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This paper is concerned with the liquid-expanded (LE) —liquid-condensed (LC) transition in

monolayers of amphiphilic molecules at the air-water interface. A model, which can be mapped
into the Blume-Emery-Griffiths Hamiltonian, has been considered before within the (mean-field)

Bragg-Williams approximation and it gave results which could be successfully compared with exper-
iment. The LE-LC transition has been associated with a chiral-symmetry breaking of the
hydrocarbon-chain defects. This model is treated here with a Migdal-Kadanoff approximate
position-space renormalization group. Renormalization-group flows are consistent with those ob-

tained by previous authors. The conrlection between experin&ental and Hamiltonian parameters is

easiest for a particular choice of ensemble, which turns out to be rather subtle for this problem. As
in the work of Lavis, Southern, and Bell, isotherms in the surface-pressure —molecular-area plane do
not show a signature of the LE-LC transition. The better agreement between experiments (showing

a compressibility jump at the LE-LC transition) and mean-field theory suggests that in these cases
long-range forces depending on the nature of the polar head and on the water substrate pH are re-

sponsible for the jump.

I. INTRODUCTION

Monolayers of simple amphiphilic molecules (e.g. , fatty
acids or alcohols) at the air-water interface, exhibit a
variety of phase transitions. One of these, at relatively
high surface density, is the so-called liquid-expanded (LE)
—liquid-condensed (LC) transition. A similar transition
also occurs in more complex systems, such as those con-
taining molecules with two hydrophobic chains (phospho-
lipids and lecithins), two polar heads (hydroxyhexade-
canoic acids, abbreviated HHA in the literature), or
discotics (BH-n). In this paper we present a position-
space renormalizatio~-group study (PSRG) of the LE-LC
transition in the simplest amphiphilic monolayers.

In contrast with the gas-liquid transition in monolayers
whose experimental study is extremely difficult, the LE-
LC transition offers the advantage of being relatively easy
to observe. Since, moreover, the nature of the LE-LC
transition is not yet completely clear (in particular the or-
der of the transition is still a subject of controversy), this
type of system has been subjected to a large number of
theoretical as well as experimental investigations. '

Experiments have shown that the LE-LC transition is
not an artifact caused by a small spreading pressure and a
crossover to a three-dimensional state. However, a piece
of perfectly horizontal isotherm in the surface-pressure
(H) —molecular-area (0.) diagram, which is the unmistak-
able signature of a first-order transition, has never been
observed despite very careful experimentation where the
return to equilibrium of the system was monitored at each

point through relaxation-time measurements. - Even the
recent experiments of Von Tscharner and McConnel and
of Losche, Sackmann, and Mohwald have not allowed
clear conclusions to emerge. Indeed their very clever mi-
croscopic observation technique of phopholipid mono-
layers, which is based on fjuorescent probes, has led these
groups to contradictory results. The first one does not
find anything which can support the hypothesis of a
first-order LE-LC transition, while the second group has
found evidence for domains, a characteristic of phase
coexistence.

Finally, the results of Bois et al. , who have systemati-
cally studied surface-pressure relaxation times, are quite
clearly in favor of a continuous (so-called "second-order" )

transition: indeed, these times, measured along H-cr iso-
therms, become very important near the transition, as one
would expect when there is critical slowing down. More-
over, Bois has never obtained a horizontal isotherm seg-
ment, even when sufficient time was allowed for return to
equilibrium. Note also that the experiment was per-
formed below the spreading pressure and that there was
no leak of the surfactant.

The model whose predictions most closely resemble the
observations is in our opinion that recently suggested by
Firpo, Legre, Bois, and Baret iFI.BB). In the present pa-
per we use a more sophisticated method to study their
model and we extend their conclusions. Let us then dis-
cuss the FLBB model in a bit more detail. Firpo eI. al.
use the fact that, close to the LE-LC transitions, kinks in
the hydrophobic chains are by far the dominant type of
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defect. They then propose to keep two molecular states of
different helicity, kink (+) and kink ( —}. In the broken-
(chiral-) symmetry phase, one of the moelcular states is
more populated and the area per molecule is smaller since
molecules in the same state can partially overlap.
Lattice-gas sites can be vacant or populated by one of the
two species. The model can thus be mapped into a spin-1
problem. FLBB use mean-field theory to draw their con-
clusions. Despite the important simplifications contained

in all of the above hypothesis, the results obtained by Fir-

po et al. are qualitatively very satisfactory. For example,
using parameters (interaction energy, intrachain entropy,
molecular area, etc.) taken from the literature, they

