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FOI' electrons moving independently in a 6f-dimensional bare point-chaIge potential, the Euler

equation of density-functional theory in the limit of large numbers of electrons, X, is combined with

the virial theorem to relate the sum of eigenvalues E to the chemical potential p. The result is

E/Xp=d(4 —d)/(4+2d —d2) =a '. This result (I) is verified by direct calculation of both E and

p for d= 1, 2, and 3 in the asymptotic limit of large X. Neither does there seem to be any difficulty

in applying (I) for d )5. But evidently E/X@=0 for d=4; an immediate consequence of the virial

theorem for this dimensionality. Viewed as a continuous function of d, E/Xp is singular at
d =1+V 5 and is negative for 1+ V 5 &d&4. Excluding this pathological regime of d, it can be

shown from (I) that, for a point charge Ze, E =F(Z,d)X, where the exponent e is given by (I).

I. INTRGDUCTIGN

It has been sliowii iii Ref. 1 tllat for heavy positive ions
with nuclear charge Ze and a large number of electrons
(N &Z), the chemical potential p of the density-functional
theory can be used to characterize the total energy E. In
subsequent work, following this study of atomic ions
wh1ch clearly corrcspond to dimensionality 8=3, Puccl
and thc writer have also studied the relation between E
and p in linear polyacenes where it seems plausible that
the m electrons will behave more like a, two-dimensional
assembly. Indeed, by using different approximations to
the m-electronic structure, e.g., Hiickel theory and alter-
nant molecular orbital theory, these workers have argued
that as the number of rings in the polyacenes tends to in-
finity, the ratio E/Xp is dominated by the dimensionali-
ty, the ratio approaching values quite near to, but not ex-
actly 2, the free-electron-gas value in two dimensions.

Therefore, it is of obvious interest to study the ratio
E/Np, with N electrons, for a class of potentials in
which the dimensionality d can be varied, since the only
other case where we have precise quantitative results is
that referred to above, namely the free-electron gas in d
dimensions.

Because thc positive-ion problem discussed in thc
present context in Ref. 1 is intimately related to the bare
Coulomb field problem, we have chosen to study the class
of bare point-charge potentials in d dimensions. Thus, we
treat X electrons which move independently in bare po-
tentials generated by a charge Ze in d dimensions. Even
with this problem, it is only for the Coulomb case, d =3,
that we can obtain exact results for the eigenvalue sum E
when the N electrons doubly occupy the lowest available
energy levels with spin degeneracy in accord with the Pau-
li exclusion principle. However, we shall demonstrate
below that, in the asymptotic limit in which X and Z are
large, the ratio E/Xp can be calculated explicitly as a
function of dimensionality d.

V„P(r)= 4trZe5(r) .— (2.1)

This has solution, as discussed, for example by Kventsel
Rnd Katr1cl,

4irZe 1 (d/2+ 1)
d (d —2)ir"i

$2(r) = 2Zeln—r, d =2

P,(r)= 2~Zer, d —=1.
(2.2)

These then define the problem; to our knowledge only for
d =3 is an exact bound-state energy-level formula known,
»mely the famihar «suit —(Z'/2n')e'/ao, with n the
princ1plc quantum number Rnd ao thc BohI I'ad1Us

h /4&me .
Therefore, in what follows, though we start from a for-

mally exact Euler equation of density-functional theory
for particles moving independently in the potentials (2.2),
we shall evaluate the ratio E/Xp in the limit when the
kinetic energy T as a functional of the electron density p
can be approximated by its local-density value, plus
corrections due to density gradients which are known to
tend to zero relative to the local-density contribution
when iV and Z become sufficiently large. This is the
asyInptotic limit in which we ca1culate in the following
section the ratio E/Xp as a function of dimensionality d.

ln the original w«k of Thomas and Fermi, which led
to modern density-functional theory, the energy of the
fastest electron, equal to the chemical potential p, was
written

II. PGTENTIALS GF BARE CHARGE Ze
IN d DIMENSIGNS

ln d dimensions we are concerned with p«enti»s pq(r)
obcy1ng thc Poisson cqURtlon
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PF(P')
p= +V&(r) .

2@i
(3.1)

In the present case, V~(r) = eP~(r) given in Eq. (2.2).
Density-functional theory replaces this equation (3.1)

when combined with the phase-space relation

2m" PFp(r)= I (d/2+ 1) p ~ (3.2)

pd~=N

plus the constancy of p in space, we then find

(3.4)

Np= fp(r) dr+ fpV~(r)dr . (3.5)
&7 [V]
5p r

The writer has estimated the difference between the ki-
netic term in Eq. (3.5) and the local electron gas kinetic
energy for some simple potentials, and has shown in these
examples that corrections to the local-density value of the
kinetic energy are of lower order in the number of elec-
trons N for large N.

