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lt is demonstrated that the method of the fractional functional proposed by Takatsuka and McKoy, and

the variational method of Moe and Saxon and of Kolsrud are identical. In particular, we show that the
method is, contrary to Takatsuka and McKoy's claim, not free of anomalies; it implies the incorporation of
the boundary conditions, it does not satisfy a minimum principle, and suffers from inconsistency. In order
to illustrate the validity of our arguments, we investigate the s-wave scattering of electrons by Yukawa po-

tentials.

Recently, Takatsuka and McKoy" (we refer henceforth
to the authors and the first reference as TM), Takatsuka,
Lucchese, and McKoy, Lucchese, Takatsuka, Watson, and
McKoy, and Mu-Tao, Takatsuka, and McKoy' (see also
Gross and Runge and Lucchese and McKoy') have pub-
lished a series of papers in which they proposed what they
claim to be new variational techniques for treating scattering
problems. In analogy to Sch winger's variational method
(SVM), the functionals proposed by these authors have
fractional forms, One of these functionals, however, does
not contain any Green's integral operator. TM stated that
the trial functions employed in this case need not satisfy the
boundary conditions appropriate to the scattering problem
(that is, they can be square integrable) and that the method
is free of anomalies. (The first claim has been restressed in

the work of Gross and Runge. 6) Thus they claim that this
particular method (henceforth to be referred to as TMVM)
has many of the advantages of the SVM, while at the same
time, it is as easy to apply as the standard Hulthen-Kohn
variational method.

In this work„ the novelty of the techniques of the above
mentioned authors is questioned. In particular, we show
that the TMVM is, in fact, equivalent to one of the
methods suggested some years ago by Moe and Saxon' and

by Kolsrud, which are versions of the usual Hulthen-Kohn
method and, therefore, require the knowledge of the boun-
dary conditions of the scattering problem under considera-
tion. We also indicate that the other variational techniques
by McKoy and collaborators are based on well-known varia-
tional functionals which are derivatives of the fundamental
functional used in SVM. These functionals were deduced
by Kolsrud and rederived by several nuclear physicists us-
ing the separable approximation. We also point out that the
Euler equations of the functional used in TMVM and its in-
verse [F[ and (F() in their notations] are not identical
with Schrodinger's equation unless t, the arbitrary parameter
involved in their functional for suppressing the spurious
singularities, is restricted to a certain value. We consider
this fact as a source of inconsistency in TMVM. Next, we
demonstrate theoretically that the TMVM is not free of
spurious singularities and cannot be used for characterizing
true resonances. In order to illuminate this point, we inves-
tigate the scattering of electrons by a Yukawa potential
(2e 2'/r). We believe that the numerical results obtained
validate our objections to the TM method. (For simplicity,

we confine ourselves to the discussion of single channel
problems. The extension to multichannel processes is

straightforward. )
Finally, we disprove the claims of TM that the functional

in TMVM can be adjusted to fulfill a minimum principle.
Before going to the main point of this Comment, let us

first clarify the connection between SVM and the Moe-
Saxon method, and recall some of their important proper-
ties. For this purpose, it is convenient to formulate a gen-
eralized variational functional which incorporates all

Schwinger-type methods (see Abdel-Raouf' ). Indeed, this
can be readily done by using the separable approximation,
which is discussed in the works of Zubarev" ' and Belyaev,
Podkopayev, Wrzecionko, and Zubarev. " Thus, we consid-
er the functional (the notation is the same as in TM),

where

&g'I( vG) 'vis& &sl v(Gv) 'lg'&

&g'I[( vG) 'v —( vG) 'v(Gv) ']le')

n

g &s I v(G v)" lq, '& ~„'"'&gjl( vG)" v Is &,
iJ = l

where

(& '),,
= &g,'l[(vG)" v —(vG) 'v(Gv) 'llc, '&

(2a)

(2b)

Therefore, for all values of ml and nt2, the Euler equation
associated with F and F ' is expressed by