correctly reproduce (see Fig. I) experimental isotherrns

obtained with a monolayer of pentadecanoic acid. More-

over, this model can be extended to study the evolution

along isotherms of surface-pressure relaxation times: the
results obtained there agree as well with experimental

data.
In two dimensions when short-range forces only are im-

portant, a mean-field solution is usually inadequate. We
thus present in this paper an approximate
renormalization-group solution of the model of Firpo
et al. Up to now, PSRG solutions for monolayer models
are due to Lavis, Southern, and Bell (LSB}and to two of
us (AT). The former group proposed a spin-1 model
based on the cooperativity of molecules without defects
(transbonds only) where there is no decrease in area or in

entropy per molecule when neighboring molecules are in
the same state. They use a "majority rule"
renormalization-group technique in the tradition of
Niemeijer and Van Leeuwen. The 1atter group on the
other hand was looking for a nematic-type transition with

a coupled spin- —,-XY' model within the Migdal-Kadanoff'

(MK) approximation. The spin- —,
' variable accounts for

molecules with and without kinks, the former ones having
also an orientational (XY'} degree of freedom. Both of the
above groops obtain a continuous phase transition without

jump or rapid change in the isothermal compressibility.
It is legitimate to expect such a jurnp, or at least a rapid
compressibility change, from a Firpo et al. type mode1

which introduces area and entropy decreases for neighbor-
ing molecules which are in the same state.

In Sec. II we show how our problem is related to the
Blume-Emery-Griffiths' (BEG} Hamiltoman. PSRG re-
sults on t.hat model were obtained by Berker and Wortis"
(BW} and Adler, Aharony, and Oitinaa' using
Niemeijer-Van Leeuwen-type techniques, by Kaufman
et al. ' who worked with the MK approximation, and by
others (see, e.g., Ref. 13 for more references). In Sec. III
we discuss the PSRG technique and our results are corn-
pared with those of the literature. The choice of ensemble
necessary to connect Hamiltonian parameters and experi-
mentally measured quantities turns out to be somewhat
subtle in our case. This problem and our results are dis-
cussed in Sec. IV. Finally, Sec. V summarizes experimen-
tal and theoretical results and draws conclusions. The
Appendix presents an alternate discussion of the choice of
ensemble.

II. THE FLBB MODEL AND ITS RELATION
TO THE BEG MODEL

A. The FLBB model

This three-state model simulates the behavior of simple
molecular monolayers in the vicinity of the LE-LC transi-
tion. In the range of molecular areas where the transition
occurs, the most frequent intrachain defects are kinks.
The model thus uses as basic molecular states a plus state
whose defect configuration going up the chain is gauche
(+ ) trani-gauche ( —} and a minus state with configura-
tion gauclIie ( —) trans-gauche ( + }. These two configura-
tions have a different helicity and one cannot go from one
state of the molecule to the other by a simple rotation
(contrary to what the intentionally schematic Fig. 2 might

suggest): there is an energy barrier between both configu-
rations. Phe third state accounts for vacancies.

The above states are represented by eigenvalues of
operators S; associated with each site: S;=+I for the
plus stat», S;= —1 for the minus state, and S;=0 for a
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FIG. 1. Surface-pressure (B in dyn/crn) —molecular-area (o.
in A~) obtained for the FLBB model within mean-field theory
for temperatures (1) 310 K, (2) 303 K, (3) 296 K, (4) 289 K, (5)
282 K, and (6) 275 K.

FIG. 2. Schematic representation of various molecular con-

figurations introduced in the FLBB model with their associated

area and r[umber operators. Note that (+ ) and ( —) states have

a differen t helicity and cannot be transformed into one another

by a simple rotation. (a) A pair of (+ ) kinks [X++ of these

pairs, each of which occupies an area (4——, )cro]. (b) Kink (+ )

(N+ of them each of area 2o.p). (c) Vacancy (%0 of area vo.p).

(d) Kink ( —) (}V of area 2oo). (e) Pair of kink ( —) [N of

area (4—-; )era].L
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vacancy. This choice of basic molecular states lead FLBB
to include the possibility of a decrease in area per mole-
cule when neighboring rnolecules are in the same state
since molecules with the same helicity can overlap more
easily &han rnolecules of opposite helicity. Hence, to each
site of the lattice corresponds an area which depends on
the occupation of the site and of its neighbors. Similarly,
the cooperative nesting of two chains limits their configu-
rational phase space and thus a decrease in the intrachain
entropy is possible depending on the occupation of a site
and of its neighbors.