Thus we can confidently return to the direct use of Eqs.
(3.1) and (3.2) in obtaining the asymptotic limit we seek
for E/Np as a function of dimensionality d. Multiplying
Eq. (3.1) by p(r) as before and integrating over all space
we find readily

by the formally exact equation

p=
&

+V~(r) .&7Ã
(3.3)

5p r

Unfortunately T[p] is still only known for independent
particles through density-matrix perturbation theory, not
in closed form.

Let us nevertheless multiply the Euler equation (3.3) by
the electron density p(r) and integrate over all space. Us-
ing the normalization condition

E/Np=(1+2/d) (3.9)

IV. DISCUSSION AND SUMMARY

Since Eq. (3.8) is the central result of the paper, we
have thought it worthwhile to record in Appendix A, by
direct calculation of both E and p, results specific to the
logarithmic potential in Eq. (2.2). There, these results are
compared and contrasted with those for d =1 and 3. The
result (3.8) is thus directly verified to hold for these values
of d.

However, returning to the virial theorem in Eq. (3.7),
the next integer d =4 evidently corresponds to E
= T + U =0 and this is reflected in the vanishing
numerator of Eq. (3.8) for this dimensionality. If, in the
light of this behavior for d =4 we choose to view E/Np
in Eq. (3.8) as a continuous function of d, then E/Np
goes from its correct value of 3 at d =3 through a singu-
la,'rity at d =1+& 5, being negative for 1+V5&d &4.
We briefly record in Appendix B the nature of the expan-
sions about this singular point.

If we exclude the pathological region 1+v 5 &d &4,
there seems to be no difficulty in applying Eq. (3.8) for
d & 5. Therefore, with the above region excluded, we note
that if Eq. (3.8) is combined with the "thermodynamic"
expression'

(4.1)

which in fact follows iinmediately from Eq. (3.6) by put-
ting U=O.

If, instead of the two examples just treated, we dealt
with harmonic potentials in d dimensions, then since
T = U = , E, —we would obtain for the asymptotic limit of
E/Np simply (1+1/d) '. It will be noted that in all
three examples E/Np tends to unity as d tends to infini-
ty.

Np=(1+2/d)T+ U (3 6) Eqs. (3.8) and (4.1) can be integrated to yield

2T+(d —2) U =0 (3.7)

reducing to the usual well-known result 2T+U=O for
d =3.

Putting these results (3.6) and (3.7) together with the
fact that the eigenvalue sum E is clearly T+ U we find al-
most immediately the ratio E/Xp we were seeking, in the
asymptotic limit of large N and Z, as

d(4 —d) I

4+2d —d
(3.8)

This is the main result of the present paper. While the
value of Z does not enter the above relation for E/2Vp
which is simply a function of dimensionality, it is clear
that this function a ' is specific to the class of bare
point-charge potentials under investigation. Thus, for the
d-dimensional free-electron gas the relation is

where the potential energy U is simply fpV~dr while T
is the total local kinetic energy. But now, for the poten-
tials (2.2) satisfying Poisson s equation, we have the virial
theorem in the form

E(Z,N, d) =F(Z,d)N (4.2)

Z = —(Z'e'/a, )m

while evidently

N =+2n =~(~+ 1 )(2.+ + 1 ) /3 .
1

(4.3)

(4.4)

As N and ~ become truly large, this equation (4.4) has
the obvious asymptotic solution ~= ( —, )' N'~ and
hence

F.(Z,N, d =3)=—( , )' Z N'— (4.5)

showing that F(Z,d =3)=—( —', )' Z in Eq. (4.2) and
confirming that a= —,

' as given by Eq. (3.8). Incidentally,

where the exponent a is given explicitly in terms of
dimensionality d by Eq. (3.8).

Equation (4.2) can be readily confirmed for d =3 using
an argument which follows Ref. 10. If we have ~ closed
shells, then since a closed shell of principle quantum num-
ber n contains 2n electrons we find

I
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it is worth remarking that the neutral atom energy dis-
cussed by Milne" long ago is proportional to Z as in
Eq. (4.5) with N =Z. The numerical coefficient
( —,)'~ =1.1 is reduced to 0.78 due to the screening by the
self-consistent field. Finally, from Eq. (4.5) we can use
Eq. (4.1) to find p and taking the ratio E/Np we confirm
Eq. (3.8) for the case d =3.

