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Singularities in nonlocal interface dynamics
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An effective interface dynamics is derived for a Stefan-type moving-boundary-value problem correspond-

ing to electrostatic aggregation in two dimensions. With the help ol conformal-mapping techniques the

problem may be reduced to a many-body-type probleni described by a system of ordinary differential equa-
tions. The method allows one to show that the Mullins-Sekerka instability in this case leads to generation
of cusp singularities in the interface in a finite time.

I. INTRODUCTION

Recently there has been a renewed interest in the study of
dynamical structures, and in particular, processes of' pattern
formation in physical, chemical, and biological systems.
Unfortunately the understanding of such common phe-
nomena as solidification or dendritic growth, which has al-

ways been important to metallurgists, is hampered by the
mathematical complexity of' the problem. Indeed, the pro-
cess of solidification is equivalent to the Stefan problem: a

diffusion problem for the temperature (or impurity concen-
tration) with boundary values specified on the moving inter-
face, the local velocity of which is in turn determined by the
heat (or impurity) flux. ' In its general case it represents a

complicated, highly nonlinear problem, which is not readily
amenable even to modern numerical simulations. Thus,
much of the recent work proceeds in the direction of' simplii-

fying the problem in order to gain understanding of the
basic mechanisms involved and facilitate the numerical
analysis. One such route is to reduce the "moving boun-
dary value" problem to an interf'ace dynamics problem.
Such phenomenological models were proposed by Ben-
Jacob, Goldenfeld, Langer, and Schon' and Browet,
Kessler, Koplik, and Levine. ' These models provided valu-

able insight into the process of dendritic growth and the im-

portance of various physical effects, such as anisotropy and
surface tension, at the expense of sacrificing some of the
nonlocality of the problem. Still, the basic mechanisms at

work are not fully understood.
In this paper we investigate some of' the basic no»local

mechanisms involved in dif'fusion-controlled growth. e
shall derive the evolution equation for the interface for a

Stefan problem in the quasistationary limit and neglecting
surface tension. This will allow us to study the Mullins-
Sekerka instability4 (an instability of' "bumps" on the inter-
face) analytically beyond the linear stability analysis and
show that it leads, in finite time, to the appearance of 2/3
power cusp singularities in the surface. The model that we

consider is most closely related to Saffman-Taylor instability
of the interface between air and water in the Hele-Shaw
cell. 5 The latter in the absence of surface tension represents
a realization of' the model with different geometry. The
method used in this paper involves mapping the interface
conformally onto the unit circle in the complex plane. A

surprising feature of the partial differential equation (PDE)
governing interface dynamics is that it may be reduced to a

set of' ordinary differential equations (a kind of' a many-
body problem) for the dynamics of the critical points of the

conformal map. This facilitates analytic and numerical in-

vestigations and also points to the possibility of chaotic
behavior in the evolution of the interface (the problem
which requires much f'urther study).

II. MOVING-BOUNDARY-VALUE PROBLEM
AND INTERFACE DYNAMICS

Consider a cylindrical piece of n~etal" with a cross-
section shape given by the contour y. It is kept at a con-
stant potential and is immersed in a dilute electrolyte. The
cylinder grows by electrodeposition at a rate proportional to
the electrostatic f'ield. '+e assume that the problem is effec-
tively two dimensional and that the growth is slow enough
so that a quasistatic approximation is valid. More significant
is the assumption that the electrolyte is dilute so that there
is no screening of the field. The evolution of the contour is

then determined by

(),y(r) = —&d (y )

where the electrostatic potential satisfies

(2)

Since we consider the model in two dimensions it is only
natural to use complex variables and conformal mappings.
The domain bounded by the contour y is simply connected
and by the Riemann theorem may be conformally mapped
onto the unit disk. Let ~v = x+ip parametrize the "physi-
cal" plane and let z= f '(n ) be a conformal map, mapping
the exterior of y onto the exterior of the unit disk in the z
plane. This map provides a parametrization of the contour

y ( s ) = /'( e") and the evolution of the contour may be
specified by the evolution of the mapping.

Let us introduce a complex potential V( iv ) =$ (.v,y )

+ if(x, t ) = t'( f(z)) and solve the problem outside the
unit disk in the z plane

(3)

The complex electrostatic f'ield at the interface is then given

by

g V(n')
(zd/'/dz )

'

for = = exp(is) and Eq. (I) may be rewritten as
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The prime over y in Eq. (5) is there to remind us that this
equation does nor preserve the right parametrization of the
contour. The reason is that the right-hand side (RHS) of
Eq. (5) represents the normal component of the velocity,
which describes only the change in the geometry of the con-
tour. The correct dynamical equation has to include a

tangential component of velocity corresponding to a con-
tinuous reparametrization of the contour necessary in order
to ensure that y(r, s) =f,(e") remains the boundary value
of an analytic function (which specifies the parametrization
of the contour as well as its geometry) ~ The exact form of
the reparametrization term is found by considering the in-
finitesimal mapping fts, (z), induced by the evolution [Eq.
(5)], and defined by f+iss(z) =f pf, (z). We shall only

give the result

B,y( t s ) = —i B,y ( t s ) I I B,y ( t s ) I

' + iC [IB,y( t s ) I
']}

(6)

The integral operator C is best described by its action on the
Fourier transform of some real periodic function g(s):

g ( s ) a + g ( a eiznns+ a e
—i2ssns)

n= 1

iC[g(s)] g (a eiznns a e —iznns)

n=]

The integral operator term in Eq. (6) reflects the nonlocaliry
of the interface dynamics. This equation may easily be stu-
died numerically; however, the analytic approach may be
carried one step further.

