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Numerical simulation of two-dimensional snowflake growth
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We develop an efficient numerical scheme for integrating the equations of two-dimensional dendritic

growth in the thermal-diffusion-limiting region. We use a Green's function representation to recast the

problem as an essentially one-dimensional integro-dilferential equation which is solved numerically. We

find that anisotropic surface tension is required to produce the stable tip behavior and repeated sidebranch-

ing of snowflakellike shapes.
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In these equations the interface is specified by the closed
curve x(s) with are length s, curvature K(s), and outward
normal rI. The subscripts I and s refer to derivatives taken
while approaching the boundary from the liquid and solid

phases, respectively. « is a shifted temperature measured in

units of ( T —Tp), the difference between the equilibrium
melting temperature and the actual temperature of the cold
bath at R. We have chosen length and time scales to set
the coefficient of the curvature term in (lc) and dx/dr in

(1b) to unity. Lengths are then nieasured in units of

There has been a resurgence of interest in the physics of
pattern formation in nonlinear dynamical processes. ' One
ol the most f'ascinating of such systems is the snowflake,
formed by solidification of ice in supercooled vapor. Our
knowledge of the connectiori between the morphology and
the dynamics of growth is still limited, even after years of
investigation. It is surprising that little effort has been
made to develop efficient numerical schemes f'or simulating
the equations of heat flow during solidif'ication. Previous
work has focused on solving for the temperature field by
standard discretization techniques, with results that are ex-
tremely primitive and not yet capable of addressing such
basic questions as the insportance of crystalline anisotropy
and the nature of the side-branching mechanism.

In this work we forniulate a contour dynamics method'
for a model of two-din1ensionall dendritic crystal growth.
The idea is to f'ocus directly on the nsotion of the ice-water
interface, leading to an ef f'ectively one-dimensional (and
therefore tractable) problem. We acconsplish this by reex-
pressing the dynaniicall equations f'or the temperature field
as a nonlinear integro-dif'ferential equation for the orienta-
tion angle of the interface. The nun&erical solution of' these
equations provides an efficient scheme for simulating
snowflake growth.

We assume that the rate-limiting step in the growth of a

two-dimensional solid f'rom its melt is the diffusion of latent
heat away frons the moving interface to a cold bath at a far
distance R. Assun&ing that the interf'ace moves slowly, the
reduced temperature t'ield satisfies the equations

(la)

d=yT [L(T —Ta)] ' —100 A, and times in units of
Ld'[4trc, ( T —To)D] ' —10 ' sec, where y is the coeffi-
cient of surface tension, L the latent heat, c~ the specif'ic

heat, and 0 the diffusion coefficient, and parameters for the
ice-water system have been used for the numerical esti-
mates.

We can convert these equations to a closed equation for
the interface by solving (la) and (1b) for u:

u(x) = ds'G x, x(s') u(s')

where v is the normal velocity and
t T
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Evaluating u at the interface and using (1c) we obtain the
boundary integral equation

I —~(s) = ds'G 7(s), x(s') v(s') (2)

Notice that the only free parameter is R, the system size.
In three dimensions, R could be taken infinite, leaving a

unique problem for numerical solution. We have neglected
the time derivative terna in the diffusion equation, as it is
proportional to the small parameter c~( T —Ttt)/L, the
Peclet number (Wp ). We will discuss later which aspects of
our results might be modified by nonzero values of this
parameter.

We parametrize the curve by H(n), the angle the normal
makes with the y axis as a function of relative arclength
A(0(o ~1), and the total arclength sq. Given a normal
velocity u(A) along the curve, we showed in Ref. 4 that
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and that

K(O. ) = sT ] 90

Our algorithm proceeds by assuming a known discretized

0(u;), i =1, . . . , W, and sr, inverting (2) numerically to
find v(a), and computing 0 and sT via (3). The resulting
set of ordinary differential equations is solved by a
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predictor-corrector method (LsoDE code' ). Because our
points are always equally spaced in arc length, the equation
automatically distributes the points where they are most
needed.

To test the algorithm, we have compared our numerical
results with known analytic solutions for the growth of cir-
cular and nearly circular interfaces. A circle of radius ro
should grow with velocity
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and for initial size ro=2000 and R =10', v=1.0179-10 '.
Similarly, an m-fold perturbation r = rp+5 (r) cosmt) obeys
the equation
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which for m =4 is a growth rate of 1.47& 10 . Simulations
with assumed reflection and fourfold symmetry and 100
points per octant reproduce these rates to an accuracy of at
worst 0.1%. A typical run at these parameters requires 2 h
on an FPS164 array processor to integrate to time 10 . At
later times our numerical accuracy is suspect. The run
times scales as N, placing the ability to perform reasonably
detailed studies well within the capability of current super
computers.

