86s^2$ 0.1176 0.1176 $_{78}Pt$ $5d^96s$ $5d^96s^2$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10}6s$ $5d^{10}6s^2$ 0.1697 0.1697 $_{81}T1$ $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	73Ta	$5d^{3}6s^{2}$	$5d^46s^2$	0.0441	0.0441	0.0441			
$_{75}Re$ $5d^56s^2$ $5d^66s^2$ 0.0110 0.0110 0.0110 $_{76}Os$ $5d^66s^2$ $5d^76s^2$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^76s^2$ $5d^86s^2$ 0.1176 0.1176 0.1176 $_{78}Pt$ $5d^96s$ $5d^96s^2$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10}6s$ $5d^{10}6s^2$ 0.1697 0.1697 0.1697 $_{81}Tl$ $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ 0.2058 0.2062 0.2058	$_{74}$ W	$5d^46s^2$	$5d^{5}6s^{2}$	0.0441	0.0441	0.0441			
$_{76}Os$ $5d^{6}6s^{2}$ $5d^{7}6s^{2}$ 0.0809 0.0809 0.0809 $_{77}Ir$ $5d^{7}6s^{2}$ $5d^{8}6s^{2}$ 0.1176 0.1176 0.1176 $_{78}Pt$ $5d^{9}6s$ $5d^{9}6s^{2}$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10}6s$ $5d^{10}6s^{2}$ 0.1697 0.1697 0.1697 $_{81}Tl$ $6p$ $6p^{2}$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^{2}$ $6p^{3}$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^{3}$ $6p^{4}$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^{4}$ $6p^{5}$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^{5}$ 0.2058 0.2062 0.2058	75Re	$5d^{5}6s^{2}$	$5d^{6}6s^{2}$	0.0110	0.0110	0.0110			
$77 Ir$ $5d^7 6s^2$ $5d^8 6s^2$ 0.1176 0.1176 0.1176 $78 Pt$ $5d^9 6s$ $5d^9 6s^2$ 0.1564 0.1564 0.1564 $79 Au$ $5d^{10} 6s$ $5d^{10} 6s^2$ 0.1697 0.1697 0.1697 $81 Tl$ $6p$ $6p^2$ 0.0221 0.0221 0.0221 $82 Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 $83 Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $84 Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $85 At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	76 Os	$5d^{6}6s^{2}$	$5d^{7}6s^{2}$	0.0809	0.0809	0.0809			
$_{78}Pt$ $5d^96s$ $5d^96s^2$ 0.1564 0.1564 0.1564 $_{79}Au$ $5d^{10}6s$ $5d^{10}6s^2$ 0.1697 0.1697 0.1697 $_{81}T1$ $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	77Ir	$5d^{7}6s^{2}$	$5d^{8}6s^{2}$	0.1176	0.1176	0.1176			
$_{79}Au$ $5d^{10}6s$ $5d^{10}6s^2$ 0.1697 0.1697 0.1697 $_{81}Tl$ $6p$ $6p^2$ 0.0221 0.0221 0.0221 $_{82}Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 $_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 $_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	78Pt	$5d^96s$	$5d^{9}6s^{2}$	0.1564	0.1564	0.1564			
g_1 Tl $6p$ $6p^2$ 0.0221 0.0221 0.0221 g_2 Pb $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 g_3 Bi $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 g_4 Po $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 g_5 At $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	79 Au	$5d^{10}6s$	$5d^{10}6s^2$	0.1697	0.1697	0.1697			
${}_{82}Pb$ $6p^2$ $6p^3$ 0.0809 0.0809 0.0809 ${}_{83}Bi$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 ${}_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 ${}_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	₈₁ Tl	6 <i>p</i>	$6p^2$	0.0221	0.0221	0.0221			
${}_{83}\text{Bi}$ $6p^3$ $6p^4$ 0.0809 0.0809 0.0809 ${}_{84}\text{Po}$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 ${}_{85}\text{At}$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	₈₂ Pb	$6p^2$	$6p^3$	0.0809	0.0809	0.0809			
$_{84}Po$ $6p^4$ $6p^5$ 0.1397 0.1399 0.1397 $_{85}At$ $6p^5$ $6p^6$ 0.2058 0.2062 0.2058	₈₃ Bi	$6p^3$	6 <i>p</i> ⁴	0.0809	0.0809	0.0809			
$_{85}$ At $6p^{\circ}$ $6p^{\circ}$ 0.2058 0.2062 0.2058	₈₄ Po	6 <i>p</i> ⁴	6 <i>p</i> ⁵	0.1397	0.1399	0.1397			
	₈₅ At	6 <i>p</i> °	6 <i>p</i> °	0.2058	0.2062	0.2058			

