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We have considered for binary fluids the universal dynamic amplitude ratio R which connects the
typical frequency I' of the order-parameter fluctuations to the viscosity 7 and to the correlation
length £. We have analyzed the mode-coupling (MC) approach and the renormalization-group (RG)
theory. The mode-coupling approach accounts for background terms in both 7] and I', whereas RG
includes corrections to scaling in the transport coefficients with an effective exponent A~0.7. We
emphasize that the two approaches are similar in formulation, the correction terms from MC show-
ing a leading exponent v=0.63, close to A. The correction amplitudes ar (linewidth) and a, (viscos-
ity) are essentially positive in the MC approach. Moreover, we claim that their ratio should be
universal if we assume the Bhattacharjee-Ferrell crossover viscosity function: a,”/ar=2x,”, with
xﬂ:0.06, the critical viscosity exponent. We also define an amplitude factor R (g,t), the asymptotic
value of which is R. It allows the corrections to scaling, in the framework of the RG theory, to be
taken into account. New viscosity measurements have been made with the isobutyric acid-water (I-
W) and triethylamine-water (T-W) systems. New Rayleigh linewidth measurements have been per-
formed in the T-W mixture. Analyses of the viscosity data in I-W, T-W, nitrobenzene-n-hexane
(N-H), nitroethane-3-methylpentane (N-M), and chlorex-n-dodecane (C-D) systems have led us to
introduce correction terms for the I-W and T-W systems, with an experimental exponent ~0.7. I-W
corrections have been found negative. The linewidth data, analyzed in the N-H, I-W, C-D, N-M,
and T-W systems, show that corrections are present in R for the N-M and T-W mixtures, with ex-
ponent ~0.7. T-W corrections have been found to be negative, when using negative statics correc-
tions. Finally, the asymptotic values of R were found in the range 1.00—1.14, with a mean uncer-
tainty of 7%. They are in agreement with both the recent MC (1.027) and RG (1.038) expectations.
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I. INTRODUCTION

Universal combinations among the amplitudes of the
statics properties (order parameter, susceptibility, correla-
tion length, specific heat, etc.) have already been investi-
gated' for binary fluids. These are indeed good represen-
tatives of the class of fluids, characterized by the space
dimensionality d =3 and the n =1 component of the or-
der parameter, like the three-dimensional Ising model.
Some mixtures have been seen to exhibit corrections to
scaling in their static properties, which obviously had to
be considered in the interpretation of the data.” We now
consider in this work the dynamic properties of binary
fluids, especially the ratio R which connects the decay
rate of the order-parameter fluctuations (or the linewidth
T of the Rayleigh spectrum) to the shear viscosity 7 and
to the correlation length & R < I'7E.

The experimental situation is somewhat puzzling con-
sidering the determination of R, as is the theoretical situa-
tion also. For the latter, two approaches have been used:
the mode-coupling (MC) and the renormalization-group
(RG) theories. The object of this work is to introduce and
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compare the two theories, to report linewidth and viscosi-
ty experiments on the nitrobenzene-n-hexane (N-H), iso-
butyric acid-water (I-W), and triethylamine-water (T-W)
systems and to analyze in the framework of RG and MC
theories these data as well as others already published, i.e.,
the nitroethane-3-Methylpentane (N-M) and chlorex-n-
dodecane (C-D) mixtures. We will see that beyond the
determination of R, corrections-to-scaling terms had to be
considered to account for viscosity and linewidth data, as
we have already emphasized in Ref. 3.

II. THEORETICAL

The critical dynamics of binary mixtures is well
described by the so-called model % of Halperin and
Hohenberg.* The relevant relaxing modes are the order
parameter ¢ (the relative concentration ¢ —c,. in binary
fluids, where c is concentration and c, is the critical con-
centration) and the transverse part of the local velocity,
whose Onsager coefficients are, respectively, the mass
conductivity A and the shear viscosity 7.

The MC theory assumes a Gaussian form of the static
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Landau functional in order to solve the Langevin equa-
tions of model 27 and neglects the proper Feynman dia-
grams of perturbative expansion, as has often been done.’
Moreover, the MC expansion is an uncontrolled approxi-
mation in three dimensions.

On the other hand, the RG approach takes into account
the dissipative quartic term in the Landau functional and
is able to expand in terms of the small parameter
e=d,—d.*% Here d, is the critical dimension above
which the conventional Van Hove theory, neglecting the
critical fluctuations, is valid (d.=4 in binary mixture
dynamics). The MC approach leads to results in good
agreement with those of the RG approach in computing
the universal exponents and the scaling functions* because
of the weak viscosity divergence.

A. The mode-coupling approach

In the transport coefficient (o), the MC approach
separates an anomalous part Ao, determined by the long-
wavelength critical fluctuations from a regular back-

ground o3. A simple additive law is assumed:
o=o0p+Aoc , (1)
Acc=00E"° . 2)

Here £=¢£yt ~" is the correlation length, with v the univer-

sal exponent;” ¢ =(T —T,)/T, is the reduced tempera-
ture, with T =T, the critical temperature. x, is a univer-
sal exponent, and oy and £, are nonuniversal amplitudes.
In the critical limit, £— «, and the background becomes
negligible. Then it is possible to identify the kinetic coef-
ficient o with its critical part Ao.. However, the back-
ground can be relatively important for temperatures far
enough from the critical temperature, where £ is not
much larger than the intermolecular length scale.

Let us consider the local coefficients &(r) and their
Fourier transforms:

U(ﬁ)=f_: di e

Then one has to solve iteratively two coupled integrals for
the viscosity A%.(g) and the conductivity AA.(g) obtained
from the equations of motion (see Sec. ITA 1 below).
Kawasaki® was able to give remarkable results assuming a
constant viscosity, i.e., 77=7%5. We will discuss the
Kawasaki results, and will see that a clearer justification
in the framework of the dynamic RG theory can be
found. However, let us first briefly review the MC
analysis for the viscosity and the Rayleigh linewidth.