The energetic and entropic parameters used are
the attractive interaction energy between arbitrary
nearest-neighbor molecules;

~

b,co ~, the additional attrac-
tive interaction energy between nested nearest-neighbor
molecules in the same state; AE, the excitation energy of a
molecule in either the + 1 or —1 state; AS, the internal
entropy of the + 1 or —1 states whose defect is free to

move along the chain; a, a positive coefficient which de-
scribes phenomenologically the entropy loss of a nested
pair of molecules in the same state; 20.O, the area of an iso-
lated molecule; vo.o, the area of a vacancy. The total in-
trachain entropy AS, may thus be written

4s =ds[N++x —a(x+++N )]—,
—

(2.1)

A =cT [2(%++X )+VX ——', (%+++X )] . (2.2)

For a temperature T and a surface pressure H, FLBB thus
worked with the following thermodynamic potential:

where 0(a ( —,
' for a triangular lattice and where N+ is

the number of rnolecules in the plus state while N++ is
the number of pairs of molecules which are both in the
plus state. The total area A of the rnonolayer on the other
hand is

H Tss, +—ll~ =
~

~ [(++++++-+x-+++--)—
[
a~

~

(w+++w )+aF(x-+-+zv )—
—T SS[X++X-—~(++++X--)]+ll~, [2(X++X-)+vX' —-(X+++W --)] . (2.3)

B. Relation to the BEG model

The following occupation-number operators are defined
for each site i: —,

' (S; +S; ) for a plus state, —,(S; —S; ) for
a minus state, 1 —S; for a vacancy. With these operators,
one can write the following expressions for the number of
molecules and the number of pairs (bracketed indices run
over nearest-neighbor pairs):

—aT hS

[Hoo(2 —v) +EE—T BS],1

kgT

(2.7a)

(2.7b)

(2.7c)

x++ =-,' g(s,-'+s, )(s,'+s, ),
&ij&

x--=-,' g(s,' —s, )(s,' —s, ),
&ij&

x+-+x-+ = —,
' g [(s,'+s, )(s,' —s, )

&ij &

+(S; —S;)(S, +S, )],

If we set

H+HA —TBS,
A =—

k~T

then with Eqs. (2.3) and (2.4) we find

~=regs, 's,'+Jgs, s, —sgs, ' —Mg l,
&ij& &ij& i i

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

(2.5)

(2.6)

M =Hoov. (2.7d)

Equation (2.6) is the BEG Hamiltonian. Note that 5 is
conjugate to the number of molecules and M to the num-
ber of sites. To draw isotherms, we want to keep the
number of molecules fixed and let the volume vary ac-
cording to the state of the molecules and to the number of
vacancies (or sites). This is a nontrivial problem which we
discuss in Sec. IV. In the meantime, we study Eq. (2.6) in
the standard way to compare with other PSRG results.

III. RENORMALIZATION-GROUP FLOWS
AND FIXED POINTS

We use the Migdal-Kadanoff approximation on a tri-
angular lattice. ' ' Bonds are moved in the standard way.
There are, however, two popular ways of treating single-
site terms. In one of them (the Emery-Swendsen pro-
cedure), single-site terms are not moved, while in the other
procedure, single-site terms are shared equally among
bonds and then moved. The first method has the advan-
tage that it is exact for J =E =0. The second method on
the other hand has the advantage that the results are in-
sensitive to redefinitions of the S; which mix single-site
and bond parameters. '

We have investigated results obtained from both pro-
cedures. The fixed-point topology is similar in both cases
but exponents are different. We discuss briefly the fol-
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Z'=Z

4n(1+2
'6

1+zw (u'+u )

1+2z

(3.1a)

(3.1b)

1+zw (v +u )
(3.1c)

1+2zw
(1+ 2zw )[1+zw (v +v '}](1+2z)'

[1+zw (u +u )]
where c=e, z=e, U=e, w=e .—E —LL J K

Since we are interested mainly in the LE-LC transition,
only a small subset of renormalization-group (RG) fixed
points are of interest to us. Furthermore, the BEG model
has been exhaustively studied in the literature" ' ' (see
Ref. 13 for further references). Hence we limit ourselves
in this section to an outline of the general behavior of the
RG flows and to the properties of a few of the fixed
points of interest to us, making only a few comparisons
with the literature. We follow the notation of Berker and
Wortis. "

The surfaces appearing on Fig. 3 separate the gas,
liquid-expanded (LE), and liquid-condensed (LC} phases
corresponding, respectively, to the paramagnetic ( —),
paramagnetic (+ ), and ferromagnetic phases of BW.
The phase sink fixed points corresponding to each of these

(3.1d)

1owing recursion relations which were obtained with the
Emery-Swendsen procedure:

K ——J gS;,
2 2

(3 2)

where y is the lattice coordination number. Here y =6, so
for K».l and J»1 (which imply S;=SJ, S; =SJ ),
5=3J+3.K appears as a planar domain for discontinuity
fixed points. One can indeed verify that zU w =1 is in-
variant under iteration of Eqs. (3.1) for large values of 6,
K, and J. The line K =J g~ 1 is an invariant subset of the
above surf ace.

