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In this paper we reply to the preceding Comment by Abdel-Raouf concerning several features of an
amplitude-independent variational principle which we have recently proposed. The most substantive dis-

cussion concerns the nature of the singularities which can arise in o]ie of these variational principles. The
specific variational principle involved contains the Hamiltonian and not the Green's-function operator.

The complexities of low-energy electron-molecule col-
lisions have stimulated much interest in several approaches
to the scattering problem. ' In this context, we have recently
discussed a series of amplitude-independent variational prin-
ciples. ~ Basically our discussion was concerned with eluci-
dating the relationship between the Schwinger- and Kohn-
type variational principles and with extending the Schwinger
principle so as to obtain additional variational functionals
which could be of some utility in electron-molecule col-
lisions.

In this paper we reply to the Comment of Abdel-Raouf
concerning the originality of our development of these vari-
ational principles and to his criticism of some features which
we attributed to one of these variational functionals. A
summary of our response is that while we agree with some
of his comments we disagree with others. We will also clari-
fy some aspects of our formulation.

We begin with Schrodinger's equation for the scattering
problem in the form

(E—H)/=HE =0

As usual H is divided into a collision-free part H~ and an in-
teraction potential V. We note, however, that H is defined
as E —H in Eq. (I). The scattering wave function can be
written as

$=S+C
which Cexpanded in the form

C = C tan5+ $ a,X;
j

(2)

(3)

HC= VS (4)

and the corresponding Lippmann-Schwinger equation

( V VGo V ) C = VGo VS

where Gp is the Green's function for Hp —E with the ap-
propriate boundary condition. Obviously more general vari-
ants of Eq. (6) may be obtained by working with the iterat-

In these equations, S is a regular solution of Ho at energy E,
and C is a regularized version of the irregular solution. In
Eq. (3), X& is a square-integrable (L') function and 5 is the
phase shift. For convenience we consider the simple case of
potential scattering. The function C satisfies the Schro-
dinger equation

ed version of the Lippmann-Schwinger equation.
For the inhomogeneous equation

Ay= b (6)

where A is an operator and y is a function to be determined,
it is well known that the associated variational functional for
the quantity (y I A Iy) is given by

&) I6& (t lx) (7)

In Eq. (7), y is treated as a trial function. The conditions
under which [ Y] is unique and variationally stable are
known and have recently been discussed. 6 Equations (4)
and (5) immediately lead to the following functionals:

and

gcl vis& &sl vlc&
(CIHIC)

(8)

& C I VGo VIS) (S I VGo V
I C&

(cl( v —vG, v) Ic&
(9)

At the time we wrote our paper in which we obtained Eqs.
(8) and (9), we were unfortunately unaware of the earlier
work of Moe and Saxon' [in which Eq. (8) had been ob-
tained] and that of Kolsrud8 [in which both Eqs. (8) and (9)
had been derived]. Abdel-Raouf correctly points this out in
his paper. 5 Kolsrud did, however, draw our attention to his
previous publication' and we were able to add a note in
proof to a later paper in which we presented results of our
application of the functional of Eq. (9).

A few comments on the relevance of Eqs. (8) and (9) to
our work at that time are in order. First, unlike the
Schwinger;ind its related variational principles which all
contain the Green's function, Eq. (8) is an amplitude-
independent functional in which only the Hamiltonian ap-
pears. This can be a substantial advantage in applications to
electron-mollecule collisions since much more powerful com-
putational procedures are available for handling matrix ele-
ments of the Hamiltonian than of the Green's function for
such systems. Applications of Eq. (8) to a two-channel
model problem showed convergence characteristics very
similar to those of the Schwinger principle which is known
to be of higlher order than the usual Kohn method. ' We
also noted, on theoretical grounds, ' that the functional of
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Eq. (9) should directly provide K matrices of the quality of
those obtained after one iteration in the iterative Schwinger
method. " This is an important feature since substantial irn-

provement normally occurs after one iteration in this pro-
cedure" and, moreover, such iterations can be quite time
consuming for the more difficult or larger molecular targets.
These observations were confirmed in actual applications to
the polar systems LiH and CO+.9 We believe that these
developments have helped to put this functional, referred to
by us as the C functional, in a very useful perspective.