3 Li 0.0456	5	- 4 < 0	Be D	0.	5 B 0206		6 C 0.0932	7 N ≼ 0		8 0.10	0 75	9 0.	F 2499	ļ	0 <	Ne o
11_N 0.040	a I	12 <	M g c	13 <u>0</u> .	3 AI 0338		14 Si 0.1018	15 P 0.054	6	16 0.15	S 27	17 0.:	CI 2659	1	8 <	Ar o
19 K 0.0368	3	20 <	Ca D	3 0.	Ga 0221		32 Ge 0.0882	33.A 0.058	s 8	34 0.14	Se 85	35 0.	5 Br 2473	3	6 <	Kr o
37 R 0.035	b 7	38 < 0	Sr D	49 0.) In 0221	5	50 Sn 0.0919	51. S 0.077	b 2	52 0.14	Te 49	53 0.1	I 2250	5	4 <	Xe o
55 C	s 7	56 < 9	Ba D	8 0.	I TI 0221	ε	32 Pb 0.080 9	8 3 Bi 0.080	i 9	84 0.13	Po 97	8 : 0.2	5 At 2058	8	6 <	Rn o
21 Sc <0	2 0.	2 T i 0147	23 0.0	V 368	24 C 0.048	r 5	25Mn <0	26 Fe 0.0184	2 0	7 Co .0515	28 0.0	Ni 845	29 C 0.09	iu Si	3C <	Zn (0
39 Y =0	4(0.	0 Z n .0368	41 0.07	Nb 735	42 M 0.073	0 5	43 Tc 0.0515	44Ru 0.0809	4 0	-5 Rh .0882	46 0.0	Pd 441	47 A 0.095	.g 58	48 <	3 C d (0
57La 0.0368	7:	2 H f < 0	73 0.04	Ta 441	74 W 0.044	/ H	75Re 0.0110	76 Os 0.0809	7 0	7 Ir .1176	78 0.15	P† 64	79 A 0.169	u 7	80 <) Hg (0

FIG. 2. Periodic chart showing best electron affinities (in rydbergs) for atomic negative ions.

TABLE II.	Computed IPM	electronic	binding	energies	(in	rydbergs)	in	atomic	negative	ions,	from
the one-parame	eter search (d) .					×					

Negative					
ion	1 <i>s</i>	2 <i>s</i>	2 <i>p</i>	3s	3 <i>p</i>
₃ Li ⁻	3.7219	0.0456	•		
5 B ⊤	12.894	0.3935	0.0206		
${}_{6}C^{-}$	19.547	0.6666	0.0932		
$-\mathbf{O}_8$	36.702	1.1404	0.1075		
₉ F ⁻	47.516	1.5814	0.2499		
$_{11}Na^{-}$	75.445	4.7239	2.7021	0.0401	
$_{13}Al^{-}$	111.55	8.8190	6.1362	0.4192	0.0338
14Si-	131.99	10.987	7.9590	0.5955	0.1016
$_{15}P^{-}$	153.83	12.958	9.5714	0.6079	0.0546
16 S ⁻	177.76	15.635	11.892	0.8365	0.1525
$_{17}Cl^{-}$	203.40	18.526	14.421	1.0798	0.2657
19K-	261.01	26.799	21.966	2.6329	1.4452
$_{22}$ Ti ⁻	359.17	39.210	33.212	4.2194	2.5726
$^{}_{23}V^{}$	395.29	43.709	37.312	4.7124	2.9056
$_{24}Cr^{-}$	432.98	48.185	41.385	5.0462	3.0802
$_{26}$ Fe ⁻	513.95	58.513	50.890	6.2007	3.8823
27Co-	557.03	64.017	55.976	6.7890	4.2865
₂₈ Ni ⁻	601.84	69.766	61.301	7.3958	4.7037
$_{29}Cu^-$	648.83	76.555	67.651	8.5798	5.6794
$_{31}$ Ga ⁻	748.86	92.480	82.645	12.276	8.9375
₃₂ Ge	801.09	100.11	89.809	13.661	10.107
33As-	854.74	107.41	96.651	14.616	10.846
34Se ⁻	910.51	115.68	104.44	16.166	12.171
35Br-	968.02	124.20	112.48	17.752	13.528
₃₇ Rb ⁻	1090.1	145.54	132.73	24.021	19.324
39Y-	1217.4	164.65	150.80	27.700	22.518
$_{40}$ Zr ⁻	1283.6	174.61	160.23	29.605	24.172