—
r

o(T) . (3)

1. The Kawasaki results

The characteristic frequency of the order-parameter
fluctuations is measured by the linewidth " of the Ray-
leigh spectrum. In a Lorentzian approximation, I" is de-
fined from the linearized Fick equation of the concentra-
tion diffusion as

r@) =29 2_p(g)y?, )
x(q)

where X is the order-parameter static susceptibility,

2687

X « £2~7 (7 is the usual Fisher exponent’). In the full
critical limit (?]'——»6, £— o) an exact relation, known as
the Kawasaki-Stokes relation, exists:*3
p—rXeTe (5)
6wn§

Here kjp is the Boltzmann constant and R is a universal
amplitude ratio. If we assume R =1, the relation (5) pro-
vides the same diffusion coefficient D as for a solid
sphere of radius £ moving in a fluid of viscosity 7. The
correlation volumes move as Brownian particles in the
medium.

We should also note that (4) is equivalent to the relation
among the exponents’

2—m-xp=14x. (6)
The two coupled integrals to solve in MC theory are
7(q)=7p(q)

kgT
+.;2_
2(d —1)q
1 1
X, Xoo|To——
<[ ak T M | Xx Xa_r]
—= 27 D(K)k2+(G—K1D(G—K)
(7a)
teo d% ak Xa’—i’
D(q)=Dp(q)+kpT ——
P=Ds@+ksT [0 X

% 1
T(@k?+(G—K)12D(4—K)

(7b)
We have to assume as a first approximation
7(q)=<ATc(g)=Ayq "
and
D(q)~AD.(q)=Apq*
with Z=2—7—x, as trivial from relation (4). The first

attempt to compute the integrals in (7) was made by
Kawasaki,® who assumed a constant viscosity (x5=0)
and the Ornstein-Zernicke form (7=0) for the suscepti-

bility, i.e., Xa.=Xo§2X(q§). With x=g¢& X(x)
=(x241"1
Then one obtains, from (7b),
AT AA R ks T Q(gé) 8)
=X, q’= e (g&)q”, (
where Rz==Rg=1 and
QUx)=0=3x"Y14x2+(x3—x"Htan~'(x)]. (9

The Kawasaki assumption is not too arbitrary because of
the weak viscosity divergence. It leads to a good represen-
tation of the critical dynamics. Using relations (7),
Kawasaki and Lo!° subsequently found a nonclosed form
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for Q and a slightly different value of R, R =1.027.

On the other hand, Bhattacharjee and Ferrell, as cited
in Refs. 11 and 12, proposed the following form for the
scaling function Q:

x /2
Qp(x)=0x(p*x*+1) " Clx) (10)

with p=1 and C(x)~1 a factor taking into account the
difference between the Ornstein-Zernicke and the Fisher-
Burford susceptibilities. The approximant (10) has the
advantage of taking into account the viscosity divergence
but it is based only on heuristical considerations (see Ap-
pendix A).

2. Shear viscosity

It is difficult to evaluate the viscosity integral (7a)
which diverges if one tries to insert the first-order
Kawasaki linewidth (8). Of course this problem does not
occur in the RG perturbative expansion where there are
no iterative integrals.

Perl and Ferrell'*® imposed an arbitrary, adjustable,
Debye cutoff qp on the integral (7a), which must be ex-
trapolated a posteriori by fitting the experimental data.
Then it was possible to compute the critical exponent x :

AT
e . In(QE)
s
an
8
X5 = ~0.054 .
T 1572
Q =gqp in this approximation. From (11) it follows that
T=T[1 +x,I0(QE)]~7(QE) " . (12)

Kawasaki and Ohta'*® were also able to give a value
for X5 (xﬁ=0.067) by mixing MC and e-expansion
methods. More recently, Bhattacharjee and Ferrell'3 ¢ ar-
gued for the “old” value 8 /(1572).

Oxtoby and Gelbart'“?' reached a remarkable result by
considering a background I'p in the linewidth due to the
conductivity background Ag, i.e., A=AA.+Ap, leading
to the relation

A
rp= X—:ql : (13)
Then they estimated Q without any cutoff on the integral
(7a) and obtained
—1

3 kBT =+:C

Qoc=3C Ao
0G=7 61”7&3)(1

Xo

Ao 1
Ap & '
where C~0.9 and Ay/Xo=kgT /671, Let us define g,

by the relation Ap/Ag=1/q.£,. The estimate (14a) be-
comes

2 (14a)

1
Qoc
Besides, Bhattacharjee et al.'¥® and Burstyn et al.'¥c

pointed out that the contribution to the MC integrals (7)
from large wave vectors is not negligible. It is therefore

0=1/q., g.=+C (14b)

necessary to impose a cutoff, supposed to have the same
value gp on the integrals (7a) and (7b). Indeed, the short-
wavelength fluctuations are taken into account by the
backgrounds.

In our notation their results can be written

1 1
o-'=| L+,
9c 4p
(15)
TR RN IR,
4c d. 29 Gc Qoc

which take the form of (14b) in the limit gp— 0. The
correction (15) to g, does not seem to be important in
binary mixtures owing to the small value of gp !
[g5'=(0.7+0.1) A as extrapolated in the N-M viscosi-
ty''] which does not essentially change the interpretation
of the linewidth data.!*® Nevertheless, the partition be-
tween the background and the critical part is not a trivial
problem. While the asymptotic behaviors are well deter-
mined [7—0, ﬁ~(Q§)x"; t— w0, 7 ~Tp], the intermedi-
ate region, precisely where the experimental data are
available, is not simply represented by an analytic func-
tion. Bhattacharjee et al.'*® proposed the crossover
function 7 :ﬁBeHX’rL We expanded it in powers of £~
(see Appendix B), and found that the viscosity behavior
can be described in a large region around T, by the simple
formula

T=T5(Q8) M1+Tpe ™"+ -+ ), (16)

with @5 =2x;/q.

3. Linewidth

The Oxtoby and Gelbart result implies that the
linewidth background may be computed using the viscosi-
ty critical part A7.. We do not consider the problem of
determining the regular viscosity, which is not trivial and
somewhat arbitrary, as noted above. The relations (14)
correspond to the assumption!*®’

F=AT [1+are 750 —1(ge)], (17)

where the amplitude ar is

k]
(Q5) l (18)

ar= ~
9c 9c

In fact (assuming x, =1 and x5 =0) we have

e A Og&) 1

=—1L ~Yqé).
AT,  Agt™ (14+¢%Y q.£ 4

The scaling function L(x)=Q(x)/(x2+1) ensures that
the background continues to exist up to the critical point
but only when g€>>1 (i.e, g0, T~T,). In this limit
L(x) compensates exactly the £ vanishing power of the
ratio [z /AT,. On the other hand, the value of L is very
close to unity for g& < 1.