We now turn to Abdel-Raouf's comments concerning
several features of' the variational functional Ft of Eq. (8)
which we discussed in Ref. 3 and 4. Abdel-Raouf claims
that we stated that the trial functions used in F] need not
satisfy the appropriate scattering boundary conditions. In
our paper, however, we stated that no specific asyinptotic
form is required of the function C used in this functional.
We note that the term asymptotic form has been replaced by
boundary condition in his criticism of an important feature of
this functional. In the ordinary Kohn-type variational prin-
ciples, the coefficient of the asymptotic function C in Eq.
(3) is determined algebraically. On the other hand, such a
computational constraint is not necessarily required of F],
suggesting that an L2 approach can be used to F~. Of
course, if one specifically introduces the asymptotic f'unction

C into the scattering basis, just as in Eq. (3), F~ reduces ex-
actly to the Kohn principle. ' What we stated was that FI
does not require the correct asymptotic function in the trial
function. However, we never stated that F~ does not re-
quire any boundary conditions when applied in an L' form.
In the application of this method to a model two-channel

problem, we explicitly stated that boundary conditions had
to be imposed on the basis functions. 4 In fact, we actually
defined a boundary as in the R-matrix theory, and applied
the F] functional inside the boundary by using only L'
functions on which certain boundary conditions were im-

posed at this boundary. 4 We showed that the wave function
@ could consequently be smooth everywhere. This follows
from the fact that the logarithmic derivatives at the boun-
dary are imposed on C rather than on the total wave func-
tion $. It can be shown that the logarithmic derivative of C
does not depend on tan5, while that of $ does. 4 These and
other details are discussed in Ref. 4. The results of these
applications illustrated the excellent convergence charac-
teristics of the functional.

In Ref. 3 we argued that by working with a slightly modi-
fied Schrodinger equation, the anomalous singularities
which arise in many standard variational principles could be
avoided in the functional of Eq. (8). In his model calcula-
tions, Abdel-Raouf' finds an anomalous singularity in our
supposedly anomalous-singularity-free modification of Eq.
(8). This result does show that anomalous singularities can-
not be avoided in this modified functional as we originally
stated. However, we will show that with appropriate modifi-
cations and approximations, the procedure remains very
useful and can provide meaningful insight into the nature of
these resonances. It should be noted that a number of
methods for avoiding these anomalous singularities have
been developed. "

The procedure we discussed in Ref. 3 for avoiding these
anomalous singularities begins with the slightly modified
Schrodinger equation

—Ttan6= &s( v(s&+
1+ tF',

&C, I vis& &sl vIC, &

&C, IH IC, &

(13a)

(13b)

We first consider the proportionality between IC, ) and
IC). We define H, to be the matrix representation of H in
a basis B= (C, X, , i =1,2, . . . , NI. In what follows we as-
sume that this basis is used both in the Kohn method and
FI functional but not in the R-matrix approach to F( which
we discussed above. We apply H, , if it exists, to Eq. (10).
This is written symbolically (in a matrix sense) as

[I —rH v(s&&s( v]Ic,&=H;«Is& . (14)

On the other hand,

Ic) =H„-tv(s& (15)

holds in the implicit matrix representation of the Kohn prin-
ciple [see Eq. (4)]. Hence, we have

Ic,) = («sI vIc, &+ II Ic) (16)

Hence, if H, ' exists, i.e., Eq. (16) has a nondivergent
solution within a given basis, and if Eq. (10) is solved in a
manner similar to the ordinary Kohn method, the phase
shift of Eq. (13) must be independent of r and thus must
coincide with that of the usual Kohn method. Abdel-
Raouf's results of Table I are therefore to be expected. '
These functionals are still, however, quite useful. First,
they can be applied with considerable flexibility as we
showed in our calculations. 4 Secondly, if det(H, ) is zero
and hence the usual Kohn method has a divergence, we can
analyze the situation in greater detail,

Consider the case where det(H, ) =0 and IC) diverges.
Even in this case, the pole-shifting operator can be used to
keep IC, ) finite by adjusting i This is illustrate. d numeri-
cally in Fig. 1 of Abdel-Raouf. 5 Generally as det(H, ) ap-
proaches zero, IC) of Eqs. (15) and (16) begins to diverge.
On the other hand IC, ) remains I'inite throughout. The
coefficient x; of Eq. (16), i.e.,

.;= r&s( v(c, &+ I (17)

must approach zero as det(H, ) approaches zero as a func-
tion of the incident energy or of the size of the basis set.

