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Temperature structure functions in turbulent shear flows
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The inertial-range behavior of measured temperature structure functions, up to order 12, is com-

pared with predictions by the log-normal and the P model. Both models are unsatisfactory from a

quantitative viewpoint ~ The comparison between measurements and models indicates that the inter-

mittency of the temperature field is different from that of the velocity field.

I. INTRODUCTION

In general, the nth-order longitudinal velocity structure
function in a turbulent flow can be written as

((bu)") =([u(x+r) u(x)]") —(—)e" 'tr "

when the separation r lies within the inertial range

g &gr ~~1, the lower and upper limits being usually iden-
tifiable with the Kolmogorov length scale v' (e) ' (v
is the kinematic viscosity of the fluid, (E) is the average
turbulent energy dissipation) and the turbulence integral
length scale, respectively. For the log-normal model'
the exponent an is given by (see, e.g. , Ref. 4)

whilst for the P model, developed by Frisch et al. and re-
lated to the Novikov-Stewart model,

Pla„=—— (n —3) .n

The constant p, in (2) and (3) is the exponent in the follow-
ing autocorrelation:

(e(x)e(x +r) )— I

tions is briefly discussed in Sec. III. The measurements
are then discussed in Sec. IV in the context of predictions
by the two models.

II. THE LOG-NORMAL AND P MODELS

The log-normal model assumes a probabilistic
knowledge of the dissipation rates. In the P model the at-
tention is focused on the inertial transfer rate of e, for
reasons given in Refs. 5 and 9. It is in this latter spirit
that we develop the arguments for the temperature P
model.

The transfer of turbulent energy e, from a volume of
1inear dimension r to smaller scales can be taken equal to
(5u) /5t, where 5u(r) is the velocity difference and the
time scale 5t is given by the ratio r/5u. It follows that

(5u)'

where e, could also be thought of as the dissipation rate
of turbulent energy. In an analogous manner, the transfer
7„of temperature variance to smaller scales is given by
the ratio (M) l5t, where 50(r) is the temperature differ-
ence over the volume of dimension r. It follows that

(6u)(60)
r

Recent measurements (e.g., Refs. 7 and 8) have indicat-
ed a value of p of about 0.2. With this value of p large
values of n are required to distinguish between the dif-
ferent behaviors reflected by (2) and (3). It is for this
reason that Anselmet et a/. measured velocity structure
functions in a turbulent circular jet of order as high as 18.

In the light of the previous remarks, it would seem
reasonable to expect that, in the case of the temperature
field, high-order moment temperature structure functions
would be required to allow an unambiguous decision to be
made about the suitability of different models. To this
purpose we first briefly recall in Sec. II the results for the
log-normal model and indicate the results for the P model,
when the latter is used to account for the intermittency of
the temperature field. The difficulty in obtaining reliable
measurements of high-order temperature structure func-

)m(gg)n (m +n)/3 m/3 —n/6~n/2 (7)

Before considering the average value of (7) we note that
the effect of intermittency in P„ is usually quantified
through the power-law exponent p6) in a manner analo-
gous to (4),

I
(X(x)X(x +r) )—

In Ref. 5 it was conjectured that, for homogeneous tur-

where g„could also be thought of as the dissipation rate
of temperature variance. If 5u and 50 are identified with
the velocity Lu and temperature bO increments, respec-
tively, products of these increments, of order m +n, will
be given by

(1984 The American Physical Society



30 TEMPERATURE STRUCTURE FUNCTIONS ]N TURBULENT. . . 2705

((hu) )(68) ) r-(g(x)X(x+r)) . (10)

Expressions (4), (8), (9), and (10) suggest that the ex-

ponents p and pe can be inferred from either dissipation
correlation measurements or measurements of the struc-
ture functions. Both types of measurements indicated
that p=0.2. A more recent evaluation of available exper-
imental data, while supporting this value of p, indicates
that appropriate upper and lower bounds of p are 0.25
and 0.15, respectively. Measured autocorrelations' of in-

dividual components of g indicated a value of 0.25 for p~,
the same value as predicted by Mori. " Atmospheric
data' for ((hu) (68) ) further support this average
value of pe. The scatter in the data for p and p~ is such
that a distinction between magnitudes of p and pq is not
warranted for the present purpose (strictly, the experimen-
tal evidence tends to favor a value of p~ which is margin-
ally larger than p}. For convenience, we assume here that
both p and pe are equal to 0.25.