( vG)"'(( v —vGv)ly& —vis)) = lo&

where, for the exact solution, we have

ly) = g a, (Gv)

Equation (3) implies that the brackets ( ) should vanish
for all ml ) 0 and in~~0 which leads to the well-known
Lippmann-Schwinger equation. It is clear from Eqs. (2a)

n n

I('& = g~, lt, '),
i=l j= l

(l(i'&), and (I(&'&) are tvvo sets of separating functions; m~

and m2 are integers'„and IS), v, and G are defined in TM.
The stationarity of F, with respect to a s, leaves us with
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lc)=Gvl( ), Ice)=Gvlg ), ij =1, 2, . . . , n (5)

Substitution into (1) and (2a) and (2b) provides us with

and

&~l vis& (s I vlc)
&~IHlc&

5

F= g &slvlc, &w„'"'&, Ivls&,
i,j= I

where

(7a)

and

(A ')Jf = &cu, lHIC;& (7b)

and (2b) that this is true, independently, of the form of
lg,2) and that, to different choices of m~ and m~, one ob-
tains a hierarchy of Schwinger-type variational methods, the
first element of which is SVM. [Recall that F
= Ktt = tan(q'"'), rt'"' is the approximate phase shift and
that these methods are absolutely free of anomalies; see,
e.g. , Sloan and Brady. ' ] Of particular interest is to set
mt = m2= 1 and expand two functions IC) and lco) from
the following elements, respectively,

f I Vldr &. ~, then lg ) can be expressed in terms of
0

square-integrable functions. In this case the Euler equation
of (6) and (8) is the Lippmann-Schwinger equation. (b)
IC) is independent of Green's operators but, because of
Eq. (13), it has to satisfy the boundary conditions. For ex-
ample, IC) is expanded by

tl

IC) = tan(7), '"') IC) + y„a;Ix;&i=]
(14)

——[«n(q'"')]Koh (s I
v Is) + FI

where q,'"' is the trial phase shift, IC) is the irregular part
of the asymptotic form of lg&, and IX) is a square-
integrable function.

The vari;stional methods characterized by the functionals
F and F~, Eqs. (6) and (8), were first introduced by Moe
and Saxon' [their Eqs. (37) and (25), respectively] within
the framework of the choice (b), while the method based
on F~ was given [in addition to the case m~ = m2=1, 2

under the choice (a)] nearly at the same time by Kolsrud9
[his Eqs. (6) and (7)1.

Moe and Saxon referred to F] as an amplitude- (or
normalization-) independent Kohn's fu nctional. Indeed,
the author. showed that F] is related to Kohn's variational
functional, [tan(rt'"') ]x,h„, by

Setting lcm) = IC), reduces Eqs. (6) and (7a) and (7b) to
the forms

and

(c I
v Is & &s I

v
I
c &

& c IH I c &

(8)

where

&sl vlc, &~,,'"'&c,
l vis&,

i,j= 1

(9a)

(~ -')„=&c, lHlc, & . (9b)

Of

Hlc) = vis),
where

Ic&= ga, lc, & .
i=[

Therefore, Eq. (10) leads to Schrodinger's equation

(& —H) le& = I0&

if and only if,

Ic) =le& —Is& . (i3)

In other words, the functional F] provides us with two
possibilities of constructing the trial wave function IC),
namely, (a) IC) = g,"=,a;Gvlg ), where lc &'s are ap-
propriate to the form of V, e.g. , if & is such that

The Euler equation characteristic of the functionals F and
F, , Eqs. (6) and (8), as well as their inverses, is given by

I(E —H) lc& —vis&) = Io)

slvls + &clvls&&slvlc&
&clHlc&

(IS)

where (Sl VIS) represents the Born approximation of the
tangent of the phase shift. From Eq. (I5), it is obvious that
the stationarities of [tan(rt'"')]x, h„and F~ are equivalent,
and the phase shifts calculated by both methods are identi-
cal, if the same trial functions are used (see also Darewych
and Horbatsch' ).