If x, of Eq. (17) is zero, Eq. (10) can then be written as

H, (c,) = v(s&', r&s( v(c, &+ II =0 (1S)

again in a matrix sense. Thus, within the basis set B, IC, )
belongs to the zero eigenvalue of H, or

&pi(HIC, ) =0

where

x= v(s&&s(v,

and t is an arbitrary parameter. This inhomogeneous equa-
tion leads to the functional

(c, I vIs& &sI vIc, )

&c,((H-u)IC, &

which can provide the phase shift through the relation

(H-rx)(c, ) = vIs&, (10) where JM, &
belongs to the basis B. Thus, as pointed out by
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—y tan5= (SI VIS) + —&SI VIC, &

xr
(20)

which shows the divergence due to x, =o. That x, is zero
follows from Eq. (19). We also note that only H, is used in

Eq. (19). Thus, another approximation for x, in Eq. (20) is

to use

Abdel-Raouf in Fig. 2, ' Eq. (13b) has a singularity when

H, ' is singular. Nevertheless, as we will show below, we

can still make use of the fact that
~ C, ) is still finite.

We note that —~ tan5 of Eq. (13) can also be written as

this singulstrity cannot be avoided by a change of method.
It is also impossible to mathematically identify whether this

singularity is spurious or physically meanIngful, the latter
case being possibly connected with a resonance. To our
knowledge, little is known about the properties of Eq. (23).
For example, can the singularity disappear completely from
this energy region as the basis set is augmented? Such
questions are still open and important for a deeper under-

standing of resonance phenomena.
In Ref. 3 we also showed that a maximum principle could

be developed for (FI ) '. The argument is as follows. '
Kato" sho~ved that for a variational functional

(SiHiC, &
=x, &si Vis) .

If x,' is not zero, —~ tan5 can then be approximated by

(21)
( v/g

/
v& (26)

—~tan5= &S( V(S&+—'(S( VIC, & (22)
one has a tninimum principle if the operator A + C

~ f) (f ~
is

positive for some fixed constant C. In our expression for
-(F])-',

It is easy to see that tan5 of Eq. (22) is equivalent to the
value given by Kato's identity'

(C, i

—(H rX) iC, )—

&C, i vs) & VSiC, &

(27)

[X t = —k, + 2 S + —C, H S + —C.',)x x' X
(23}

where A. denotes tan5 and X, is the coefficient of C in C, .

We next consider the case

&SIHIC, &
=0 (24)

(Z- H)IC, &
=0 (25)

within the basis (S,C, Xt[li =1, . . . , N). With a given basis,

possibly occurring in Eq. (21) and leading to x,*=0 unless

(S) V(S& =0. Equations (19) and (24) then lead to another

type of singularity in Eq. (22). Thus, there are two kinds of
singularities. (i) A singularity of the first kind. This is

solely due to Eq. (19) and inherent in the Kahn principle.
This singularity is spurious and avoidable" in various
ways" '6 including the use of Eq. (22). (ii) A singularity of
the second kind. When both Eqs. (19) and (24) hold, this

singularity occurs. These conditions simply imply that
~ C, )

is the solution of the projected Schrodinger equation

we have A = —(H —iX),
~ f) =

~ VS), and ~C, ) = V Since
H is E —H, the —H of electron-molecule collision systems
has a lower bound. Moreover, X of Eq. (11) is positive de-
finite. Th(:refore we can generally find t which makes
—(H —iX t+ cv~S'& &S~ V positive for some constant c.
This can also be stated by saying that (H —rX)
+c'V~S& &S~ V can be negative for some constant c' by

choosing I sufficiently large. We thus have a minimum prin-
ciple for —t. F', } ' or, equivalently, a maximum principle for
(Ft ) '. Of course, if the H under study has eigenvalues at

negative inI'inity, this maximum principle does not hold.
In the paper of Abdel-Raouf, ' our claim that the negative-

ness of H —tX+ i
'

V ~S) (S ~
V for some c' and t leads to a

maximum l&rinciple for (F', ) ' has been replaced by the
statement that the positiveness of H —iX+ c'V~S) (S~ V for
some e', and r leads to a minimum principle for (F't )

Obviously );his latter statement does not make sense, since
for any reasonable HamiltonIan of interest H does not have
a lower bound. Note that with our definition of H as
E —H, H can be negative infinity.
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