III. DYNAMICS OF CONFORMAL
SINGULARITIES

Let us interpret Eq. (6) as the evolution equation for the
mapping function f(z) ~ If some contour is specified as an
initial condition, one may determine the corresponding con-

(While the method works for the polynomial mappings of
arbitrary order, we have not succeeded in dealing with more
general structures. ) The requirement that f(z) maps the
exterior of the unit disk onto the exterior of the contour
conformally demands that the critical points of the map,
zeroes of its derivative, all lie within the unit disk. It is
convenient therefore to deal with the factorization of
B,f(z) dir:ctly:

N

B,f(z) =up g (1 —n;z ') (10)

We shall now reduce the partial differential equation [Eq.
(6)] to a system of ordinary dif1'erential equations governing
the dynamics of the "critical points. " For the purpose of
the derivation that follows it is convenient to rewrite the
term on the RHS of Eq. (6) in the integral form

d$ I+ e"~
g(s) r-iC[g( )s]=lim, g(@)2~ I+.—e[~- ]

Upon evaluating the integral one may obtain the following
result:

IB,f(z)l '+iC[IB,f(z)l ']= gi= I o'0 z a

for z= eis with

A, '== (1 —lu, l') g (n; —u, )(n, ' —n,')
jul

After a straightforward if somewhat lengthy computation
one may r:write Eq. (6):

formal map (Riemann mapping theorem). We shall consid-
er sufficier]tly simple contours, such that the map is of the
form

/V

f(z)==apz g (l —a,z ')

—lnB, f(z) = lupi ' g A, + lupi ' g ' g A, +2/
i=]df ] z —ai j—] j~i n; —zj

r

(i4)

The LHS of Eq. (14) decomposes into the sum over simple
poles,

Nd ao ai—InB,f(z) = ——gdf a0 i —) z Ai
(i5)

and we can read off the dynamical equations for the critical
points, a' s, by equating the residues of the poles on both
sides of Eq. (14). This yields a system of ordinary differen-
tial equations:

IV. MULLINS-SEKERKA INSTABILITY AND
CUSPS IN THE INTERFACE

It is trivial to see that a circular contour with its radius
growing as Jt is an admissible solution; however, it is
linearly unstable with respect to the formation of "bumps"
(the Mullins-Sekerka instability). We shall now use the
dynamical equations derived above to extend the study of
the interf [ce evolution beyond the linear stability analysis.

Let us look at an n-fold perturbation of the circle:
N

up= nplnpl X A; (l6) (s) duels I+ q —Ins

n —i

n, (w, +w, )
n, = —n;lupi ' g W, +2/ a; —aj

(i 7)
The derivative of the conformal map is then

This result is quite surprising: the nonlinear and nonlocal
evolution equation [Eq. (6)] conserves the number of critical
points and is reduced to the problem of their dynamics!

B,f(.. ) =r(1 —itz ")

and the &ritical points are up= r and un =71 exp(i2srk/n)
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with q"= q. Using Eqs. (13), (16), and (17) we get

i~01
'

n~o

—Inly I
= (1—2n ') i~el '

(21)

It follows that q = cr" 2 and, for q « 1, r (t ) =Jt. Thus
the amplitude of the n-fold mode grows as q(t) = ct"
(Note that n =2 is a special case and shows that ellipses
evolve by simple dilation, just like circles. ) However, care
must be taken whenever the value of I q I approaches 1 and
the critical points of the map hit the unit circle. This actual-
ly happens in finite time and corresponds to the appearance
of singularities in the contour. Letting q 1 in Eq. (18)
one finds that the singularities have the form of 2/3 power
cusps. (It is interesting to note that the cusps appear with
only few "modes" in our "analytic" parametrization, while
they correspond to an infinity of "angular harmonics. ")
The finite time cusp formation may also be seen in a direct
numerical simulation of Eq. (10): the results for a sixfold
perturbation are shown in Fig. 1.

V. CONCLUSIONS

The appearance of finite time cusp singularities in the in-
terface is a plausible result of the nonlocal dynamics. How-
ever, while the model may provide a reasonable description
of the early stages of evolution, in a real physical system
singularities will not appear because of the surface tension.
(Furthermore, in our "electrodeposition" model the evolu-
tion of cusps will be opposed by screening in the regions of
high electrostatic field. )

We have used the mapping method to derive the interface
dynamics partial differential equation for a more realistic
boundary condition in Eq. (2), which includes the effects of
surface tension [$(y) = o.a, where ~ is the local curvature
of the interface]. The numerical simulations suggest that
sharp bumps in that case undergo tip splitting rather then
evolve into cusps. We shall report these results elsewhere.

The conformal mapping method appears to provide a con-
venient tool for analytic and numerical studies. The "singu-
larity" dynamics derived above is akin to the "pole"

t.o—

—l0—

—2.0—
I

—2

FIG. 1, The evolution of a sixfold perturbation of a circle and
formation of cusps in the interface. (Result of a numerical simula-
tion of the interface dynamics equation. )

dynamics known in the context of the Korteweg —de Vries
equation and some other conservative systems. The formu-
lation of the problem in terms of the ordinary differential
equations that it provides may allow one to study the
"chaotic" aspects of the interface evolution.

Note added in proof. After this paper was accepted for
publication, Nigel Goldenfeld brought to the attention of
the authors an article by G. H. Meyer, in Numerical Treat-
ment of Free Boundary Value Problems, edited by J. Albrecht
(Birkhauser, Basel, 1982). For a model of Hele-Shaw flow
with suction, G. H. Meyer using the conformal mapping
method, had obtained a family of analytic solutions leading
to cusp singularities.
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