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The influence of the attractive part of the potential in the Weeks-C". handler-Andersen perturbation theory
is tested in a molecular dynamics calculation. The simulation was carried out at the triple point of a

Lennard-Jones system. The differences (not negligible) in the radial distribution function permit the use

of perturbation theory. because the thermodynamic properties show the usual linear behavior.
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and the attractive LJ forces are expressed using the X ex-
pansion
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The force changes from repulsive to attractive at
r = 1.12o-.

This separation gives a decomposition of the Helmholtz

TABLE I. Thermodynamic properties obtained from the expres-
sions (6a) and (6b) .

Recently Weeks and Broughton' performed computer
simulations in two and three dimensions in order to show
the accuracy of the van der Waals model in the region of
liquid-solid coexistence near the triple point, and also the
application of this model to the melting transition of the
two-dimensional Lennard-Jones solid. In this model, the
structure of a dense fluid or a solid near melting is assumed
to be determined by the strong repulsive forces (so-called
reference system), so that the attractive forces fix the
overall volume of the system. This idea was used by
Weeks, Chandler, and Andersen' (WCA) to develop a per-
turbation theory of liquids in which the attractive part of the
potential is treated as a perturbation. This theory was later
tested by Verlet and Weis. The X expansion in this theory
implies that the radial distribution function (RDF) is re-
placed by that obtained in the reference system. The inter-
molecular pair potential can be separated into a strong
repulsive short-range part up(r ) and the weaker long-range
attractive part u (r ).

The particles repel each other with repulsive Lennard-
Jones (LJ) forces corresponding to a WCA potential

free energy per particle'
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where g„(i ) is the RDF in a partially coupled system with

pair interactions

co„(r ) = up(r ) + P u (r ) (4)

Using E(q. (4) we can calculate directly from the energy
equation, the expression
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and from the virial equation
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TABLE 11. Values of the integrals corresponding to the expres-
sions (Sa) and (Sb), where

l~ = (p/2) f d r h. u(r)g (r)p
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and
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Here A p is the free energy of the reference system [parti-
cles interacting by up(r ) ], and n(Pp) c,an be written as

—n(p, p) = — d r u (f )gp(r )
1

2
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0.00
0.25
0.50
0.75
1.00

0.695 + 0.001
0.700 + 0.002
0.697 + 0.003
0.697 + 0.003
0.696 + 0.006

6.16 + 0.03
4.88 + 0.03
3.52 + 0.04
2. 12 + 0.03
0.74+ 0.04

0.693 + 0.002
—0.874 + 0.002
—2.465 + 0.002
—4.063 + 0.004
—5.665 + 0.005

0.25
0.50
0.75
1.00

—1.5234
—3.0468
—4.5703
—6.0937

I2

—0.0160
—0.0511
—0.9049
—0.1411

1.1823
2.3645
3.5474
4.7302

l4

0.1099
0.2917
0.5047
0.6699
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I IG. 1. Differences between the RDI='s (in reduced LJ units).

In the %CA theory, the last terms in Eqs. (3) and (5) can
be ignored because g&(r) —go(r) is considered zero. This
permits calculation of the thermodynamic properties only
knowing the RDF of the reference system, and it is found
that E& and P& are linear in A. . The goal of this Brief Report
is to check this assumption in perturbation theory for dense
fluids. We have followed the same technique that has re-
cently been used in simulations of the solid-fluid interface
at the triple point (or close to the triple point) ~ These cal-
culations were carried out for different strengths of the pair
interaction by gradually bringing in the attractive forces. By
using this technique, one approaches the triple point asymp-
totically, and at the same time, obtains information about
the influence of the forces on the structure and thermo-
dynamics of the fluid close to the triple point; therefore,
one circumvents the difficulties of determining the exact tri-

ple point.
We have performed molecular dynamic simulations in

three dimensions for different values of A. (A. = 0, 0.25, 0.50,
.75, I). Our computer experiments were carried out near

the triple point (p = 0.844, T = 0.7, in reduced LJ units),
running 10000 time steps for A. = 0.25, 0.50, and 0.75, and

P= —kT=N 1

V 6N i i&i (j

E 1

N 2N i ~&i
(6b)

energy per parti-The thermodynamic data (pressure and ene
cle) are shown in the Table I (all are expressed in reduced
LJ units .

As one can see, the behavior is linear, in agreement with
perturbation theory, and one can conclude that E (5
and (5b'an ( ), the terms which include the differences between
the RDF's can be ignored.

We have also calculated the second term of Eq. (2) with
Ar =0.02 using Eq. (3). In the Eq. (3) we have two terms

20000 time steps for X=0, and 1. The number of particles
was N = 504 and the range of the potential r, = 2.5a. .

Every 1000 times steps the RDF, temperature, pressure,
and potential energy per particle were obtained in order to
calculate the root-mean-square (rms) deviation with respect
to the time average, using the expressions
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FIG. 2. Inte raIntegrand of the integral of the last term in (3), 4mr u (r ) [ (r )—in, mr M r g~ r —gp(r)], as function of r (in reduced LJ units).
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FIG. 3. Integrand of the integral of the last term in (Sa), 4mr cu„(r) [gz(r) —g0(r)], as function of r (in reduced LJ units).

for n(P, p). The first is calculated using the RDF of the
reference system; the value obtained is 7.220. The second
is obtained from the differences of the RDF's, obtaining a
value of 0.033, being of the same order as the fluctuations
(rms) in the thermodynamic functions.

However, from the microscopic point of view, we think
there are slight differences. The RDF's for the different
values of A. are different from the RDF of the reference sys-
tem, and so we then calculated the influence of these differ-
ences on the integrals (3), (Sa), and (Sb).

In Fig. 1, one sees that these differences in all cases are
much larger than the fluctuations in the time-averaged
RDF. The statistical error in the RDF is estimated to be of
the order of 0.01.

These differences play a role that cannot be ignored. The
values of the integrals for the different values of X of Eqs.
(Sa) and (Sb) are given in Table II. There the integrals cor-
responding to the last terms of Eqs. (Sa) and (Sb) are
larger in all cases than fluctuations of the energy and pres-
sure, but fortunately they preserve its linearity.

We show in Figs. 2, 3, and 4 the integrands of the in-
tegrals of the last terms in (3), (Sa), and (Sb), respectively,
as a function of r.

But the linearity of the thermodynamic functions in A. re-

quires only that in Eq. (3), the second term must cancel.
One can:see in Fig. 2 that in the integrands 4rrr'u(r)
x [g~(r ) —ga(r ) ] the positive part is canceled by the nega-
tive part.

Furthermore, we have calculated the structure factor for
all values of X:

S(k) = I+ph(k)
where h (k ) is the Fourier transform of h (r ) = g (r ) —l.

The results show peaks for same value of k, but with dif-
ferent values of S(k), so as h. increases, the first peak in-
creases linearly from S,„(k)„=a=2.0586 to S,„(k)„=t
= 2.1630.

Our computations lend further support to Weeks and
Broughton's use of perturbation theory for the melting tran-
sition, ' be".ause the linearity of the thermodynamic proper-
ties is maintained without needing to assume that the
RFD's are equal. As they conclude, "In 2D as well 3D the
van der %'aals picture should aid our understanding of the
melting tr;insition, and of the structure of the fluid and solid
phases. " This model has recently been used to study the
order of tlute transition.

The data of RDF's and the structure factor can be ob-
tained from the authors.
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FIG. 4. Integrand of the integral of the last term in (Sb), 47rr cu'(r)[ (r) — ( )]gq &
—g0 r ], as function of r (in reduced LJ gnits).
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