2961

TABLE II. (Continued).					
3 <i>d</i>	4 <i>s</i>	4 <i>p</i>			

ion	3 <i>d</i>	4 <i>s</i>	4 <i>p</i>	4 <i>d</i>	55
₃ Li ⁻					
₅B-					
${}_{6}C^{-}$	1				
-0.80					
${}_{9}F^{-}$					
11Na-					
$_{13}Al^{-}$					
$_{14}Si^{-}$				х.	
15 P -					
16 S					
17CI		0.01(9			
19 K	0.0147	0.0368		*	
22 I 1	0.0147	0.0804			
23 V	0.0368	0.0824			
$_{24}Cr$	0.0194	0.0485			
26Fe	0.0184	0.0433			
27C0	0.0313	0.0393			
28INI	0.0843	0.0297			
29Cu	0.3940	0.0901	0.0221		
31 G a	2.9232		0.0221		
3200	3.05/3		0.0588		
33AS	1 8263		0.0388		
345C	5 7241	1 1204	0.1404		
35DI	10.650	2 0102	1 6600		0.0357
37 K 0	12 881	2.9192	2 0518	0.0010	0.0553
39 I	12.001	3 7641	2.0510	0.0368	0.0555
40					
	1	2.5	2 -	2 ~	2
	15	28	2 <i>p</i>		<i>Sp</i>
41Nb ⁻	1351.7	184.89	169.98	31.594	25.906
₄₂ Mo ⁻	1421.4	195.34	179.89	33.530	27.584
$_{43}$ I c ⁻	1492.8	205.88	189.89	35.347	29.136
$_{44}$ Ru	1566.2	217.21	200.66	37.675	31.196
$_{45}$ Rn	1041.2	228.64	211.52	39.882	33.130
46Pa	1/1/./	239.62	221.97	41.483	34.451
47Ag	1/90.0	252.29	234.03	44.408	37.095
49IN S	1960.3	219.70	200.23	51.055	43./08
50 S n	2044.5	293.42	2/3.20	54.905	40.720
5150 Ta-	2130.1	300.37	203.00	57.438	40.9/0
521e	2217.7	320.70	299.29	64.076	54.0942
531 Ca-	2307.2	267 65	313.06	73 662	63 040
55CS	2492.0	209 59	272 72	73.002 90.939	70 477
57La	2003.0	390.30	575.72	160.030	145.21
731a W/-	4544.1	720.78	717 02	165.50	145.21
74 W	4073.4	746.95	717.03	105.50	150.12
75Ke	4004.5	771.30	750.79	176.47	160.39
-76 US	5072 4	817 83	784 07	182 17	165 73
-77 \mathbf{Pt}^{-}	5210.0	843 76	809.23	190 44	173 64
781 U	5348 5	867 87	832.70	196 42	179.04
"TI-	5631 9	919.48	882.86	211.29	193.39
₀_Ph [−]	5776.2	945.33	908.01	218.36	200.08
83Bi-	5921.9	970.77	932.79	224.68	206.02
• "Po "	6069.8	997.15	958.48	231.77	212.73
«At-	6219.4	1023.9	984.49	238.95	219.53

