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Fluctuation effects in Smoluchowski reaction kinetics
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We introduce a new and extremely simple model for coagulation in which the reaction kernel Kz in the

Smoluchowski equation corresponding to the model can be adjusted «xactly. For the special case of a con-
stant K~, we deduce that for spatial dimension d ) d, =2, the exact solution of the Smoluchowski equation
is valid (mean-field theory). For d ( d, , fluctuations give rise to dimension-dependent kinetic exponents
and a novel nonmonotonic cluster size distribution.

Coagluation is an important kinetic phenomenon that un-
derlies a wide variety of applied science problems. ' The
classical approach for studying irreversible coagulation was
first developed by Smoluchowski, ' who wrote the follow-
ing equation to describe the time evolution for the concen-
tration of clusters of mass k, cr, (t), under the assumption of
binary collisions

dc2, (2)
KjJc;(r)c, (2) —c„(t) g K2~cl(r)

(+J=k J ) 0

In Eq. (1), the interaction kernel K;, depends on the details
of the collision process between i-mers and j-mers; this ker-
nel embodies the dependence on i and j of the meeting
probability of an i-mer and a j-mer. These include effects
such as the mass dependence of the collision cross section
and/or the diffusion constant.

The first term in (1) describes the increase in cr, (t) owing
to the coalescence of an i-mer and a j-mer with i +j =A. ,
and the second term describes the decrease of cI, (t) owing
to the coalescence of a k-mer with other clusters. For
specific forms of K;,, a number of exact solutions and a
variety of interesting asymptotic behaviors have been eluci-
dated. ' '

It is important to emphasize that spatial fluctuations in

ct, (t) are not accounted for in Eq. (1). Thus, solutions of
the Smoluchowski equation should be regarded merely as
mean-field limits of the true kinetic behavior and these will

be valid only above an upper critical dimension. &cry re-
cently, insights into the nature of coagulation kinetics in
lower dimensions have been gained through numerical
simulations, ' and interesting features emerge which are
not evident from an analysis of the Smoluchowski equation.
Unfortunately, a connection with the mean-field predictions
based on the solutions to the Smoluchowski equation cannot
be readily made for two reasons. First, owing to the geome-
trical complexity of the constructed aggregates, the func-
tional form of the K„cannot be determined analytically, and
second, the upper critical dimension of the simulated sys-
tems is not known.

In this Rapid Communication, we introduce a new and
very simple model for coagulation in which the functional
form of K,J in the Smoluchowski coagulation equation corre-
sponding to our model can be adjusted exactly. This is ac-
complished by retaining only the kinetic aspects of the clus-
ter aggregation simulations mentioned above, and discarding
the geometric aspects which are superfluous for kinetic con-
siderations. Our model permits a direct comparison

between numerical simulations and solutions of the Smolu-
chowski equation to be made. Moreover, owing to the sim-

plicity of our model, simulations which are orders of magni-
tude more extensive than previous studies can be easily per-
forrned. From these simulations and by appealing to analo-
gies with tAo-body decay reactions, we shall elucidate the
role of spatial fluctuations on the kinetics of coagulation.
Our primary result is that there exists an upper critical
dimension d, =2, above which the solutions to the Smolu-
chowski equation provide an accurate description of coagula-
tion. However, for d ( d„ fluctuations in the spatial distri-
bution of clusters gives rise to non-mean-field kinetics
characterized by dimension-dependent exponents and a

nonmonotonic cluster size distribution.
In our model, clusters are defined to be single lattice sites.

When two clusters of masses i and j meet, they coalesce
into a single point cluster of mass i + j. Thus the technical
complications of moving extended clusters, and the difficul-

ty of deducing the form of K„ for coalescence of extended
clusters are: both eliminated. It is now possible to achieve
exactly many interesting functional forms for K;, by assign-
ing various mass dependences to both the interaction radius
and diffusion constant of a given cluster. Here we shall
treat only the simplest case of a constant K&(t pi,j), and
the generalization to other functional forms of K„" will be
treated in future publications.

A constant K;, is achieved by assigning the same diffusion
constant to each cluster, independent of mass, and by defin-
ing a collision between two clusters to occur only when the
clusters ar&: on the same lattice site. By these definitions,
K„" is manifestly a constant. This provides an idealized
model for coagulation of Brownian particles, "where the ef-
fects of the growing collision cross section and decreasing
diffusion constant as the cluster mass increases, are taken to
approximately balance.