We note that the ratio @r /a@; should be universal if one
admits that the crossover behavior of the viscosity is well
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described by the function H. Namely, we obtain, from
(16) and (18),

a
=% ~7 . (19)

B. The renormalization approach
1. Corrections to scaling

The RG approach analyzes both statics and dynamics
in a quite similar manner. The corrections to the asymp-
totic behavior are governed by universal transient ex-
ponents ® related to the Wilson functions derivatives
whose zeros give the fixed point of RG transformations.!’

The situation is more complicated in dynamics than in
statics because the perturbative expansion involves many
parameters depending on the couplings between the slow
modes and not just the quartic coefficient g of the Landau
functional.

a. Statics. The binary mixtures belong to the universal-
ity class of the three-dimensional Ising model. Then the
Wegner exponent has the value’ w, =0.78. In the follow-
ing we will be interested in the correlation length:

E=Eot ~[1+agt™+0 (0] . (20)

The exponent v has the value v=0.630 according to the
RG estimation.’

b. Dynamics. From the equations of model # it is
possible to write the parameters of the bare perturbative
expansion'® of the viscosity and of the order-parameter
correlation functions as

L LI w0=ﬂ. 1)
Agno Mo
wy is an irrelevant parameter vanishing at the fixed point.
It is often neglected since it does not enter in the compu-
tation of the asymptotic behavior. However, we have to
take it into account in order to analyze the dynamical
corrections to scaling. There are, in fact, two transient ex-
ponents, ;s and ®,,, and the transport coefficient o (e.g.,
A or 7) takes the form

0(g,E) =00 *So(x)[ 1 +ays,S,(x)E
8 oSpX)E 1. (22)

The S(x) are universal scaling functions which have to
satisfy the requirements*

0

So(x)~x """ as x— o0
(23)
87w (x)~x“" as x— oo
and the normalization condition
S(x=0)=1. (24)

Let us note that, as a consequence of (23), the correc-
tions to scaling can be not negligible near the critical point
for x >>1.

2. Dynamical exponents

The fixed point of the scale transformation in the space
of the renormalized dimensionless parameters is® %17

(25)
fr=%e[1-0.1€4+0(e))] .

Here we use, instead of (21), the more convenient defini-
tion fo=K8%/A¢To where K;=2'"%7"92/I'(d /2) is a
suitable factor, d =4 —e is the dimension of interest, " is
the Euler function, and g, measures the coupling
strength. go5~1 in units where kz T, =1. Then it is possi-

ble to compute the critical exponent values from (25):%17
xp="5€[1—0.033>+0())]+0(f*3)~0.916 , (26)
x5 ="5€[1+0.238e+0(€’)]+0 (f**)~0.065 , 27)

while the transient exponents are!% 18

wp=6+0.121€4+0(€, f*)=1.121 ,
(28)
wy=2—15€+0.136624+-0 (€3, f*3)~1.241 .

The values in (25) and (28) are obtained from a second-
order € expansion. In principle it is possible to compute
all the scaling functions Sy(x) in (22), but up to now only
the function Ly(x) for the mass conductivity has been cal-
culated.

The RG theory justifies the scaling assumption for the
order-parameter decay rate I':*

I(g,&) < qg*QUqE) . (29)

Q, as Q, shows a universal form, z is the characteristic
dynamical exponent*$

z=3+xﬁ . (30)

A relation such as (29) is not valid for the decay rate of
the two other modes of the transverse velocity: we should
speak of “restricted (to the order parameter) scaling” in
model 57,418

3. The scaling function Q

The urniversal scaling function Q can be defined from
(4) as the ratio of the scaling functions of A and X:

Qx)=L (x)X ~'(x) (31
and Ref. 17 gives the first-order result

xA

Q
x(x) (x241)1-172 (32)

x2+1

QES)P=

with x,:=0.96, n=0. We will use the value of x5 found
in the viscosity fit and the fixed dimensional computation
7=0.0315 (Ref. 7) [instead of the e-expansion value
n=-€ (Ref. 15)] in applying the relation (32) to the
analysis of the linewidth data. Then we obtain, using re-
lation (6),

X +1/2

l—x —
Qp=0x " (x241) (33)

Relation (33), as well as the Bhattacharjee expression of
Eq. (10), satisfies the scaling requirements of Eq. (23):

1
Qxi~x T as x—roo . (34)
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4. The universal amplitude ratio R

There is some disagreement between different theoreti-
cal previsions concerning the value of R defined by (5).
Siggia et al. found®

R =6mK 37€[1+0.066+0 (€%)]~0.79 , (35)

setting directly e=1 and d =3. This value does not seem
believable compared to the experimental results. Perhaps
the amplitude ratio and the scaling functions show an €
dependence which is stronger than the € dependence of
the exponents.

In fact, Ref. 6 does not provide an explicit form for
Q(x). Another R estimate is obtained in a rather artificial
manner, mixing RG and MC calculations at d =4:%

R=12Rx+0()=1.2. (36)

Let us note that (36) corresponds to the Stokes law for a
spherical droplet of viscosity 7 moving in a medium of
the same viscosity. Finally, a fixed dimensional computa-
tion has given,!” to first order:
R=6rk, 783 Lo ~1.0375, (37)
380
and we think that the second-order correction should be
less than 8%. Then the most reliable prevision of R lies
in the range 1—1.12.

On the other hand, from an experimental point of view,
the most important problem to solve is to infer the right
asymptotic R value from linewidth measurements carried
out in a wide region of temperatures. The results (35) and
(37) are inferred with an amplitude ratio R defined as the
inverse of the fixed point value f* of the renormalized pa-
rameter f.%516

One obtains, with a convenient normalization condi-
tion,

R=K, f* . (38)

Therefore we see that R has the same correction-to-scaling
terms as f*, at least to a first-order approximation. In
other words, we can treat R just as the other dynamical
parameters A,7. Let us generalize the relation (5) at g540
by defining two scaling functions, Eq(x) for the viscosity
7 and Ry(x) for the amplitude ratio R, according to the
relation (22):

R kBT

3 TEo(g€)

Then we can identify, from (8), Q(x)=Ro(x)/Eq(x),
where Ry(x)|x_ . «<x and Ry(0)=1 following the boun-
dary conditions (23) and (24).