Negative

Negative	·	,			
ion	3 <i>d</i>	4 <i>s</i>	4 <i>p</i>	4 <i>d</i>	4f
Farmer 1997	· · · · · · · · · · · · · · · · · · ·			·	
⊿Nb [−]	15.267	4.0667	2.4565	0.0838	
$_{42}Mo^{-}$	16.425	4.3159	2.6176	0.0965	
42TC	17.441	4.4748	2.6941	0.0515	
43 Ru ⁻	18 971	4 8873	3 0024	0 1562	
$_{44}$ Ru $_{10}$ Ph ⁻	20.359	5 2089	3 2257	0.1502	
45INII DJ-	20.339	5 1726	2 1167	0.2040	
46Pu	21.099	5.9260	2.625	0.0257	
47 Ag	23.199	5.8309	5.0555	0.2800	
49In	28.805	7.9303	5.4592	1.4512	
50Sn	31.197	8./514	0.1445	1.8393	
51Sb	32.845	9.1127	6.3970	1.9196	
₅₂ Te ⁻	35.220	9.8852	7.0401	2.3124	
₅₃ I ⁻	37.664	10.684	7.7078	2.7279	3
55Cs-	45.503	14.095	10.795	5.1542	
₅₇ La ⁻	50.768	15.835	12.266	6.1244	
₇₃ Ta ⁻	115.75	33.254	27.267	16.247	2.5683
$_{74}W^{-}$	119.96	34.397	28.245	16.904	2.7631
75Re ⁻	124.06	35.431	29.114	17.450	2.8505
$_{76}Os^{-}$	128.08	36.882	30.393	18.393	3.3000
77Ir-	133.42	38.220	31.558	19.222	3.6393
$_{78}$ Pt ⁻	140.67	41.433	34.579	21.869	5.6991
70 A u ⁻	145.55	42.894	35.864	22.810	6.1433
"TI-	158.27	47.910	40.505	26.727	8.9963
⁸¹ Ph ⁻	164.23	50.077	42.486	28.348	10.097
821 U	169.40	51 612	43 838	29 344	10.580
83D1 Do-	175 37	53 710	45.050	30.887	11 598
8410	101.40	55 979	43.740	32 446	12 628
85AL	101.40	55.626	47.075	32.770	12.020
	5 <i>s</i>	5 <i>p</i>	5 <i>d</i>	6 <i>s</i>	6 <i>p</i>
41Nb-	0.0735		ana kana kana kana kana kana kana kana		
₄₂ Mo ⁻	0.0735				
$_{43}$ Tc ⁻	0.0586				
$\sqrt{Ru^{-1}}$	0.0809				
⁴ sRh ⁻	0.0882				
$\sqrt{Pd^{-}}$	0.0441				
$40^{1} \alpha^{-1}$	0.0958				
4/2 15 	0.4346	0.0221		· .	
49111 Sn-	0.4340	0.0221			
505II Sh-	0.5771	0.0919			
5150	0.3730	0.0772			
52 I e	0.7020	0.1451			
531	0.8414	0.2257		0.0247	
55Cs	1.9041	1.0405		0.0347	
₅₇ La ⁻	2.2754	1.3115	0.0368		
₇₃ Ta-	4.5046	2.6958	0.0441		
$_{74}W^{-}$	4.6495	2.7849	0.0441		
₇₅ Re	4.7333	2.8187	0.0110		
76 O 8	5.0142	3.0286	0.0809		
₇₇ Ir ⁻	5.2320	3.1816	0.1176		
$_{78}$ Pt ⁻	6.4035	4.2033	0.7549	0.1564	
79Au ⁻	6.6729	4.4039	0.8313	0.1697	
"T1–	8.3305	5.8432	1.7951		0.0221
^o ₂ Pb ⁻	8.9744	6.3942	2.1589	0.5813	0.0809
\mathbf{Bi}^{-}	9,2532	6.6026	2.2426	0.5947	0.0809
$^{\circ}Po^{-}$	9 8443	7 1042	2.5687	0.7036	0.1399
a_{4*}	10 441	7 6115	2.9016	0.8176	0.2062
837.11	10.771	,	2.7010	0.0170	0.2002

TABLE II. (Continued).

<u>30</u>

TABLE III. Values of d which give rise to the binding energies in Table II.

Negative	1	Negative	
ion	d	ion	d
₃ Li ⁻	3.2891	41Nb ⁻	1.2737
${}_{5}B^{-}$	2.1956	₄₂ Mo ⁻	1.2169
₆ C-	1.6823	₄₃ Tc ⁻	1.1384
8 0 -	0.8920	$_{44}$ Ru ⁻	1.1283
${}_{9}\mathbf{F}^{-}$	0.7755	45Rh-	1.0931
$_{11}$ Na ⁻	1.4316	$_{46}$ Pd ⁻	0.9887
13A1-	1.8644	47 A g ⁻	1.0194
$_{14}$ Si ⁻	1.7455	49In-	1.2229
$_{15}P^{-}$	1.3457	$_{50}$ Sn ⁻	1.2705
$_{16}S^{-}$	1.2850	₅₁ Sb ⁻	1.2088
$_{17}Cl^{-}$	1.2065	$_{52}$ Te ⁻	1.2332
19 K ⁻	1.7766	53I-	1.2575
₂₂ Ti ⁻	1.4563	55Cs-	1.8123
$^{-1}_{23}V^{-1}$	1.3077	$_{57}La^-$	1.8457
$_{24}Cr^{-}$	1.1203	₇₃ Ta ⁻	0.9356
₂₆ Fe ⁻	0.9556	$_{74}W^{-}$	0.9126
₂₇ Co ⁻	0.8823	75Re ⁻	0.8829
28Ni-	0.8172	$_{76}Os^{-1}$	0.8775
29Cu-	0.8300	$_{77}$ Ir ⁻	0.8641
31Ga-	1.0170	$_{78}$ P t^{-1}	0.9594
₃₂ Ge ⁻	1.0147	$_{79}Au^{-}$	0.9459
33As ⁻	0.9366	₈₁ T1-	1.0513
₃₄ Se ⁻	0.9386	$_{82}$ Pb ⁻	1.0787
35Br-	0.9349	$_{83}$ Bi $^-$	1.0561
37 Rb ⁻	1.4323	₈₄ Po ⁻	1.0725
39Y-	1.3559	₈₅ At ⁻	1.0877
40Zr-	1.3119		