The pla:[ie with long-dash lines which separates the LC
and gas p'. Itases is part of the b, -3(J+K)»1 plane. It
intersects the critical surface described previously on the
TOP tricritical line. The point To in the Blume-Capel'

phases are ( J*,K', 6*)=(0,0, &0) for the gas, (0,0, &0)
for LE, and (ac, ln2 —J,—ac } for LC. In the first two
cases, one can check directly from the recursion relations
that the b axis is a line of fixed points. We find the posi-
tions of the separatrices with a precision of 10 from
diverging renormalization-group flows.

When d, ~g —1 we recover the two-dimensional Ising
model with a critical point at J =0.305. The surface in-
dicated by solid lines in Fig. 3 is a surface associated with
continuou~; transitions (critical surface).

The BEG Hamiltonian may be written in the form

0.9

0.6

0.3
, P

2

K
FIG. 3. Overview of renormalization-group flow separatrices in the (J,K, h) ~pace. Solid line, surface of continuous transitions be-

tween the LE phase (below) and the LC phase (above). Short-dash line, surface of first-order transitions between the LE and gas
phases limited below by the first-order Griffiths line (slightly curved here) and limited above by a line of critical end points terminat-
ing at P, a special tricritical point such that J~ =0.47, K~ =1.14, Ap =5.88. Long-dash line, surface of first-order transitions LC-gas
accompanied by a broken symmetry. [This is the 6—3(J+K}plane which terminates for J & Jp on the line of critical end points PL
and for J & Jp on the line of tricritical points TOP. To is the tricritical point of the Blume-Capel model in the K =0 plane. ] G is the
Griffiths-Onsager critical point. For more details, see, for example, Berker and Wortis, Ref. 11.
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plane %=0 is at Jz ——1.97, Aq ——6.08. Under this line,
one cannot distinguish the LE and gas phases.

The PGF2L surface defi~es a first-order transition be-
tween the gas and I.E phases. It is limited in the J =0
plane by the line GF2. Griffiths has shown that on that
line one recovers the Ising Hamiltonian since after the
change of variables 5; =(t;+1)/2 one obtains

(3.3)

J) ———,Ht ———,(3K —5+ln2) .K

The ln2 term has an entropic origin. It compensates the
decrease in number of configurations when one goes from
three to two possible states on each site. Point 6 can in
principle be deduced from Griffiths's symmetry [i.e., from
Jt ——0.305, Ht ——0 (point C) and from Eq. (3.4)], but that
symmetry is not preserved by the MK approximation. '

Since Griffiths's symmetry is not exactly satisfied, the re-
sult 6=3X + ln2 for the intersection of the first-order
surface with the J =0 plane holds only for 6& 5; devia-
tions from 5=3E+1n2 occur for 6 & 5. The I'I line is a
line of critical end points. The coordinates of I are

030» SCz=~ ~z=3Xz+JI. +ln
Figure 4 gives more precisely the phase-separation line

as a function of E. The intersection between two lines of
first-order transitions (dotted lines) and a line oII continu-
ous transition (solid line) is a critical end point, while a

continuous and first-order line join smoothly at a tricriti-
cal point. The latter case occurs for values of K smaller
than that corresponding to the point I'. Note that the
dash-dotted line is the locus of critical end points or tri-
critical points for various values of K [E is a constant
along any other (dotted or solid) line].

The shape of our PSRG flows are qualitatively the
same as those of BW" and of others. ' More quantitative
comparisons are also possible. For example, on a triangu-
lar lattice Adler et al. ' find with a PSRG different from
ours that their Ising critical points are at J=0.365 while
ours are at J =-0.305. For exponents, a comparison be-
tween results obtained on different types of lattices is
valid.

Table l compares a fevv of our exponents (first column)
with published results. The second of each pair of ex-
ponents quoted under LAFT (this work) are obtained on a
triangular lattice by moving bonds as well as single-site
terms. It is for this latter case that the agreement with
the work of Kaufman et al. ,

' for example, is best. These
authors have used the MK approximation with moving of
single-site terms but they worked on a square lattice.
They have also noted differences between the exponents
obtained from single-site moving and from the Emery-
Swendsen procedure. In our case, the main difference is
that the exponent y6 is irrelevant in the former approach
and marginal in the latter one. Our main conclusions are
insensitive to this difference. The calculations presented
in Sec. IV use the equations (3.1) derived from the
Emery-Swendsen procedure.

