
PHYSICAL REVIEW A VOLUME 30, NUMBER 6 DECEMBER 1984

General-model-space many-body perturbation theory: The (2s 3p)' P states
in the Be isoelectronic sequence

Gabriel Hose* and Uzi Kaldor
Chemistry Department, Tel-Aviv University, Tel-Aviv 69978, Israel

(Received 29 May 1984)

The energies of the (2s 3p) ' P states of the Be sequence ions N Iv—Ne vier are calculated, with use

of a general-model-space many-body perturbation theory (MBPT) to third order. The triplet states

are described accurately by a one-configuration model (P) space including only 2s 3p, but the sing-

lets are not; the singlet-triplet separation has the right sign (singlet below triplet) but is only 30% of
experiment. Incorporation of the 2p 3s configuration in the model space greatly improves the re-

sults. This incomplete, two-configuration model space yields virtually the same energies as the

larger, complete model space required by other quasidegenerate MBPT methods, at one-fifth the

computational cost.

I. INTRODUCTION

The is 2s3p states of the Be isoelectronic sequence
have been the subject of several recent experimental' and
theoretical investigations. The interesting aspects of
the system include an order reversal of the levels, the sing-
let being lower than the triplet from CIII onward, as well
as an appreciable moment of the intercombination line
(2s ) 'So—(2s3p) Pi, making the Pi level much shorter
lived than P2 and Po. Recent calculations, using
configuration-interaction (CI) (Refs. 5—7) or multiconfig-
uration Hartree-Fock (MCHF) (Ref. 9) methods, agree
well with experimental energies and lifetimes, so that the
system is well understood. It provides a stringent test for
a method aimed at calculating correlation energies in
atoms and molecules, as the singlet-triplet reversal is an
energetically small effect which does not occur at the
Hartree-Fock level and is solely due to electron correla-
tion.

The Be sequence 2s 3p system is used here as a test case
for a recently developed' ' quasidegenerate many-body
perturbation theory (MBPT). The main aspect of the
theory to be tested is the partitioning of the determinant
Hilbert space and the selection of a model (or P) space,
within which an effective Hamiltonian is calculated and
diagonalized. Nonrelativistic calculations are carried out
for the NIv —Nevis ions. Relativistic corrections are not
very large for these ions; they have been shown to de-
crease the singlet-triplet splitting by 4% for Ov and 7%
for Nevn.

II. METHOD

Multireference or quasidegenerate MBPT involves the
partitioning of the determinant Hilbert space into a d-
dimensional model space P and its complement Q, using
the projectors

d
P= g ~@;)(@;~, Q=l P= g ~@;)(@;~—

i)d

A subset of the eigenvalues and eigenfunctions of the
Schrodinger equation

(2)

is approximated by diagonalizing an effective Hamiltoni-
an in the model space,

H,«P% =EP% . (3)

Multireference MBPT was discussed by Bloch and
Horowitz' and by Morita, ' and a fully linked formalism
was first derived by Brandow. ' Brandow's method, or
modifications thereof, have been successfully applied to
nuclear, ' atomic, ' and molecular systems.

Brandow's theory, ' as well as later schemes ' for the
order-by-order construction of the effective Hamiltonian
matrix, require the model space to be complete, i.e., in-
clude determinants corresponding to all possible
(symmetry-allowed) combinations of open-shell orbitals.
The Be sequence 2s3p configuration discussed in the
present work is known to be close in energy to and in-
teract strongly with the 2p 3s, and the two configurations
(four determinants) would be a natural choice for the
model space. Completeness requires, however, the in-
clusion of the 2s2p and 3s3p configurations, which are
far away in energy and not expected to contribute signifi-
cantly. A method avoiding this limitation and capable of
employing incomplete model spaces has been presented by
the present authors. ' Applications to date include poten-
tial functions of He2 excited states"' and vertical excita-
tion (valence and Rydberg) and ionization energies of
N2. ' This general-model-space MBPT is applied here to
the ground and 2s 3p states in the Be sequence.