In their attempts to reduce F] (or F) to functionals in-
dependent of the boundary conditions, Moe and Saxon
pointed out that all cases [see Eq. (30) in their work] lead to
complex please shifts, which means that probability is not
preserved and the symmetry of the reactance maxtrix is
violated. ( ontrary to Schwinger-type variational methods,
the main d.isadvantage of using the Moe-Saxon methods is
the appearance of spurious singularities, which are adherant
to Hulthen-Kohn methods. Actually, if' IC) is expanded as
in Eq. (14), one can show that the possible vanishing of the
determinant of (A '), Eq. (9b), is exactly the reason for
anomalies in Kohn's method as analyzed by Nesbet" (see
also Abdel-Raouf and Dube' and Abdel-Raouf' ' ). (The
absence and appearance of anomalies in both types of
methods are investigated in the work of Schwartz. ' )

In light of the above comments, we now consider the
Takatsuka-McKoy variational method. TM have investigat-
ed the functional F], Eq. (8), and realized that it is not free
of spurious singularities. [Note that the other fractional
functionals given by TM and their group (e.g. , Lee et aI. ')
were deduced by several previous authors (see, e.g. , Sloan
and Adhikari, 2'" Zubarev, " ' and Belyaev e~ al. ' ), and
can be developed from Eq. (1) by considering different
values for m~ and m2 as well as various forms of the
separating 1'unctions

I ( ') and
I
g') . ]

In order to avoid the anomalous singularities in F], TM
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proposed, instead, the following functional [Eq. (4.1) in

TM]:
inconsistency in TMVM. Furthermore, by using the identi-
ty

where

&sl vlc„&~„'"'(c„lvis),
ij =i

&c,[vis& &sl vlc, &Ft
&C, l(H —rX) IC, &

where X = V IS) (S I
V and t is arbitrary parameter different

than zero. If we take IC, ) = $," ~a, lc„&, the stationarity
of F[ gives, as pointed out by TM [their Eqs. (4.8) and
(4.9)], the following relations:

& c, l
v Is & &s I

v
I c,&

=
& c, lx ic,&,

we can express the inverse of Fi as

&c, lHlc, &

& c,lx ic, &

which yields the Euler equation

Hlc', ) =xlc, )

= &slvlc, & vis& .

Again, comparing Eq. (26) with Eq. (10)„we find

(24)

(25)

(26)

(~-'),, =&c„l&H —tx)lc„& . (18)

or

Hlc, &
= (I+«sl vlc, &) vis&, (19)

Takatsuka and McKoy indicated that 5F] =0 leads to the
(Euler) equation

(H rX&IC-, &
= VIS&

Ic& = Ic, & =i, lc, & .
&slvlc, )

(27)

In other words, Fi and (Fi ) ' provides two different
Euler equations, the first contains t explicitly and the other
does not. This peculiar characteristic of Takatsuka and
McKoy's functional does not show up in any of Schwinger-
type methods.

(II) By using the identity (24), one can easily write Fi as
where now

(20)

&c, lxlc, &

&c, lHlc, &
—r&c, lxlc, &

Substitution into Eq. (21) yields

(28)

Ft—
~

[tan(rr'"') ]rM = (S I
V IS ) +

1+ tF~i
(21)

Considering Eqs. (17), (19), and (21), TM deduced the
following conclusions: (i) All elements of IIC„)) can be
square integrable functions. (ii) [tan(rr'"')]rM is free of
anomalies, since F'~ is already forced to be free of poles.
(iii) The true resonances are characterized by [TM, Eq.
(4.13)) the equation

F[ ———I/t or (Ff ) '= —t (22)

We now provide the basis for our objections, mentioned
at the beginning of this work, to points (i)-(iii).