I
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I sK-3I

+SW R lgggg ~ ~ ~ ~ e eae e ~ ~
0 Saela 4Wte~e em e ~I
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I
I

FIG. 4. Evolution of the phase boundaries for various values of the parameter K. Solid lines, continuous transitions. Dashed
lines, first-order transitions (between LE and gas below the intersection with the solid lines and between LC and gas above). The
dash-dotted line is the locus of intersection points between first-order and continuous transitions. The value of K changes along this
lane which corresponds to tricritical points above the point P and to critical end points below it.
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TABLE I. Exponents for a few fixed points. Comparison of exponents corresponding to a few fixed
points, C, L, and G, relevant to this work (LAFT). BW is Ref. 11, LSB is Ref. 6, and KGYF is Ref.
13. Exactly known results are y2

——1 at points C and G and y4
——1.875 at point G. The second number

in the LAFT column was obtained by moving sites to derive the i ecursion relations. The exponent y6 in
this approach was calculated by using, for example, e at point C as a scaling variable (e.g. , see Ref. 11,
Table III caption).

LAFT

Point C
LE-LC

LSB KGYF LAFT

Point L
Gas-LE-LC

BW LSB KGYF

X4

0.747
0.747

0.726

—1.04

0.638

&0

0.747 0.7~~7

0.7&i7

0.727 0.638 0.747

&0 &0

IV. CHOICE OF ENSEMBLE
AND CALCULATION OF ISOTHERMS

A. Choice of ensemble and method of calculation

Even though average thermodynamic quantities are in-

dependent of the choice of ensemble, the relationship be-
tween real physical quantities and Hamiltonian parame-
ters defined on a lattice gas is more natural in a particular
ensemble. In the usual lattice-gas approaches to gas-
liquid transitions, for example, the volume associated with
each lattice site is fixed and the average occupation is con-
trolled by a chemical potential. In other words, the grand
canonical ensemble is the most natural choice. If one is
confronted with a problem at close packing where the
volume occupied by a molecule depends on its internal
state, then the isothermal-isobaric ensemble is more con-
venient. The number of sites is fixed and equal to the
number of molecules. Here we are faced with a situation
which borrows certain aspects from both of the above
problems since we have vacancies which are most easily
treated within the grand-canonical ensemble while the
volume change associated with a change of molecular
state is most easily treated within the isothermal-isobaric
ensemble.

Suppose we start from the isothermal-isobaric ensem-
ble. Then one wants to compute (with p= 1 lk+T and p
the chemical potential)

pending on the spin configuration so that the number of
molecules is fixed. This is extremely difficult. Since, in
any case, physical quantities depend only on N/N„we let
the number of molecules vary and fix the number of sites.
This means that we can instead consider

0=1
i T ( + @ +""')] (4.3)

where we now have a lattice with a fixed number of sites
and the i:race over spin configurations corresponds to
varying numbers of molecules. If any two of the intensive
variables, T, H, p, are given, the other one must be calcu-
lated so tjIiat Eq. (4.3) is satisifed. In practice, we fix T
and H and determine p. To draw isotherms, the area per
molecule o is determined numerically from (see also the
Appendix)

Bp—I7
N BH

(4.4)

0= ln [Tr~ exp(H )], (4.Sa)

Note that Eq. (4.3) can also be derived by taking the
grand-canonical ensemble as a starting point instead of
the isothermal-isobaric ensemble. The Appendix gives an
alternate derivation of Eqs. (4.3) and (4.4).

Using Eqs. (2.3) and (2.6), Eq. (4.3) takes the following
more explicit form:

P
—11 [T ( P(E+IIA))]— (4.1) where

where F=H —TAS, with H and AS, defined in Eq.
(2.3), while A is the surface operator and Trz represents a
trace constrained to a fixed number of molecules N.
Equation (4.1}may also be written in the form

H =RES;S)~+JQSSJ DgS; M+1- —
(ij ) (ij) i i

(4.5b)

O=ln[Tr~(e~& e ~' + ~'}] . (4.2)

Within our spin model, however, a trace over all spin con-
figurations at fixed number of sites N, contains configu-
rations with different values of N. Instead, to evaluate
Eq. (4.2) we should consider a variable number of sites de-

D=,h—
kgT

(4.5c)