Now we can consider the correction-to-scaling terms by
defining a parameter R(g&),

(39)

D(q)=—R,(g£)

R(g€)=RRo(q&)[1+ap ;& “'R;(qE)

+arwE URygE)+ -1, (40)

where the amplitudes ag f,ag,, and the functions ﬁﬁ w
are defined using the general notations of formula (22).
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5. Shear viscosity

Considering the corrections-to-scaling terms in (22), the
shear viscosity takes the form'

(g, 6)=To€ "Eo(x)[1+ay Ep(x)E
+ay By (E ] @)

It is nearly impossible to distinguish between the values of
the transient exponents [see Eq. (28)]. We thus have to
define an effective exponent w. which should be experi-
mentally determined. Since g~O0 in usual shear flow
viscosimeters, x~0 and E (x)~1 in (41). Therefore the
Eq. (41) becomes, in terms of the reduced temperature ¢,

-Y.
T=Tot +agtit --), (42)

with Y =x.v, A=, and a; an effective amplitude.
It is important to consider the temperature dependence of
7o because the critical exponent is very small; one usually
assumes an Arrhenius behavior, valid far from T, or sim-

ply a polynomial expansion in power of #:
Mol T)=mneexp[E /(1+1)] ,
TolT)=7no+At+Bt>+ - -+,

as well as for the MC background in (16).

(43a)
(43b)

6. The linewidth

The considerations concerning the amplitude ratios
developed above allow us to modify the Kawasaki-Stokes
relation (5) as

ksT  —14+x, Ro(x)
I'(g,£)=R K
GEO=R D Eoo)
1+apsRy(x)E " +ap, Ry ()™ | ,

1+ayEr(x)E 7 +ag,Ey(x)E
(44)

Note that Q=R /E,.

The scaling functions Rj,,Ey,, exhibit a value close to
unity in the hydrodynamical region x < 1, precisely where
the corrections have some importance. Then we shall ap-
ply the same approximation used to obtain the form (42)
of the shear viscosity,

kpT

I'(g,&)=R p Qp(x)(1+agtd)g?, 45)

with ap the effective amplitude of the linewidth correc-
tions to scaling and 7] given by (42).

C. Conclusion of the theoretical part

According to the above analysis, we can make the fol-
lowing remarks.

(1) The critical exponent x; is poorly determined by
both MC and RG theories. Indeed x5 is very small
(~0.06) and it is 2+ X5 rather than X3 which is effec-
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tively computed. We will use the RG value 0.063,' close
to the MC value calculated by Ohta-Kawasaki.!*® This
is slightly different from the Bhattacharjee-Ferrell esti-
mate 0.053.13¢

(2) The values of the amplitude R from the MC and
RG approaches agree within some percent; R is expected
to lie in the range 1.00—1.12.

(3) The corrections to the asymptotic behaviors are not
too large in binary mixtures and in fact they are often
neglected in determining the value of the amplitude ratio
R and of the exponent Y. Nevertheless they may con-
tribute up to 10% at t=10"2 to the linewidths of some
systems.

An attempt to take into account these contributions has
been made by subtracting the Oxtoby-Gelbart background
related to the critical viscosity.!**'*20 On the other hand,
up to now, there have been no attempts to verify the RG
corrections in binary fluids (except our work?).

(4) The viscosity and linewidth corrections to scaling,
compared to the MC corrections, show a similar tempera-
ture dependence [v=0.63 in (16) and (17), while the first
transient exponent is @v~0.7], and the scaling functions
Ry, play the same role as L in (17).

No simple relations exist in RG between the amplitude
of the linewidth corrections ai and the amplitude of the
critical viscosity 7jo. Then we have to consider az and ag
as free parameters. To compute them, one has to in-
tegrate the Wilson functions (coupled differential equa-
tions) for the renormalized parameters f and w. Thus it is
possible to show that (ag )y, and (aﬁ) r,.w depend on the
initial conditions (see, e.g., the analysis made in Refs. 22
and 23 for the *He thermal conductivity), i.e., depend on
both the critical amplitudes 7 and Ag.

(5) The predictions of MC are precise and restrictive:
the corrections induced by backgrounds are essentially
positive and we have estimated their ratio:
&';,/&'r=a7,/ar=2xﬁz%. Here ar=¢7r§0_l and corre-
sponds to the RG correction ap.

III. EXPERIMENTAL

This part is devoted to the viscosity and linewidth mea-
surements. The correlation length, which is the third pa-
rameter entering in the R determination, has been already
examined in detail in Refs. 1 and 7, together with other
static properties.

A. Sample preparation

It is of prime importance to accurately know the criti-
cal composition whenever data very close to T, are need-
ed. Roughly speaking, a deviation A¢ with respect to the
critical composition ¢, will lead to some deviations for
data obtained in the temperature region AT,
~T.(A¢/B)"/B, where B is the coexistence curve ampli-
tude.

(i) N-H system. Components were of spectroscopic
grade and filtered through 0.2-um Teflon filters. The
binary mixture has been thought to exhibit the critical
concentration of 0.510 mass fraction of nitrobenzene ac-
cording to Ref. 24. However, recent experimental deter-

minations and analyses"?> have shown that the critical
composition was 0.525.

The experimental concentration that we used was
0.509+0.002 for the linewidth measurements, and
0.509%0.007 for the viscosity measurements reported in
Ref. 26. Data have been obtained in a temperature range
further from T, than 0.1 K (linewidth) or 0.03 K (viscosi-
ty), which is much larger than AT(~2 mK, deduced by
using B=0.77 and T,=293 K."'*> Note that the correla-
tion length determination, which needs data much closer
to T,, has been performed in a sample with the critical
mass fraction 0.525.% All samples were frozen in liquid
nitrogen and then sealed under vacuum.