In the log-normal model the probability density func-
tion of 7, is assumed, like that of e„, to be log-normal.
The joint probability density of e, and X„ is also assumed
log-normal and the variance of 7„, like that of e„ is pro-
portional to ln(l/r)". With these assumptions,

—p[p (p —I }/2+q(q —1)/2+pqp]~r

where p is the correlation coefficient between the centered
variables lne„and lnX, . The structure function ((68)")
is then given by

bulence, the sixth-order velocity structure function was

directly related to the autocorrelation of e, i.e.,

((Eu) ) r (E(x)e(x +r})
It is not difficult to show that an analogous relation for
temperature is

((gg}&i) ( )
—n/6(y )n /2 m

/3+P 13—n1/3 (12}

The linear departure from n/3 in the exponent g„of r in
Eq. (12) contrasts with the quadratic departure in g„ for
the log-notmal model Eq. (11).

The cori. elation coefficient p is not easily accessible ex-
perimentally. Available measurements' ' have identified

p with the correlation coefficient between 1n(t}u/Bx)„and
1n(BO/Bx);.'. This latter coefficient increases through the
inertial range, approximately as lnr. Measurements in
Refs. 14 and 15 indicate that an average value for p is 0.5.
For p=0.25 and p=0.5, the log-normal model, Eq. (11),
predicts a inaxium for the exponent g„of r when n = 8.5.
This suggests that moments of order higher than eight
should ena.ble one to decide between the decreasing trend
of the log-normal model, Eq. (11), and the increasing
trend of the P model Eq. (12).

III. EXPERIMENTAL DETAILS

Measurements were made on the centerline of a tur-
bulent round jet at a distance from the nozzle of 35 nozzle
diameters, where the turbulence Reynolds number R~ is
about 850. At this location in the flow, the mean tem-
perature is 5.1'C above ambient whilst (8 )'/~=1. 24'C
and ((68) ) '/ =0.38'C when r corresponds to the lower
bound of 1:he inertial range. The temperature fluctuation
was measured with a 0.63 pm 90%-Pt—10'-Rh cold
wire opera(ted with a constant current anemometer; the
heating current was chosen equal to 150 pA, so that the
signal-to-noise ratio is sufficiently high (=3000) and the
contamination by velocity fluctuations is negligible.

The difhculty in obtaining moments for n& 8 is illus-
trated in I'ig. 1 which shows p&~, the probability density
function of bO for the smallest value of r in the inertial
range, take..n to be the same as the velocity inertial range
defined in Ref. 8. This value of r is chosen here as it

((gg}n) ( )
—n/6(~)n 2/ 0..

as originally developed in Ref. 13.
In the p model, statistically stationary turbulence is as-

sumed with energy introduced into the fluid at scales —l
and then cascaded to smaller and smaller scales. At each
step of the cascade, any ith eddy of size l;-l2 ' pro-
duces, on the average, I eddies at the (i + 1)th level. With
the largest eddies assumed to be space filling, it is as-
sumed that after i generations only a fraction p; (=p',
where p=I/2') of the space will be occupied by "active"
fluid. If we denote by v; and 0; typical velocity and tern-

perature differences, respectively, over a distance l; in an
active region, the transfers of energy and temperature
variance from ith to (i +1)th eddies ar'e given by (5j and
(6) if l; is identified with r. If it is further supposed that
a perfect correlation exists between velocity and tempera-
ture dissipation fields, the average ((bg)") for the p
model follows essentially from Eq. (7). Specifically,
((b,g)" ) will exhibit the same dependence on r as given in

Ref. 5, viz. ,
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FIG. 1. Probability density functions of 0 and 60 on the axis
of a round jet. x/d=35; Ri=850. 6: pe, a=8/(8~)
pae, a=68/((68) )' . 1, 58= —13.4((68} )'/ =8;„—8; 2,
8= —4. 1(8')'"=8;„—8; 3, 8=+12.4(8')'"=8,„—8.

, extrapolation assuming exponential behavior for a) 10;—,extrapolation obtained by successive approximations of
a"p for n &8.
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represents the worst case from an experimental point of
view, since the tails of @~6) approach those of the deriva-
tive as r~0. It is clear from this figure that excursions
in 69 are much larger than for 0 whose probability densi-

ty function is also shown. The negative tail of p&&
reaches the lower bound of 60, which corresponds to the
difference between the ambient temperature (9;„and the
local mean temperature (9. The maximum upper bound of
69, corresponding to the initial jet temperature level rela-
tive to 8;„,is approximately 53((58) )'~, which is well