If we let a superscript in parenthesis number the itera-
tions perf'ormed we have
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In[TI,g «p(H )]

(4.6)

where Xg =X~/6 with d =2 the dlmensI[on of th(c sys-
tem and 6 =2 the length rescaling. %'hen n is large, we

are in general in the neighborhood of a phase sink fixed
point where H '"+"-H '"'-H*. Then (with b"=4)

(n[Tr~ «p(H)j ~(nt (~[T~g~~~(«P
5 S+

b Nd X,
(4.7)

In the limit where the number of iterations is large

X,'" ~~A, and since 0* is not singular, the last term is

completely negligible. Since H has the same form as W
in Eq. (2.6), the recursion relations also have the same
form. IH particular, from Eq. (3.la) wc deduce that

g(ll +1) 4E(tt) 3 l ( 1 +2+(PI) )

Iterating and combining with Eq. (4.7), we find, with

n —1—(~[T~(«p&)] = )im —3 g, ,
(n((+2z ")n-~, . o

4'+'

The value of IM which makes this expression vanish is

equal to the chemical potential corresponding to H and T.

8. Results for isotherms

TABLE II. Hamiltonian parameters. Nunierical values of
the parameters entering the Hamiltonian Eqs. (2.3), (2.6) and

(2.7). The first four parameters are in units where k& ——1, o.o is
0

in A, and ~ and a are dimensionless.

~co~ (Ace~ b, E ES o.
p v a

216 522 500 3.5 22 2 0.4

The method described above does allow us to obtain

physically sensible isotherrns, as pictured in Fig. 5. But,
contrary to the results obtained within the mean-field ap-
proximation for the same model, there is no break point
and hence no compressibility jump at the LE-LC transi-
tion.

Let us briefly describe the renormalization-group fjows
as we increase the pressure along an isotherm.

(i) At low pressures one iterates towards fixed points
along the 6 axis with finite values of A. Using energetic
and entropic parameters (Table II) which are considered
as realistic (the same as those of FLBB), we go continu-
ously from 6~0 to 6 ~0. There is thus no first-order
transition along the isotherm. Within this PSRG treat-
rnent, we also never obtain a gas-LE or gas-LC first-order
transition: If we choose points in parameter space where
these transitions are possible (J «0.3, K g 2 for gas-LE)
the chemical potential seems to evolve in such a way that
5 never takes a value large enough to reach the gaseous

FIG. 5. Surface-pressure —molecular-area isotherrns obtained
within the PSRCr techniqaie f'or various temperatures as in Fig.

(l) 303 K, (2) 296 K, (3) 289 K, (4) 282 K, (5) 275 K. The pa-
rameters for the calculation are the same as those used for Fig.
l and are given in Table II. The dots are critical points. There
is no obvious change in the compressibility near the transition.
This is discussed in the text.

phase. Our lattice-gas model is in fact an inaccurate
description of the very dilute phase.

(ii) At higher pressures the parameters converge to-
wards the LC phase sink fixed point
( J',K', 6*)=(+ ~, —oo, —oo ). We thus obtain the LE-
LC transition, but as can be seen from Fig. S, there is
nothing which can be interpreted as a rapid change in
compressibility at the transition. Such a change, if any,
would have to come from the nonsingular part of the free
energy. A theoretical discussion on this absence of signa-
ture at the transition on the isotherms is given by LSB.
We present additional remarks on this subject in Sec. V.

V. ANALYSIS GF THE RESULTS
AND COMPARISON WITH EXPERIMENT

A.. Theoretical results

By using the renormalization group to study a simple
model we have implicitly assumed the validity of the
universality hypothesis for this problem. It is thus not.urprising to find that our results, close to a transition, are
almost identical to those of LSB. Indeed, whatever the
details of the model, the critical exponents which govern
the behavior of the isothermal compressibility on either
side of the transition should be the same when the dimen-
sionality of the system and order-parameter symmetries of
the Hamiltonians are identical. Note, however, that we

have not identified physical observables in the same way
as LSB, but our definitions are presumably not different
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enough to lead to effective exponents which markedly
differ from those of LSB. In particular, the exponent in-
equality which they use to explain their results must also
be satisfied in our case. More specifically, they point out
that a simple extension of the Nienhuis-Nauenberg argu-
ment for order-parameter discontinuities at phase transi-
tions shows when one can expect a diverging, jumping, or
smoothly behaving compressibility at the transition. The
result is that if y is the leading exponent to which the
pressure field is coupled, then the necessary condition for
each of the above behaviors is, respectively, y &d/2,
y =d/2, and y &d/2. One must account for the fact
that within our model Eq. (A8) is used to compute the iso-
therms but since Bp, /Bp is not singular at the transition,
the above argument is still valid. (p, is a "site" chemical
potential. See Appendix. )