(ii) I-W system. Isobutyric acid was of quality better
than 99.5% purity, and the water comes from a sophisti-
cated industrial purification setup, giving an Ohmic resis-
tance of 18 MQcm. The experimental mass fraction of
the acid was 0.3889+0.005 (linewidth) and
0.3882+0.0003 (viscosity), to be compared with the value
0.3885.27 Deviations to criticality seem negligible here.
The same sample has been used to determine both the
linewidth and the correlation length.! Due to the presence
of water, we could not freeze the sample without breaking
the cell; so we sealed all samples at atmospheric pressure
and at 0°C where the vapor pressures of the components
are low.

(iii) T-W system. Purity of the triethylamine was better
than 99.5%. Water was from the same origin as above.
The experimental mass fraction of triethylamine used in
the samples was 0.321+0.001 (linewidth) and
0.3211£0.0001 (viscosity). The generally admitted value
is 0.321 according to Ref. 28 and our determination of
Ref. 2; therefore, the samples that we used did not show
appreciable deviations to criticality. As above, the sample
used for linewidth measurements is the same as that al-
ready used for the correlation length determination.’”%°
As explained above, we sealed the samples at 0°C at at-
mospheric pressure.

All the cells used in the linewidth measurements were
made of fused quartz; they were of cylindrical shape, with
an inner radius of 1.0 cm and inner length of
2.000+0.001 cm (N-H) or 5.000+0.0002 cm (I-W, T-W).
The viscosimeter was made of Pyrex (see below).

B. Thermal regulation

The cells for the linewidth measurements were placed
into a thermally stabilized copper oven, enclosed inside an
air regulated box. Over time intervals of some hours, the
stability was within £0.1 mK. The viscosimeter was im-
mersed in a large water bath giving a stability of 0.5
mK. Temperature was measured with a quartz thermom-
eter that we calibrated with the triple point of water
(+40.01°C).

C. Linewidth measurements

We have applied a conventional light beating spectros-
copy method,* in a homodyne arrangement. As a light
source, we used a He-Ne laser with power up to 80 mW.
Particular attention was given to spurious heating by the
laser beam near T, which was seen to reach in some cases
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0.5 mK per mW incident power. Fortunately, it is pre-
cisely near T, that the signal-to-noise ratio is the highest,
so that low exciting power can be used.

The scattering angle was nearly equal to 90°, where the
spurious contributions from stray light and multiple
scattering are minimized. This angle was measured with
a goniometer allowing an accuracy of some minutes of an-
gle to be obtained. In fact it was rather the incident beam
convergence and the solid angle of collection which con-
tributed to the mean uncertainty of 0.5% to the transfer
wave vector g.

The signal was analyzed with a single clipped correla-
tor, whose calibration was checked. The correlation func-
tion that we obtained fitted well to a single exponential
function whose characteristic time 7 could be related of
the typical frequency " by '=1/27.

Multiple scattering had negligible effects here, owing to
the weak turbidity of the I-W and T-W systems and/or
the temperature range of interest (N-H). Gravity effects
were negligible since the laser beam was located nearly in
the middle of the sample.>! Moreover, these effects take a
very long time to settle close to T, and show negligible
amplitudes far from 7.

D. Viscosity measurements

We use a calibrated capillary flow viscosimeter from
Allen’s group (the same as in Ref. 26). It was filled with
the mixture and sealed as indicated above. It was placed
on a special rotary mount immersed in a large water bath.

The inner diameter of the capillary was ¢=0.02 cm.
With p the density, the mean shear rate S can be easily de-
duced, g~10* cm?/s being the gravitational acceleration:

S=g¢/16(7j/p). To prevent deformations of the critical
J

p.=0.9242, (3p/dn)=2.3,

n—n,=2.34X10"4T,—T)+16.2X 10~% T, —T)?

fluctuations by shear (see Ref. 32), leading to a leveling>?
off of the viscosity behavior, we had to consider tempera-
ture regions such that the lifetime of fluctuations
7~(167 /ks T)&* is lower than the typical shear time S 1.

The conditions S7< 1 means that data are considered
only in the region ATs> & %pgdT, /kp)'/?. Taking &,
from Ref. 1, one finds, for N-H, studied in Ref. 26 with
the same viscosimeter,

AT,~0.03K ,
for I-W

AT,~0.05K ,
and for T-W
AT,~0.01 K .

In such a viscosimeter, we measured a flow time related
to the kinematic viscosity (77/p), and we needed density
data to obtain the shear viscosity 7. Care had to be taken
since p exhibits some anomaly near T, related to the
(weak) divergence of the specific heat. For I-W the densi-
ty is taken from Refs. 27, 34(a), and 34(b):

p=0.9930—[6.15x 104 T —T,)] .

For T-W the critical density is deduced from Ref. 35.
This system exhibits a relatively large anomaly near T,.
Since refractive index data have been shown*° to behave
as the density, we have used the relative data from Ref.
36:

PT-w=p,+(38p/0n)n —n.) ,

where

—1.93X10" (T, — TP +6.14x 10~ % T, —T)° ¥[1—0.278(T, — T)**'] .

Finally, we checked the viscosimeter calibration with
pure water. By varying temperature, it was possible io
vary 1 from 0.6Xx1072P, to 1.5Xx 107°P,. Figure |
shows that the previous calibration given with the
viscosimeter did not take into account all the kinetic ener-
gy corrections. We have therefore determined another
calibration formula, and have consequently recalibrated
the data of Ref. 26 obtained in a region where a simple
proportionality constant is not sufficient.

E. Determination of T,

Two striking phenomena are associated with the
phase-separation process; the transmission goes practically
to zero, and intense speckles appear at low scattering an-
gles. By performing temperature steps of about 0.2 mK
(linewidth), or 1 mK (viscosity), it is possible to determine
T, to within the same accuracy.

i +
.
095 - \—
N
, . -
+
1 1 1 1 1 1 1 1 1

05 1 15 fatpg T

FIG. 1. Calibration of the viscosimeter. The ratio of the
viscosity of water (7) to the measured viscosity (% '), using the
calibration given with the viscosimeter, is plotted vs 7. The
curve represents our calibration, which has been used for binary
fluids.
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IV. RESULTS AND DISCUSSION

Three quantities £, 7, and T enter in the determination
of R, and they will be successively analyzed below. Since
R is defined only in the critical limit ¢—0, t—0, we
must extrapolate its asymptotic value according to the
scheme developed above, which includes corrections to
scaling.