It should be noted at this point, in connection with the
use of Eqs. (3.1) and (3.2) rather than Eq. (3.3), that if we
use the Thomas-Fermi density, this is not integrable for
d &4. However, this does not seem to be a serious diffi-
culty for the argument given here, as density gradient
corrections remove such singular behavior without affect-
ing the leading term in the energy for large X.

To conclude, the work in this paper gives a clear-cut ex-
ample which confirms the conjecture made by Pucci and
March ' as to the central role of dimensionality in deter-
mining the limiting ratio of E/Xp as the total number of
electrons becomes large. This may well lead to progress in
interpreting results in molecules having fundamentally
different shapes, corresponding to different dimensionali-
ties d. Nevertheless, one must caution that the ratio
E/Np will only be dominated by dimensionality in cases
where potentials belong to the same class as d is varied.

where the semiclassical radius ro is given by

p=E1 n( rp/b) ol ro=b exp(p/6) .

After a short calculation, and putting e=2Ze, we obtain
the chemical potential p as

Integrating Eq. (4.1), and dropping terms independent of
X yields

=Kin(X/Z) —%+%in(h b /4&me ) . (A6)
Ze

Forming E/Xp from Eqs. (A5) and (A6) leads in the
large-X limit to the value unity given by Eq. (3.8) for
d =2. Equations (A6) and (A5) are the two-dimensional
analogs of Eq. (4.5) and the chemical potential derived
from it using Eq. (4.1).

To conclude this appendix we briefly consider the linear
potential corresponding to d =1 in Eq. (2.2). Such a po-
tential was used by I.enard' for a one-dimensional
charged gas and by Antippa and Phares' in the context
of quark confinement. A brief calculation paralleling that
given above for d =2 yields the chemical potential as
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where the known constant E depends only on the funda-
mental constants. Integrating Eq. (4.1) yields the corre-
sponding asymptotic form of E for large X as

APPENDIX A: ASYMPTOTIC PROPERTIES
QF LOGARITHMIC POTENTIAL

V(r) =@in(r/b), (A 1)

and we shall therefore effect this minor generalization of
Eq. (2.2) below. We recover the form (2.2) for d =2 by
putting e=2ze and equating lnb to zero.

The electron density p(r) is given by

p( r) = [p —@in(r/b)]
h2

(A2)

and p is determined as usual by the normalization condi-
tion

X=fp(r)2~r dr= f [p @In(r/b)j2nr dr, —

As noted in the main text, only for the case d =3 do we
have the exact bound-state level spectrum. As we saw in
Eqs. (4.5) and (4.1) these levels led to explicit results for E
and p in the large-X limit.

The purpose of this appendix is to exhibit similar re-
sults for the logarithmic potential in Eq. (2.2) correspond-
ing to d =2. Such a potential was used previously, for in-
stance, by Dyson' in his study of a two-dimensional
charged gas, and in a totally different context it has been
employed as a model for quark confinement. ' ' There
the explicit potential energy used was

agreeing again with Eq. (3.8) for d =1. It is worth ob-
serving that, for X =Z, both d = 1 and d =3 have an
eigenvalue sum proportional to Z / in leading order. For
the two-dimensional case, the first logarithmic term drops
out of Eq. (A6) on the point X=Z and the energy is then
0 (Z ) in the limit of large Z.

APPENDIX 8 EXPANSION OF E/Xp
ABOUT SINGULAR POINT

Though we have, of course, the closed analytical formu-
la (3.8) for E/Xp as a function of dimensionality d, ap-
proximate methods in vogue in statistical mechanics
prompt us to add this further appendix. The first point
which we simply note in passing is that E/Xp in Eq.
(3.8) is merely the ratio of second-order polynomials in d
in the asymptotic limit considered in this paper.

Secondly, we have noted the existence of a singular
point at dimensionality 1+V 5, which we denote by d,
below. It would be natural, therefore, if one were seeking
an approximate theory of E./Xp, to expand this quantity
around the singular point. Let us do this explicitly for the
case d (d, by writing

d =d, —5, 6 positive .

Then a short calculation demonstrates that, with the
largely irrelevant proviso that b, ~ 2(d, —1),

Q)
E/XP = — +a2+a36+. . . (82)
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Explicit expressions for the a's are, of course, readily ob-
tained by inserting Eq. (Bl) into Eq. (3.8); we merely give
Q) and Q2 aS

8 —8d, +3d,
Q2=

20
(84)

dg(4 —d, )

2(d, —1)
(83) Inserting the numerical value of d, we find a& ——0.55,

a2 ——0.68, and at d =3 these terms contribute to the value
3 an amount 2.3+0.7.
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