In our case, one can check from Eqs. (2.7) that the pres-
sure field couples to all eigenvectors. Hence, the smooth
behavior which we find at the transition is explained by
the fact that the LE-LC transition is in the Ising univer-
sality class represented by the fixed point C which (Table
II) has its largest exponent smaller than d/2. It is con-
ceivable, however, that a more accurate treatment of our
model would yield results in better agreement with experi-
ment. That could come about in two ways:

(i} The exact relevant exponent for the Ising transition
we are interested in is the Onsager result y=1=d/2.
Hence a jump in the compressibility could occur (y = I is
not a sufficient condition).

(ii) Far from the transition, results are nonuniversal and
can rnirnic on a coarse scale the appropriate change in
monolayer compressibility. To obtain such background
nonuniversal terms, however, series expansions are more
accurate. A more detailed model may also be required far
from the transition.

The following discussion of experimental findings and
the very good results of mean-field theory suggest anoth-
er conclusion.

B. Comparison with experiment

(i} LE-LC transitions in the historical sense of the term,
i.e., a break point on the isotherms, occur in simple am-
phiphilic molecules. For that type of molecule sizable re-
laxation phenomena of the surface pressure occur near the
transition and disappear far from it, as was shown recent-
ly by Bois et al. for fatty acids. That kind of
phenomenon is probably responsible for the hysteresis ob-
served by Tabak, Notter, Ultman, and Dinh' on dipalmi-
toyls lecithins. Increased relaxation times close to a tran-
sition can show up as hysteresis, even though the transi-
tion is not first order.

One must also account for the fact that to limit the
desarption of molecules in the bulk of the water support,
experimentalists must work with low-pH substrates. As
long as unshielded molecular dipoles are not perpendicu-
lar ta the surface, they have a nonzero component in the
interface plane. This parallel component is partly respon-
sible for the attractive part of the interaction. Indeed, if
one assumes a hexagonal array of ferraelectrically ordered

dipoles, one finds that the attractive part of the dipolar in-
teraction dominates when the angle between the dipoles
and the interface is less than 35.3 deg. '

Note also that for 1/r attractive interactions, the mar-
ginal dimension for which Landau theory applies is two.
(For short range forces such as interchain Van der Waals
coupling, the marginal dimension is four. } Hence when
dipolar farces dominate, it is not surprising that mean-
field theory predicts isotherms which are in agreement
with expejiment. Indeed, long-range attractive forces in-
crease the cooperativity of the transition, leading probably
to a break point, or at least to a relatively rapid change, in
the isotherms at the transition. This effect is well simu-
lated by the Bragg-Williams approximation. So, for mole-
cules whose polar groups, unshielded by a low-pH sub-
strate, ar» sufficiently tilted towards the interface, the
mean-fielcl approximation is perhaps mare realistic than
simple PSRG.

(ii) Simjple PSRG techniques of the kind discussed here
should b» appropriate for experimental systems with
short-range forces. There exist experimental cases where
there is no compressibility jurnp. Early experiments, such
as those of Glazer and Alexander ' on long-chain ureas
showed that an increase in the pH of the water leads to a
disappearance of the "classical" LE-LC transition. More
recently, Bouloussa found that on certain dipeptide
monolayej. s n-Palm —L-Ala —Gly and n-Palm —Gly —L-
Ala (n-Palm, palmitic acid, or n-hexadecanoic; Ala, alan-
ine; Gly, glycine), the simple permutation of two polar
groups leads to the appearance or disappearance of the
compressi~bility jump (see Fig. 6).

The abcive results may be interpreted as follows: In the
case of un:a molecules, with a very-high-pH substrate, the
dissociatic}n rate of polar heads becomes very important.
Dissociated hydrophilic groups behave like negative
charges ainong the groups which keep their dipolar mo-
ments. Tlxere is a disappearance of long-range attractive
interactions and of the compressibility jump. In the case
of dipeptide molecules, the permutation of two radicals
leads to a modification of either the global dipolar mo-
ment of the hydrophilic group or of its tilt angle with
respect to the interface. If the dipolar component in the
interface I:lane is too weak for molecular areas above the
LE-LC tra.nsition, this becomes even more so as the pres-
sure increases and the classical LE-LC transition cannot
occur. The increase in the vertical component of the di-
polar monument with pressure has been demonstrated in the
experiments of Welles et al. on palmitic acid. In both
of the abcve experiments the conditions for existence of
long-range attractive forces have been suppressed and the
compressibility jump has disappeared.