(I) Comparing Eqs. (10) and (19), we see that the Euler
equation of Fi leads to Schrodinger's equation (12), if and
only if,

The authors have correctly stated that X is a positive de-
finite operator and, therefore, t can be always adjusted to
guarantee that F[ is free of poles, that is to say (A ') of
Eq. (18), is nonsingular. Thus, assuming a given form lor
IC, ) at which (C, IH IC, ) has a spurious singularity, tX can
be used for shifting this singularity, leaving us with a non-
singular Fi. However, F i does not give the scattering
parameters directly. In order to calculate these parameters,
one uses the equations [see Eq. (4.11) in TM]

——, [tan(rr'"') ] = (S I
V IS)

+ &c, l vis& &sl vlc, &

&c, lHIC, &

(29)

Comparing Eqs. (15) and (29) we remark that (A)
[tan(71'"')]rM is identical with [ta (n'r"t')]x»„as long as
IC) and IC, ) are developed from the same basis set, since,
as it is also indicated by TM, F, (IC) ) is invariant with

respect to the exchange of IC, ) and IC). (Note that both
functions are now distinguished through their linear param-
eters. ) (B) [tan(q'"')]rM is independent of t (C) Consid. -

ering Fi, Eqs. (16)—(18), we notice that if the nonlinear
parameters involved in IC, ) are changed such that F~ is sta-
tionary and it happens that (C, IH IC, ) is singular, any
value of t (t ~ 0) can be used for shifting this singularity.
Clearly the resultant F'] is nonsingular. However, because
of remark (B), the spurious singularity of [tan(rr'"') ]rM
cannot be removed. It is obvious that if we employ these
components of IC, ) for developing IC) in Kohn's method„
Eq. (15), we again obtain the same sort of anomalies.
Equivalently, if [tan(71'"')]x»„ is singular for a given form
of components of IC), [tan(rr'"')]rM will be singular if'

these components are used for constructing IC, ). This fact
makes it seem, at least to us, that spurious singularities ap-
pear in TMVM as frequently as in Kohn's method.

(III) From Eq. (25), we deduce that the relation
lc &

= lc, & =x, lc,&,I+ r (s I vlc, )
(23)

(F[) (30)

where x, is a number depends on r Thus, IC, ). has to satis-
fy the boundary conditions. On the other hand, the weak
point of Eq. (19) is the arbitrariness due to the parameter t.
This can be removed if t is confined to additional (physical)
restrictions, which contradicts with the role of t as discussed
by TM and represents, according to our opinion, a source of

is satisfied at all zeros of (C, IH IC, ), which is the condition
of both true and spurious resonances of [ta (n'r"i') ]rM.
Since Eqs. (22) and (30) are identical, we conclude that
TMVM cannot be used for specifying the correct resonance.

Although the above theoretical arguments are sufficiently
rigorous, we now present our illustrative example for testing
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TABLE l. Variation of Ft and [tan(rtIt"')]rM with tt and r at

k = 1.0 and n = 3. /. 0—

0.5
1 ~ 5

2.5

0.5
1.5
2.5

0.5
1.5
2.5

—0.068 992 730 8
—1.035 920 30
—1.076 476 81

—0.064 539 943 9
—0.093 868 048 6
—0.097 184 494

—0.060 627 075 8
—0.085 812 954
—0.088 577 381 3

[ta n( rIt"t') IrM

0.484 559 052
0.553 757 651
0.561 868 952

0.484 559 052
0.553 757 651
0.561 868 952

0.484 559 052
0.553 757 651
0.561 868 952

0.0-

-/. 0-

0
-2.0-

-80-

their validity, namely, the application of TMVM to the
scattering of electrons by Yukawa's potential (2e '/r ). In
this case, the operator E —H is given (only s-wave is con-
sidered and atomic units are used ) by

d2
E —H=k + +2e "/r (31)

dr'

0.4 0.8 ]2
I I

/6 20
I I

Z4 28

FIG. 2. ~/ariation of [tan(qp"') j&M with o. at t =2 and k =0.5
a.u.