the present eigenvalues are in precise agreement with the recommended values of electron affinities, while the HF values are very inaccurate for the most part. Figure 2 is a periodic chart giving the recommended values of the electron affinities of negative ions in the main body of the periodic table.

III. SYSTEMATIC TRENDS

We have examined the potential parameters d and \mathcal{H} for systematic trends throughout the periodic table, and we find that although d and \mathcal{H} individually do not show any regular behavior throughout the periodic table, the ratio \mathcal{H}/d is quite regular (see Fig. 1). For any given row in Fig. 2, the values of \mathcal{H}/d are appreciably constant for the most part; and as we go from row to row (Z increas-

- ¹H. S. W. Massey, *Negative Ions* (Cambridge University, Cambridge, England, 1950).
- ²L. M. Branscomb, in *Atomic and Molecular Processes*, edited by D. R. Bates (Academic, New York, 1962).
- ³E. W. McDaniel, *Collision Phenomena in Ionized Gases* (Wiley, New York, 1964), Chap. 5.
- ⁴H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
- ⁵P. S. Ganas, J. Talman, and A. E. S. Green, Phys. Rev. A **22**, 336 (1980).
- ⁶A. E. S. Green, D. L. Sellin, and A. S. Zachor, Phys. Rev. 184, 1 (1969).

ing) the values of \mathcal{H}/d increase systematically in an almost linear fashion. As shown in Fig. 1, the values of \mathcal{H}/d considered as a function of Z are scattered around the straight lines

$$0.1639Z + 0.9096, Z < 10$$
 (5)

$$\mathscr{H}/d = \{0.0637Z + 2.0043, 10 < Z < 60\}$$
 (6)

$$0.0478Z + 2.4695, Z > 60 \tag{7}$$

which are the best linear fits to the values of \mathcal{H}/d for low (Z < 10), medium (10 < Z < 60), and high (Z > 60) values of Z. The approximate linear behavior of the ratio \mathcal{H}/d with increasing Z suggests that the previous fitting can be done by varying one independent parameter, d, while \mathcal{H} is constrained to have the following dependences on Z and d:

٢

$$(0.1639Z + 0.9096)d, Z < 10$$
 (8)

$$\mathscr{H} = \left\{ (0.0637Z + 2.0043)d, \ 10 < Z < 60 \right. \tag{9}$$

$$(0.0478Z + 2.4695)d, Z > 60.$$
(10)

The energy eigenvalues obtained from these oneparameter searches are given in Table II, and the corresponding values of d are given in Table III. From Table I it can be seen that the one-parameter searches reproduce the electron affinities very precisely. The values of d obtained from the one-parameter searches are close to unity in most cases.

IV. CONCLUSION

In this article we have dwelt on IPM descriptions of the bound states of atomic negative ions. Starting with a simple analytic potential containing two adjustable parameters we have arrived at a realistic set of binding energies of every stable negative ion from Z=3 to Z=85.

The IPM potentials obtained in this work may be used in starting points for electron-atom¹¹ and electronmolecule¹² scattering problems. These potentials should also be applicable to the calculation of photodetachment cross sections. The fact that they are precisely tuned to the electronic affinities should give these IPM's a substantial advantage over Hartree-Fock calculations.

ACKNOWLEDGMENTS

This work was supported by Institutional Grant No. A4171611 from the California State University, Los Angeles.

- ⁷R. H. Garvey, C. H. Jackman, and A. E. S. Green, Phys. Rev. A **12**, 1144 (1975).
- ⁸P. S. Ganas and A. E. S. Green, Phys. Rev. A 4, 182 (1971).
- ⁹E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
- ¹⁰Kai Siegbahn *et al.*, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Uppsala, 1967.
- ¹¹A. E. S. Green, P. F. Schippnick, D. E. Rio, and P. S. Ganas, Int. J. Quantum Chem. Symp. 14, 71 (1980).
- ¹²P. S. Ganas and A. E. S. Green, J. Chem. Phys. **76**, 1819 (1982).