Static corrections (ag) were found only in the mixture
T-W. In the other systems we will simply use the correla-
tion length with ag=0, i.e., §=&ot ™", the theoretical ex-
ponent v=0.630 being imposed. But before analyzing in
detail the results on the five systems N-H, I-W, C-D,
N-M, and T-W, we will describe the fitting procedure.

A. Fitting procedure

We have used the Tournarie statistical refining
method.>” Among other qualities, it has the advantage of
giving, for each fit, the contribution of the experimental
information to the determination of a given parameter. It
also enables an estimate to be made of the systematical
distortion by means of a statistical quality coefficient Q:

AY;AY; 4,
0041
AY} _ AY;,,

32—

2
g Oi+1

0=1-

172 »

)

where AY; is the deviation of the data Y; with respect to
the function of fit and o; is the corresponding statistical
error. We also have an access to the correlation coeffi-
cients between the parameters to be determined. The
viscosity data have been fitted to Eq. (42) as follows:

(i) all parameters free;
(ii) Y5 imposed to 0.04;
(iii) Y,,.l =0.04 and A=0.7 imposed.

The linewidth data have been fitted in nearly the same
way:

(i) all parameters free, except v=0.63 and Y, =0.04;

(ii) all parameters free, except v=0.63, Yﬁ=0.04, and
A=0.7.

We used formula (42) as the fitting function for the
viscosity, and for the linewidth, formula (45). The ¢
dependence of g has been taken into account, through the
coefficient (1/q)dq/dT =(1/n)dn /dT, which can be in-
ferred from refractive index data. The weak anomaly of
the refractive index near T, has been accounted only for
the T-W system, where it was found to be important.*®

When determining A by the viscosity analysis, we have
fixed Yﬁ to 0.04, the value we considered the most prob-
able. Finally, we have always fixed in the linewidth fit-
ting function (45) Y to the same values as those used in
the viscosity fit in order to preserve the I' limiting
behavior. We have also made visible the temperature
variation of R. From formula (45)

R(t)=[T /kpTQp(x)]167TE . (46)
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B. Nitrobenzene and n-hexane

The correlation length is taken from lgefs. 1 and 25,
where it was found to be §,=(2.6510.07) A.

The viscosity data, obtained in the range 10 mK—45 K,
using the viscosimeter we described in Sec. III, has been
already analyzed in Ref. 26. We have reported in Table I
the values corresponding to the new calibration of the
viscosimeter. We have reported in Table II the parameter
values of the best fit. The exponent Y is found to be
close to the expected theoretical value, so corrections to
scaling are indeed very small in this system. We note the
nearly identical result obtained on Y assuming for no(T)
either an Arrhenius or a polynomial function.

Linewidth data are reported® in the range 0.1—5 K or
g£=1-0.08; most of the data lie therefore in the hydro-
dynamic region, leading to a difference between the func-
tions Qg and Qp lower than 1.5%. R(t), as obtained
from (46), has been plotted in Fig. 2 where no clear varia-
tions appear, indicating the smallness of corrections to
scaling. The results of the fit are given in Table III, and
corroborare the absence of corrections. We think that the
more reliable result is the first one (Q =0.818). Account-
ing for the different experimental sources of uncertainties,
we obtain

R=1.03%0.06 .

These results are not in agreement with others® ob-
tained in the same mixture. However, the concentration
was not the same, leading to discrepancies in both I' and
£ Also, the R value is now changed compared to the
value one of us reported in Refs. 7, because the & value
has been changed according to Refs. 1 and 25 (see above
Sec. IIIA). The 4% discrepancy with the analysis made
in Ref. 25 is due to the new calibration of the viscosime-
ter. :

C. Isobutyric acid-water

The correlation length amplitude has been determined
by two groups"’® and leads to the same value
£,=(3.62510.065) A.

The viscosity data are reported in Table IV and Fig. 3.
They cover the range 0.1—15 K and agree well with the
Ref. 34 data. Although the data from Ref. 34 are in

e o ve oo, o %

M ..:
R .

R=103 :

19+ -

L Lol | tey®
0.5

0 0.2 15
T-Te(K)

FIG. 2. Temperature variation of R for the N-H system.
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TABLE I. Shear viscosity of the N-H system. 7T,=20.00°C. Shear rate is about 150 sec™!. Typical relative uncertainty is 0.5%.