For a constant K„-, the solution to Eq. (1) is given by

(2) 2k
—Ir( ] + ()k+1 2

—2c —k/r (2a)

gcq(2) —(1+ r) (2b)

From the asymptotic form of cq(t) for large but fixed t, no-
tice that the cluster size distribution decays monotonically;
there is es. entially no decay for small k, and then there is
an exponeritial decay for k greater than a typical cluster size
k', which g;rows linearly with time.

To study the effects of fluctuations in the constant kernel
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coagulation process,

h:

A;+AJ Ap

we note that the reaction can be regarded more siniply as

the coalescence reaction, 3 + A —A, if one ignores the
masses of each cluster. We expect" that the latter reaction
should be in the same universality class as A +A —0, for
which it is known" ' that for spatial dimension d ( 2, the

density of A' s, p~((), decays as ( ",while for d ) 2, the

rate equation (or mean-field) decay of I ' is valid, and

when 0= d, =2, the decay is (r/Int) ' (Ref. 15). Owing to
the analogies between the various reactions, the number of
clusters in constant kernel coagulation, g„ck(t), will be the

same as p&(t) in the coalescence reaction.
To gain an initial insight into the kinetics of coagulation

for d & 2, we introduce a time-dependent reaction kernel or

rate constant into the Smoluchowski equation. Such a de-
vice has previously proved useful in understanding the
non-mean-field decays in two-body reactions. ' If one re-
gards coagulation as the reaction A +A —A, the associated
rate equation, p~(t) = —kp4(()' can be modified to give
the correct kinetics for d & 2, by choosing k proportional to

This time dependence phenomenologically describes
the decrease in the meeting probability of two A particles
owing to the development of large-scale spatial inhorno-
geneities. For coagulation in d ( 2, we are therefore led to
choose K„—constr( ' ' to account empirically for fluc-
tuation effects in the Smoluchowski equation. With this
form of K„substituted in Eq. (1), one immediately finds
solutions of the form given in Eq. (2), except that t is re-
placed by t~ ' wherever it appears. Therefore, this approach
predicts that the qualitative features of coagulation for d ) 2
are reproduced in d ( 2, but that quantitative modifications
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FIG. 1. (a) Typical simulation results for constant kernel coagulation on the square lattice based on 100 configurations with an initial state
of 4x 10 particles placed randomly on a 10 x 10 lattice. The decays of representative cluster densities (normalized by the initial density)
are plotted on a double logarithmic scale. Note the different horizontal axes for gk ck(I) and for the various ck(r) to illustrate the loga-

rithmic corrections. The curves serve as guides to the eye, the dashed lines have slopes of —1 and —2, and for convenience, the values of I

are labeled. (b) Typical simulation results on a linear chain of 10 sites based on 30 configurations with an initial state of 2&&10 particles.

Asymptotically, gk ck(I) follows a straight line of slope —1/2, while the ck(() follow straight lines of slope —3/2. The symbols refer to the

following quantities: (0) $1, cI, (r), (+ ) ci(I), (x ) c2(r), (a) c4(t), (5) c8(t), and ('7) c~o(t).
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of kinetic exponents occur.
To test these predictions, we have performed numerical

simulations for both the square lattice and the linear chain.
Owing to the point nature of the clusters, percolation effects
are irrelevant, and one may even choose an initial density
equal to unity, which leads to more rapid convergence to
asymptotic behavior. On the other hand, it appears that our
model is in the same universality class as growing cluster-
cluster aggregation in one dimension only, in the dilute lim-
it. As long as the average intercluster distance is much
larger than the typical cluster length, the influence of the
growing cluster boundaries on the kinetics should be imma-
terial.

For the square lattice, we clearly observe that the total
number of clusters, g„ck(r) varies as ( /r1 tn)

' [Fig. 1(a)].
Interestingly, one observes in Fig. 2(a) a weak nonmono-
tonicity is the cluster size distribution, in contradiction with
Eq. (2a). Furthermore, each ck(t) appears to decay at the
same rate for all k, and the data are well fit by the expres-
sion (r/Dint ) . However, for the linear chain, the simu-
lations disagree strongly with the predictions based on solv-
ing an "effective" Smoluchowski equation with a time-
dependent reaction kernel [Fig. 1(b)]. We do observe that
g„c„—t )r', as predicted from the efl'ective Smoluchowski
equation, but ck(t) decays as t ' ', and the cluster size dis-
tribution is strikingly non)nonoronic in k [Fig. 2(b)]." This
nonmonotonicity, and the decay of ck(t) faster than the ef-
fective Smoluchowski equation prediction, are closely con-
nected. In order to understand this, it is helpful to write

ck(t) in the following scaling form:"

e„(r) —r "k'f(k/r') (3)