beyond the range of measured positive or negative excur-
sions. For sufficiently large n, the integrand (50)"p&&
does not close and it is necessary to extrapolate pz~ to
achieve closure. One method of extrapolation is to as-
sume that the apparently exponential behavior of pze, as
indicated by the solid line in Fig. 1, at sufficiently positive
69 remains unaffected at even larger 68. A better pro-
cedure is to start with (Dig) p~g for which closure is ap-
proximately achieved to obtain a closer approximation to
(68)' p~~. The latter integrand is then extrapolated to al-
low closure of (b,g)' pea. The extrapolation of gas
formed using this procedure is also indicated by the
dashed line in Fig. 1. Both types of extrapolation were

applied to p~g obtained at values of r corresponding to
the upper and lower bounds, respectively, of the inertial

range. Values of g„are shown in Fig. 2, the bounds of the
vertical bars corresponding to the two types of extrapola-
tion. It is clear that the uncertainty in determining g„, as
represented by the magnitude of the vertical bar, increases
with n.

IV. COMPARISON OF EXPERIMENTS
WITH MODELS

The present values of g„ for n &8 are in good agree-
ment (Fig. 2) with other available measurements obtained
in different flows for a wide range of A~. The difference
between the present value of (to and the log-normal model
(ttt =0.25, p=0.5) is significantly larger than the experi-
mental uncertainty in determining /to. Also, while the
log-normal model slightly overestimates the value of gq
an. d g6, it is a reasonable approximation to the measure-
ments for n & 8. It is evident, however, that the function-
al behavior of the log-normal model is inadequate for
n ~ 8 and it is also unlikely that refinements in p and p
would alter this trend.

The P model with tu =0.25 (and p = 1) predicts values of
g„which are increasingly larger, compared with experi-
ment, as n increases. It should be noted, however, that
the log-normal model for p = 1 leads to a similar
discrepancy between predictions and experiment. It is
possible that the introduction in the P model of a nonper-
fect correlation between velocity and temperature dissipa-
tion fie1ds would shift the P-model prediction closer to the
experimental data.

It is of interest to compare the exponent g„ for tem-
perature with the corresponding exponent a„ for velocity.
This comparison is shown in Fig. 3, the experimental
values of a„being those obtained, in the same flow, by
Anselmet et al. For consistency, a value of 0.25 was re-
tained in presenting Eqs. (2) and (3) in Fig. 3. A value of
0.2 for p results in a closer agreement, for n (12, be-
tween experiment and the log-normal model than shown
in Fig, 3. In general, the comparison between experimen-
tal values of o,„and predictions by Eqs. (2) and (3) reflects
that between experimental values of g„and predictions by
Eqs. (11) and (12). The differences in the magnitude and
rate of increase with n of experimental values of a„and
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FIG. 2. Inertial-range power-law exponents for temperature
structure functions. Experiments: 0, atmospheric surface layer
over land (Ref. 16); 0, round jet (Ref. 16), g, boundary layer
(Ref. 17); IR, atmospheric surface layer over ocean (Ref. 15 ); 8„
round jet (present study). Models: —, log-normal, Eq. (11)
with p=0.25, p=0.5; —- —-, log-normal, Eq. (11) with p =-0.25,
p= 1; ——,P, Eq. (12) with tu=0. 25.

FIG. 3. Comparison of power-law exponents for temperature
and velocity structure functions. Experiments: 4, a„(Ref. 8);
'g g„, present. Models: —- —-, Iog-normal for a„,Eq. (2) with
p=0.25;, log-normal for g„, Eq. (11) with @=0.25,
p=0.5; ——,P model for a„or g„, Eq. (3) or Eq. (12) with

p =0.25.
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g„ in Fig. 3 together with the sensitivity to p of the com-
parison {Fig.2) between the log-normal model and experi-
mental values of g„suggest differences between the inter-
mittency of the scalar field and that of the velocity field.
This suggestion supports Mori's" conjecture that kinetic
energy intermittency differs from passive scalar intermit-
tency. Kerr's has indicated that the faster rate of increase
with the Reynolds number of the flatness factor of B8/Bx
compared with that of Bu/Bx implies that the tempera-
ture field is more intermittent than the velocity field. . His
computer simulations have indicated a strong alignment
between the scalar gradient and the rate of strain but little
correlation between the magnitudes of the scalar gradient

and the vorticity. All of the previous remarks suggest
that further investigations of the correlation between sca-
lar and velocity intermittencies, whether they be of an ex-
perimental or a computer-simulation nature, should lead
to a useful insight into the fine scale structure of tur-
bulence.
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