Ly r-T. 7(10=°Py) Ly Lt 7(10~3Py) Ly T-TI. 7(1073P,)
T. T, T,

—1.836 3.667 —5.115 6.130 —6.700 6.657
—2.053 3.953 —5.210 6.246 —6.759 6.677
—2.344 4.348 —5.228 6.187 —6.840 6.698
—2.508 4.514 —5.255 6.179 —6.936 6.758
—2.618 4.657 —5.351 6.236 —6.990 6.718
—2.867 4.883 —5.373 6.261 —7.027 6.718
—2.984 5.003 —5.494 6.274 —17.341 6.839
—3.169 5.138 —5.515 6.270 —7.368 6.839
—3.290 5.269 —5.604 6.303 —7.512 6.859
—3.443 5.361 —5.621 6.350 —7.577 6.879
—3.458 5.350 —5.652 6.278 —17.610 6.920
—3.458 5.322 —5.786 6.343 —7.647 6.904
—3.542 5.386 —5.809 6.400 —7.721 6.920
—3.542 5.386 —5.903 6.416 —17.761 6.952
—3.604 5.449 —5.918 6.425 —7.801 6.940
—3.603 5.429 —5.967 6.434 —7.888 6.992
—3.603 5.429 —6.074 6.466 —7.983 6.980
—3.662 5.471 —6.209 6.478 —7.983 7.013
—3.662 5.471 —6.250 6.535 —8.088 7.049
—3.770 5.594 —6.287 6.519 —8.145 7.101
—3.766 5.555 —6.502 6.616 —8.206 7.061
—3.766 5.555 —6.550 6.600 —8.206 7.101
—3.796 5.576 —6.759 6.677 —8.170 7.061
—3.796 5.596 —6.868 6.685 —8.368 7.161
—3.843 5.598 —6.990 6.750 —8.386 7.141
—3.843 5.598 —17.106 6.738 —8.412 7.154
—3.909 5.601 —7.293 6.839 —8.412 7.129
—3.981 5.682 —17.505 6.879 —8.412 7.162
—4.079 5.716 —5.663 6.331 —8.492 7.202
—4.194 5.800 —5.663 6.331 —8.492 7.161
—4.194 5.761 —5.663 6.307 —8.492 7.141
—4.194 5.828 —5.663 6.318 —8.673 7.181
—4.260 5.803 —5.722 6.331 —8.673 7.162
—4.284 5.799 —5.726 6.331 —8.673 7.154
—4.284 5.799 —5.839 6.400 —8.721 7.262
—4.342 5.857 —5.853 6.372 —8.902 7.275
—4.345 5.872 —5.863 6.372 —8.902 7.262
—4.345 5.852 —5.956 6.413 —9.190 7.323
—4.431 5.934 —5.956 6.413 —9.190 7.323
—4.511 5.928 —5.956 6.393 —9.190 7.283
—4.543 5.917 —5.983 6.394 —9.256 7.371
—4.566 5.878 —5.983 6.413 —9.593 7.444
—4.570 5.878 —6.224 6.543 —9.593 7.484
—4.674 5.980 —6.287 6.515 —9.593 7.484
—4.709 5.968 —6.336 6.535

—4.740 6.012

—4.813 6.041

—4.874 6.062

—4.938 6.068

—5.002 6.084
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TABLE II. Fit of the viscosity data to T(t)=%o(t)t (1 +a,nlx), where 7jo(t) is either a polynomial function

Tio(t)=7 o + At +Bt>+Ct? or an Arrhenius function 7o(¢)=7joexp[E /(1+1)]. Values in parentheses have been imposed in the fit. Q

measures the quality of the fit (see text). PF stands for a polynomial function for %(z), AF denotes an Arrhenius function for 7y(t).

Mo 70 A4 B C
System Y," ay A (10~*Py) E (1073Py)  (1073Py) (1073P;) (1073P,) Q
N-H PF 0.0397 0) 5.111 —15.3 41 —78 0.814
+0.0004 +0.015 +0.6 +10 +47
AF 0.0398 (0) 2.696 2.941 0.810
+0.0003 +0.040 +0.03
I-w PF 0.0454 (0) 18.70 —146 925 —31 0.976
+0.0018 +0.25 +12 +210 +1000
AF 0.0484 (0) 27.4 6.50 0.808
+0.0015 +4.7 +0.18
(0.04) —1.5 0.65 16.9 2.45 0.935
+4.8 +0.42 +190 +11.2
(0.04) —2.13 0.7) 72 0.99 0.920
+0.46 +113 +1.6
N-M? PF 0.03982 (0) ? ? ? ? ?
+0.0003°
AF 0.0399 0) 2.208 2.76 0.518
+0.0002 +0.086 +0.04
T-W PF 0.0306 (0) 31.51 474 5380 5430 0.468
+0.0020 +0.52 +30 +970 +9900
0.536+ »
AF 0.032 0) 0.093 X 10 15.6 0.785
+0.001 +0.1
3.57+
(0.04) 1.4 0.75 0.12 |X 10—* 13.6 0.669
+3 +0.32 +3.1
5.79+
(0.04) 1.45 0.7) 3.3 x10~* 13.1 0.730
+0.2 ;tQ.S
2PData from Ref. 43, with the calibration of Ref. 11.
®From Ref. 19.
avaog [ — yl(a)r — T
Afy(cPa) T
+0.0' e s (b) -
. o Without corrections o
B 0 o o oo
g o""-oo.~ ...
-005 . _
I-wW 1
| +0.05 |~ . -
0-o—e :’. ...-..:_‘ Iy ..:
~0.05 |- ;lifh corrections, £=0.65 ¢ ;.62 .
. 1 A
10! 1 T-Tk 10
il Ll 1

0.1

1

T-TelK)

10

FIG. 3. (a) Temperature variation of the shear viscosity 7 in the I-W system at the shear rate S =60 sec™!. Data affected by shear
(T—T, <0.1 K) have been discarded. ®, our data; +, data from Ref. 34(a); O, data from Ref. 34(b). Full line is the fit to our data
with A=0.7 and Y;=0.04 imposed. (b) Deviation A% between our shear viscosity data and formula (42), imposing Y;=0.04.
Without correction to scaling, systematic distortions appear.
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TABLE IIl. The values in parentheses are imposed.

System R ag A Q
N-H 1.033 +0.006 (0) 0.893
(¥,=0.043) 1.10 +0.16 —0.3 +0.5 0.27 +0.70 0.980
I-W

(¥,=0.04) 1.062 +0.008 (0) 0.601
(ay=—1.50) 1.066 +0.02 —0.06+0.2 0.5 %10 0.632
N-M q,? 1.006 +0.001 (0) 0.197
(¥,=0.0399) 0.998 +0.001 0.76+0.08 0.527+0.015¢ 0.636
1.0005+0.0007 1.9740.12 (0.7) 0.451

q1,9," 1.007 +0.001 (0) 0.211

0.994 +0.003 0.28+0.09 0.35 +0.1 0.458

1.0001+0.0007 1.9 +0.1 (0.7) 0.339

g:* 1.166 +0.009 (0) 0.696

1.138 +0.012 2.7440.86 0.70 +0.10 0.919

1.136 +0.009 2.85+0.50 (0.7) 0.920

T-W 1.00 0.0l (0) 0.212
(Y,=0.04) ag=—3.5 1.065 +0.006 —7.3 +1.4 0.683+0.044 0.962
(a,=1.45) 1.057 +0.004 —17.78+0.25 (0.7) 0.989
ag=0 1.090 +0.005 (0) 0.571

3From Ref. 11, ¢, =1.92X 10° cm™!. Typical uncertainty is 0.3%.

®From Ref. 11, both g, and g, =7.04x 10° cm ™!, with a typical uncertainty of 1.6%.