The first question we addressed was motivated by recent
work on simplified models of dendritic growth, where it is
found that stable dendritic tip motion is possible only in the
presence of rotational asymmetry. Crystalline anisotropy
directly affects the local thermodynamic relation (lc). As-
suming7 that the surface tension coefficient is proportional
to [1+pens(m8)], where m=4 (6) for a cubic (hexagonal)
crystal, an additional term —p~(s) cos[m0(s) J appears on
the left-hand side of (2). We began with a perturbed circle,
t)(cx) =2m'+ g~si (n8u7r), rp= 103 and R =106, and

varied the anisotropy parameter ~ from 0 to 0.2. Figure 1

illustrates the effect of ~ on the pattern morphology. As we
see in Fig. 1(a) with p = 0 in the absence of anisotropy den-
dritic tips will split. Stable dendritic growth, as exhibited in

Fig. 1(b), requires an p of at least 0.1 or so for these initial
conditions, even though we have already "broken" the ro-
tational symmetry by our choice of initial conditions. This
numerical result implies that crystalline anisotropy (or
perhaps anisotropic growth kinetics) stabilizes some tip-
splitting mode which otherwise destroys the regular pattern.
The same behavior is found when we investigate m = 6, and
it seems that snowflakes are only possible because of the
crystal structure of ice.

In Fig. 2 we display the final state of a sixfold crystal
simulation. As m increases from 4 to 6, the general
behavior of the growth process, including the critical value
of anisotropy for dendritic growth, is roughly the same.
The major change is that the amplitude of the side branches
is much smaller, because the tips are closer together than in
the fourfold case which reduces the temperature gradient
and inhibits the secondary tips. If we were to extend our
simulations to three dimensions, or to finite Peclet number,
we expect that the side-branch amplitude would increase.

Along with the persistence of stable dendritic tips at suffi-
ciently large anisotropy, one sees the repeated emergence of
side branches. This phenomenon is most clearly exhibited
in a curvature plot. In Fig. 3 we show curvature versus are
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FIG. 1. (a) Tip splitting at zero anisotropy. (b) Fourfold side
branching, = 0.2.

length in one octant of the final state in Fig. 1(b), with the
origin at the tip. Each side branch corresponds to a peak in
the curval. ure, and these are roughly evenly spaced in arc
length. As a function of time, new peaks are formed in a
cycle during which the top fattens, becomes unstable, emits
a side branch (i.e. , develops a new maximum in v), and
then sharpens again. The circular approximation (4) for the
tip speed (with ro equal to the tip radius) is about twice the
actual computed value, and in fact the tip velocity decreases
slowly wit'0 time.

The slowly decaying tip velocity can be traced back to
having zero Peclet number. In this limit, it is easy to show
that no trLIe steady-state shape preserving dendrites can ex-
ist. If we assume a constant velicity in Eq. (2), the integral
over arc length diverges at large s' in the infinite dendrite
limit. Therefore, the tip velocity of a length L dendrite ap-
proximately obeys v L —const, or since v = L, v —I
This predicts that eventually our tips will broaden and slow
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FIG. 2. Sixfold dendritic growth, e = 0.2.
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the m = 6 run shown in Fig. 2. These values are roughly in-

dependent of anisotropy and the initial conditions. While
our numerical data do not span a sufficiently long time
range to be decisive, the anomalous power-law behavior
(—r", y —0.2, suggests fractal behavior of the interface.
(Note that inclusion of finite Peclet number alters the
behavior by factors which are powers of time, and therefore
can, at most, change the specific values of the exponents. )
Such behavior is not unexpected, since our equations incor-
porate the basic mechanism whereby fractal growth models
such as diffusion-limited aggregation achieve fractal
behavior. That is, the side branches in the interior of the
pattern see less of a temperature gradient than the main tip
and grow at a reduced rate. This mechanism is explicitly ab-
sent in any of the local models of dendritic growth which
otherwise mimic quite well the effects of heat diffusion. Re-
cently4 these models have been shown to give rise to
snowflakelike patterns with exponential time dependence for
the irregularity ratio (, a behavior which is clearly unphysi-
cal over long times. It would be very informative to moni-
tor the growth of dendritic systems in the laboratory to see
whether they exhibit the anomalous time dependence we
predict.

One theory which attempts to explain how dendrite
growth selects its tip velocity is the marginal stability hy-
pothesis of Langer and Muller-Krumbhaar. ' Inasmuch as

this theory:ignores the crucial effects of anisotropy, predict-
ing a stable tip even in its absence, it cannot explain the
results observed here. Recently, " we have shown that this
hypothesis .is not correct for the local interface models of
Refs. 4 and 6, and that the velocity is actually selected by a
nonlinear solvability condition. This new approach predicts
that there is a single, discrete side-branching mode which
becomes stable as the anisotropy is increased at fixed under-
cooling. Translating those results to the situation at hand,
the theory predicts that the slowly varying dendritic solution
present at Wp = 0 will undergo stable side branching for ear-
ly enough 'times and for sufficient anisotropy. This is of
course in complete agreement with our numerical simula-
tions.

In summary, we have reformulated the problem of two-
dimensional. solidification as a system of nonlinear equations
for 8(n). We have thus been able, for the first time, to ex-
amine various issues regarding the evolution of patterns in
this system. Our major results are that crystalline anisotro-

py is an essential feature of the dendritic growth problem,
and that the interface arclength and solid-phase area appear
to have simple power-law time dependence. We have dis-
cussed which of our results will remain valid for the physical
case of small but finite Peclet number. It should be possible
to test these predictions experimentally.
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