Suppose that the present PSRG approach gives the
correct qualitative behavior af the isotherms for certain
molecules. It would be possible to experimentally verify
this hypothesis: If the transition continues to exist
without atlvious signature on the isotherms, it must be ex-
perimentally uncovered by studies of surface-pressure re-
laxatian. Such experiments wauld be difficult because the
transition will be unabservable if it occurs at a pressure
larger than the spreading pressure in the experimentally
accessible temperature range. Moreover, it would be
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FIG. 6. Surface-pressure (H In d n~cm)—
0

onl in th
in yn/cm) —molecular-area (a in A -) obtained b Boulousaine y ouloussa (Ref'. 22) with two isomers which diff

the isotherm
p ea . ne can notice the disappearance of a brea i

un - a— y. ( n-Palm is palmitic acid, or n-hexadecanoic. )

necessary to verif thy at the absence of a compressibilit
jump is not caused b a sy a strong bulk water desorption.

1 i y

The latter is not i
be ossib1e to o
Th

'
i e y, however, since it would not hno t en

p e to ob;aio a very low compressibility in the
small molecular-area range.

Our stud iy is not completely conclusive. But if
PSRG calc ulation has the slightest resemblance to the

u i our

true solution of the mode1, and if this model is realistic,
t en the above arguments suggest that dipolar forces may
play a dominant role in the LE-LC t ransition and thai
even in cases where no transition is observed, relaxation
experiments may reveal some interesting results.
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APPENDIX: ON THE APPROPRIATE CHOICE
QF ENSEMBLE

The situation which most closely rnimics the ex eri-
e in w ich the number of molecules is f' d

ics e experi-

olume varies either because of a ch
s is ixe

number f
a c ange in the

o vacancies (or equivalently number of sites'
because of a chan e

'
er o sites) or

a c ange in the molecular configuration. In
practice, it is easier to keep a fixed number f 'ter o sites an to

trace over the spin states, i.e., to let volume and number of
g . ~~n t"e grand-canonical ensemble, fix-

ing the number of sites fixes the volume, but not here. ) n
other words it is e
sites X„

r s, i is easiest to compute at fixed numb furn er 0

—PE +HA —pA') =TrA (expH), (A1j

X,p, = —kg T lnR, (A2)

where is thep,
'

thermodynamic-potential conjugate to the
number of sites. (The reader w'll f d h aer wi in t e analogy to a
system with two kinds of chemical

ince the number of sites is not really constrained b
adjusts itself t

'
se o the number of molecules and the im

s raine ut

values of H and k T=
e imposed

an z ——~, one expects that we must re-
quire p, =O. To show that, note that considerations of ex-
ensivity (Gibbs-I3uhem) give

X dp= —SdT —X,dp, +A dH,

where S is the entro py. This means, in particular, that we
may write p as a function of p„T, and H. A L
transform ives us

egendre
gives us a thermodynamic potential which de-

pends on T, H, and X, /N:

the ener
where X is the number of molecul A hes, t e area, and Ez

e energy in state j for a system of size A
'

h X
cles. H i

e wit parti-
is the surface pressure and p th he c emica poten-

ia or t e molecules. The thermodynamic meanin of
the partition function Eq. (Al) d f '

~ ~

p iers is found from the usual statistical and thermo-
dynamic considerations. In particula f'uar, one in st at
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sdI=d p+ p, = — dT—+—dII+p, d
N ' X N ' N

(A4)
where

Bp
dPs

Bp ra
Bp

dp+
p, O

Two more remarks. First note that

dH

Bp(p„T,II)
Bp

Ns

N
(A5)

BI0'
BII

Bp
an

(A6)

where for each value of T and II, p is such that p, =0 as
stated in Eq. (4.4).

T, H

Equation (A5) allows one to find p, as a function of T, II,
and N, /N. Since N, /N is not constrained from the out-
side, it means that its conjugate thermodynamic force p,
vanishes, or alternatively that I is an extremum with
respect to N, /N, a condition which also implies that

p, =O. Since p, , =O for all values of T and II, we also
find from Eq. (A4) that

(A7)

which implies that when p, vanishes identically,

Bp0
1V BII y; „=p Bp

Bp T&

(A8)

where T and II are given, p, is computed from Eq. (A2),
and the value of p is chosen such that p, =O. Finally,
note that if we had chosen p=O in Eq. (Al), arguments
similar to those leading to Eq. (A6) show that
(Bp, /BII) r & 0

——2 /N, which is not the physically
relevant quantity.
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