where k' is the energy of the incident electrons and
V = —2e '/r is the scattering potential. The trial wave
function is chosen to be

and

X; = r'i' (33c)

Id t"t) = Is) + Ic,),
where

S = (87rk ) '~ sin(kr )

(32)

(33a)

2.4-

/. 8— l=0

/. 2— f=2

0.6-

0.0-

-0.6-

C, = (8rr) tan(r) " )(1—e ')
t&,

+ g a;X;
—t 2 (n) cos(kr )

k 1/2

(33b)

o. is a free parameter and tan(q'"') and a s are variational
parameters.

In Table I, we give the values of' F[ and [ta ( n)I7')t]rM
calculated using Eqs. (17) and (21), respecti vely, when
r =0, i.e., when F't = Ft [see Eqs. (16) and (8)] at k = 1.0
a.u. , n =3., and several values of o. . The same table in-
volves Ft and [tan(r)It"')]rM for r = 1 and r = 2. It is clear
that while Ft depends on t, [tan(r)It"') ]rM is, as we deduced
above, totally independent of this parameter.

In Fig. l, we plot Ft as a function of ~ at n =2, k =0 5

a.u. and r ==0, 1, and 2. Obviously, F] possesses a pole at
o. ——1.3 which has been shifted at (= 1 and I =2. Figure 2,
on the otht:r hand, illustrates the variation of [tan(rtt't" )]yM,
at k = 0.5 a.u. , i = 2 and n = 2, 3, and 4, with the free
parameter ~. From this f'igure we notice that [ta (nIr)'t)]&M
has a singularity at n =2 and o. ——1.3, i.e., the same value
of o. at which Ft is singular. Considering the exact solution
of this scattering problem (see Abdel-Raouf"), we conclude
that this singularity is a spurious one and that TM VM can-
not avoid its occurrence. (A comparison between the best
phase shift:& obtained by TMVM and the exact ones is given
in Table Il. )

Finally, we would like to comment on Takatsuka and
McKoy's claim about the formulation of bounds for the true
value of (/ rt )

' [or (G', ), Eq. (6.2 ) in TM]. In order

TABLE 11. Con&parison between the exact phase shifts (in radi-
ans) and th variational ones obtained by TMVM and the least-
squares method ( Re f. 23) .

-/. 8-
05

I

/. 0 /5
I

20
I I I

2.5 3'.0 $5
k (a.u. )

0.5
1.0

gp exact

0.412 287 75
0.512 014 16

gp TM

0.4 I 2 29
0.511 97

r]p LSM

0.412 28
0.512 01

FIG. 1. Variation of F'[ with o. at k =0.5 a.u. and n = 7.
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that (F'j) ' satisfies a minimum principle, it is essential
(see Kato ) that H —tX + cX ) 0 (c is a constant) or
H+ (c —r)X ) 0, i.e., H+yX ) 0 for certain constant y.
However, X is a positive definite operator and 0 is, for arbi-
trary V a discrete nondegenerate operator of indifinite sign,
i.e., 0 has an infinite number of eigenvalues ranging from
—~ to +~ (see Abdel-Raouf'o). In other words, there is

no y ( & + ~ ) for which the previous inequality holds. If
such a y were existing, one would be able to find a solution
for Kato's auxiliary eigenvalue problem (for arbitrary V)
and, consequently, it would be easy to find bounds for E~&

using Kato's inequality (see also Hahn, O' Malley, and
Spruch, 25 Kolker26 and Abdel-Raouf'o). Indeed, the fact
that 0 possesses infinite number of negative and positive
eigenvalues makes it impossible, at least to us, to find the y
for which the preceding inequality always holds, even if 0 is
a bounded operator and 0—tX is free of poles.

I am extremely indebted to Professor J. W. Darewych,
Professor R. P. McEachran, and Professor A. D. Stauffer
for fruitful discussions as well as their invaluable help and
hospitality during my stay at York University.
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