( r) r
—w (r+l+)z

k

(4a)

where the power k' is included to describe the observed
vanishing of ck(t) as k —0. As dictated by our simulation

results, the scaling function f (x) 1 for x (( 1, and f (x)
decays rapidly for x )) 1. In terms of this scaling form we

have
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As already discussed, the first quantity varies as t ', while
the second quantity is the total cluster mass, and is there-
fore a constant. Thus, we obtain z = 1/2 and w =1+z/2,
and conclude that the nonmonotonicity of the cluster size
distribution leads to a decay of ck(t) which may be faster
than t

This line of reasoning does not predict the value of w, but
we can give an argument that w =3/2 for the linear chain,
by making a connection between our model and Fisher's
"vicious" random walk model. ' The argument makes use
of an assumption that the asymptotic decay of each ck(t) is

independent of k; thus it will suffice to consider only the
decay of the monomers. Focusing attention on a particular
monomer, it will "decay" (i.e., coalesce) by reacting with

either of its two nearest neighbors. These neighbors may
grow in mass as a function of time, but this is immaterial
for understanding the decay of the central monomer. It suf-
fices, therefore, to consider only the three-body problem of
a monomer and its nearest neighbors. For the monomer to
survive, the two neighbors cannot meet, and the monomer

FIG. 2. (~) Cluster size distribution for the square lattice after
200 time steps and (b) the distribution for the linear chain after
30000 time steps. Plotted are the number of clusters, Nk(]), based
on the same data shown in Fig. l. In (b), the dashed line has slope
+ l.

cannot meet with either neighbor. The avoidance probabili-
ty for any pair of particles varies as t ' ', and while each
pair avoids. nce is not strictly independent, Fisher showed
that the central particle will survi ve with probability
( t

—t/2) 3 t
—3/2

This anatlogy now explains the decay observed in the
simulations of coagulation on the linear chain. In addition,
by scaling and the sum rules, Eqs. (4a) and (4b), we expect
that the cluster size distribution will grow linearly with k for
small k as observed in Fig. 2(b). The nonmonotonic cluster
size distribution disagrees with the predictions of an effec-
tive Smoluchowski equation with a time-dependent but
mass-independent K„. In order to derive the fluctuation-
induced nonmonotonicity by an Smoluchowski-type equa-
tion, it appears that K;J must acquire a mass dependence as
well as a time dependence.
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In conclusion, we have introduced an extremely simple,
albeit idealized model for coagulation in which clusters
remain point particles throughout the process. Through this
model, we can make a direct connection with the Smolu-
chowski coagulation equation, and determine its range of
validity. For the special case of a constant reaction kernel
in the Smoluchowski equation, we find that it is valid above
an upper critical dimension d, =2. For d =2, simulations
indicate that logarithmic corrections of the form

hack(r) —(r/inr)

c„(r)—(r/Vlnr )

should occur. For d & 2, fluctuations in the spatial distribu-
tion of the clusters renders a Smoluchowski equation
description, which neglects these fluctuations, invalid. Our
numerical simulations for the linear chain show that
gk ck ( r) —r 'i2, while ck ( r) —t 3i2. For the range
1 ( d & 2, normally achieved by a fractal set, dynamic
phenomena are governed by the fracton dimension d, .20

For a fractal with d, ( 2, it is known that g„ck(r) decays as—u, /2
r * (Refs. 15 and 16). Furthermore, we note that the ra-
tio ck(r)/ g„ck(t) appears to be dimension independent, de-
caying as t . This observation, together with the sum

rules, Eqs. (4a) and (4b), suggest that w= 1+ d, /2 and
r =2/d, —1; for example, on a percolation cluster at thresh-
old, where d, is believed to equal 4/3, we expect w=5/3
and r =1/2.

The simplicity of our model opens the possibility of.many
interesting generalizations. It will be worthwhile to study
fluctuation effects in systems with reaction kernels of the
form Ki, —(i"+j ) and (ij)". The latter form leads to
gelation in a finite time, but fluctuations could strongly
modify this behavior. Another interesting situation is rever-
sible coagulation, where breakup processes can occur. Fi-
nally, it should be fruitful to study situations for which the
solutions to the corresponding Smoluchowski equation is
not known, so that the various universality classes of coagu-
lation kinetics can be mapped out.
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