The description of the formalism has been given be-
fore' ' and will not be repeated here. A short discus-
sion of the zero-order Hamiltonian is however in order.
H' ' is taken as a sum of one-electron operators h, which
are defined in terms of the creation and annihilation
operators aj and aj and orbital energies Ej

H' '= g h(i), h = g e~aja~ . (4)
J
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TABLE I. Ground-state energy (Hartree atomic units, signs reversed).

Nrv Ov Fvr Nevrr

First order
Second order
Third order
[2/1] Pade approximant

One-configuration (2s ) model space
5 1..080 21 68.254 63
51.15309 68.334 64
51 ~ 172 88 68.357 31
51.18026 68.36628

87.929 87
88.01690
88.042 50
88.053 17

110.104 91
110.198 84
110.227 38
110.239 83

First order
Second order
Third order
[2/1] Pade approximant

Two-configuration (2s,2p ) model space
51.158 02 68.346 59 88.035 04
51.187 63 68.375 16 88.062 76
51.188 98 68.374 84 88.063 83
51.18904 68.374 85 88.063 88

110.222 77
110.250 31
110.251 57
110.251 64

It should be noted that the energies ej need not have any
obvious connection with the orbitals created (annihilated)

'by az (aj ). H' ' is therefore determined by an indepen-
dent choice of orbitals and orbital energies.

III. CALCULATIONS AND RESULTS
Calculations were performed for the ground and

(2s 3p) ' P states of the Be-like ions N tv —Nevn. A 40-
function basis of contracted Gaussian-type orbitals was

TABLE II. Energies of the 2s 3p states (Hartree atomic units, signs reversed).

'P state
Nrv

Fvr

Ne VII

P state
Nrv

Ov

Fvr

Ne VII

Order

1

2
3

[2/1]
1

2
3

[2/&l

2
3

[2/&]

2
3

[2/&l

1

3
[2/&]

2
3

[2/1]
1

2
3

[2/&1
1

2
3

[2/&l

One-configuration
model space

49.286 33
49.331 35
49.339 70
49.341 61
65.659 58
65.710 52
65.720 18
65.722 44
84.394 12
84.450 79
84.462 40
84.465 40

105.489 29
105.551 12
105.564 65
105.568 45

49.309 65
49.336 70
49.33945
49.339 76
65.687 94
65.71642
65.71939
65.71974
84.427 76
84.457 99
84.461 45
84.461 89

105.528 40
105.560 08
105.563 87
105.564 38

Two-configuration
model space

49.315 83
49.343 48
49.347 14
49.347 69
65.697 31
65.726 44
65.730 81
65.731 58
84.439 99
84.470 77
84.475 42
84.476 24

105.543 07
105~ 575 42
105.580 80
105.581 88

49.31171
49.337 36
49.339 78
49.340 03
65.690 41
65.71724
65.719 80
65.72007
84.430 61
84.458 87
84.461 87
84.462 23

105.531 60
105.561 11
105.564 35
105.564 76

Four-configuration
model space

49.315 81
49.343 77
49.346 96
49.347 38
65.697 37
65.726 51
65.730 63
65.731 31
84.44001
84.470 76
84.475 34
84.476 15

105.54 303
105.575 39
105.580 75
105 ~ 581 81

49.31171
49.337 36
49.339 78
49.34004
65.69041
65.71723
65.719 80
65.72007
84.430 61
84.458 82
84.461 88
84.462 26

105.531 61
105.561 06
105.564 36
105.564 77
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TABLE III. Energy-level differences lin 10' cm '). [2/I] Pade 'approximants are used for level ener-

gies. Ground-state energy from two-configuration calculation.

(2s3p) 'P—(2s ) 'S
one-configuration model space
two-configuration model space
experimental'

N IV

405.5
404.2
404.5

Qv

582.2
580.2
580.8

FVI

789.9
787.5
787.8

Ne VII

1028.0
1025.0
1025.7

(2s3p) P—'P
one-configuration model space
two-configuration model space
experimental'

0.4
1.7
1.5

0.6
2.5
2.1

0.8
3.1

2.5

0.9
3.7
2.9

'Reference 26. The P energy is the average of the three sublevels.

used. Starting with Dunning's contraction of
Huzinaga's 10s6p basis to a 5s4p contracted set, two s
and two p Gaussians with small exponents (IIuzinaga's
lowest exponent divided by 3 and 9) were added to
describe the- Rydberg orbitals. Three uncontracted d
Gaussians were also included, with exponents ranging
from 3.0, 1.0, and 0.35 for NIv to 6.0, 2.0 and 0.7 for
NevII. Some other d exponents were tried, with very lit-
tle effect on the results.

The zeroth-order Hamiltonian for the ground state was
defined simply by using ground-state orbitals and energies
in Eq. (4). Two model spaces were tried, a nondegenerate
space comprising the 2s configuration only, and a
quasidegenerate, two-configuration (4-determinant) space
which also includes 2p . Results to third order are re-
ported in Table I, together with the [2/1] Pade approxi-
mants. The latter show smaller dependence on the
structure of the model space, in line with previous obser-
vation. '

The Rydberg (2s 3p) ' P states were calculated with or-
bitals of the (2s3p) 3P Hartree-Fock function (ground-
state calculations with these orbitals were also carried out,
and gave very close results, within 1—2 millihartree in
third order, to those reported in Table I). Orbital energies
corresponded to a hypothetical state with —,

' electron in

each of the 2sa, 2sP, 3pa, and 3pP spin orbitals. Three
model spaces were tried; the one-configuration (2-
determinant) space including only 2s 3p, the two-
configuration (4-determinant) space of 2s3p and 3s2p,
and the complete, four-configuration, eight-determinant
space which also includes 2s 2p and 3s 3p. Table II shows
that incorporating the 3s 2p configuration into the model
space has a considerable effect on the 'P energy. The ef-
fect decreases at higher order, but remains 6—13 millihar-
tree even for the [2/1] Pade approximant. The effect on
the triplet state is much smaller, 0.3—0.4 millihartree.
The complete, four-configuration space yields virtually
the same energies as the incomplete, two-configuration
space. It is clearly advantageous to use the smaller space,
which takes only one-fifth of the computer time required
for the larger calculation.

The excitation energy of the (2s3p) 'P state and the
singlet-triplet separation are shown and compared with ex-

periment in Table III. Good excitation energies [errors
of (0.3—0.7) X 10 cm '] are obtained with the two-

configuration space, whereas one-configuration MBPT
yields larger errors [(1.1—2.3) X 10 cm ']. Dependence
on model-space structure is most pronounced for the
singlet-triplet splitting. The one-configuration space
yields the correct order (singlet below triplet) at the third-
order and [2/1] approximant level, but the splitting is
only 30% of experiment. The two-configuration space
gives the level reversal even at first order (see Table II),
confirming the critical role of the interaction with the
2p3s levels in determining the relative position of the
2s3p levels. The final level separation is too high by
11—28% (Table III). When relativistic corrections are
added, the maximum error is reduced to 20%. The abso-
lute errors are rather small, up to 0.6X10 cm ' for
Ne VII with inclusion of relativistic terms, and they are as-
cribed to the incompleteness of the basis used and the
truncation of the perturbation series. The results of the
complete, four-configuration model space are virtually
identical to those of the two-configuration space and are
therefore not reported. separately in Table III.

IV. SUMMARY AND CONCLUSIONS

The (2s 3p) ' P states of the Be sequence ions
N IV—Ne VII were calculated using general-model-space
MBPT. A single-reference model space gives a good
description of the triplets, but not the singlets. A quanti-
tatively correct treatment of the latter states requires the
inclusion of the 2p3s configuration in an incomplete,
two-configuration model space. This space gives the
correct sign of the singlet-triplet separation (singlet below
triplet) even in first order, and good agreement with ex-
periment in third order. A complete model space, which
also includes the 2s 2p and 3s 3p configurations, yields vir-
tually the same energies as the smaller, incomplete space,
at a much higher computational cost. Like our N2 calcu-
lations, ' the present results reconfirm the advantages of
using incomplete model spaces.
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