‘From Ref. 44, g;=3065 cm~".

dWe imposed the A range to be 0.5—0.9. When A was set completely free, the value A=0.11+0.04 was found. This is why in Ref. 3

we estimated A~0.54-0.4.

agreement with ours, we have not considered them in our
analysis because they have been obtained in mixtures with
a somewhat different concentration. The results of the
fits are reported in Table II, where weak corrections to
scaling have been detected. The value of the exponent
found here (A=0.65+0.42) is slightly different from the
value (0.45+0.4) cited in our Ref. 3. This is due to the
fact that in Ref. 3 we simply recalibrated the rough
viscosity data by a constant value (0.94). Considering Fig.
1, the calibration error is small, but this changes the A
central value. We have retained the best fit (Q =0.935) to
analyze the linewidth data.

Linewidth data are from Ref. 39 (¢g=1.90x10° ¢cm~—!)
and from Ref. 40 where the data have been extrapolated
at ¢=0 from experiments performed in the range
q=(1-2.5)%10° cm~'. In order to remove this source
of error, we have considered only the data in the range
T—-T,=1.39—-15 K (gf<1), where Qg=Qp=Qp~1
within 1%.

111 - T
R + I-w
107 | < ]
R=0 o S
R= +
=1 L4
1.03 R 06s + 9
05 5 T-TelK) 50

FIG. 4. Temperature variation of R for the I-W system. No
corrections are visible. Points correspond to Ref. 41 and crosses
to Ref. 40. Both are strictly in the hydrodynamic region.

The results of the fits are given in Table III. No avail-
able information, as shown in Fig. 4, could be extracted
concerning corrections to scaling. The more reliable value
is thus

R =1.06%0.07

taking into acount all the experimental uncertainties.

D. Chlorex-n-dodecane

We only report here the main results obtained with this
system. Details can be found elsewhere.*!

The viscosity data, obtained in the range 0.1—15 K,
have been obtained in the same viscosimeter we used for
the N-H, I-W, and T-W systems. The exponent found,
Y,_I=O.O415 +0.0005, is close to the expected theoretical
value, so corrections to scaling should be very small in
this system. The linewidth data, obtained in the range
6x107%t0 6 K or g¢=2Xx1072 to 20 at the wave vector

R| C-D
11 : .
T
- e 0 . '.‘. :
10 . R
R=1055

103 102 107 1 T-TdK

FIG. 5. Temperature variation of R for the C-D system. No
corrections are visible (from Ref. 41).
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TABLE 1IV. Shear viscosity of the I-W system.
T.=26.6030°C. Shear rate is about 60 sec='. Typical relative
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uncertainty is 0.6%.

Ly _T_hﬂ 7 (10~2P,)
—3.08498 1.601
—3.22156 1.655
—3.34135 1.718
—3.50707 1.797
—3.69501 1.833
—3.92159 1.906
—4.21659 2018
—4.57544 2.126
—5.25956 2274
—5.82174 2.368
—6.06249 2.403
—6.34351 2.445
—6.74425 2.502
—7.25886 2.609
—7.25886 2.578
—7.24008 2.568
—7.62711 2.608
—8.14481 2.675
—8.01559 2.677
—7.62711 2.621
—7.69073 2.597
—7.15113 2.581
—7.00491 2.541
—6.72461 2.487
—6.51040 2.465
—6.388 14 2.454
—6.11847 2413
—5.88448 2.379
—5.59770 2.334
—5.38815 2.301
522239 2279
—5.11684 2242
—5.00298 2216

II. ... 2697

g=2.04x10° cm™! exhibit no corrections as it can be
seen in Fig. 5. The value of the amplitude ratio R has
been found to be

R=1.055+0.05,

where all the experimental uncertainties have been ac-
counted for.

E. Nitroethane-3-methylpentane

In Ref. 42 can be found a value for &, the theoretical
exponents being fixed: &£,=(2.13+0.05) A. For the
viscosity, we have taken the data from Ref. 43, multiplied
by 1.031 according to Ref. 11. The useful range was 3
mK—7 K. As reported in Table II, it is of no use to look
for corrections to scaling, since the effective exponent Y
is found very close to the theoretical value. Concerning
the linewidth, three laboratories have already studied this
system, and we will successively analyze their data ob-
tained at various g values and T — T, ranges.

(i) Data from Ref. 11. We have not retained the largest
wave vector because of multiple scattering corrections.
The data at gq;=1.92X10° cm~! have been obtained in
the range 0.3 mK—12 K, or g§=25—0.1. The analysis is
made in Table ITI. Although some of the data have been
obtained in a range g£> 1, it is not useful, as stressed in
Ref. 3, to consider the g dependence of the corrections
R;,(X) [from formula (44)]. Indeed, the coefficients
Ry,,(X) are different from unity precisely in a region
where the corrections become negligible. Anyway, as is
also shown in Fig. 6(a), corrections far from T, are visi-
ble. A value

R=1.00%0.06

can be inferred, which is in agreement with the Ref. 11
analysis which nevertheless applied a MC approach. All
uncertainties have been taken into account.

The data obtained in the range 0.4 mK—0.4 K at
g,=7.04:<10* cm~! are less accurate [Fig. 6(a)]. There-
fore, it is of no use making a special analysis of these g,
data.

N-M (B)
ap= 19201 7 0k* .
= 100

®) 1,065 . o .
< R N-M (S) Lesveceeece
o 3 :- k- .'. 4
sk R-105, o+ EXP. ERROR 45%
L]
< N—M (E) 104 ®ceee®

107

1 1 1 1
10-* 103 10" 107! 1 T-TelK)

n
107! 1 1-TelK) 10

.
T-TeK)

.
107!

FIG. 6. Temperature variation of R in the N-M system, showing the presence of corrections to scaling. Full line is the best fit
with A=0.7 imposed. All amplitudes (ag,R) are given with A fixed to 0.7. B in (a), C in (b), and S in (c) correspond, respectively, to
the data of Refs. 11, 44, and 45. In (a) points represent data obtained at g,=1.92X10° cm~!, and crosses are data at
g,=7.04X10* cm~!. Uncertainties on the g, data are much larger than the g, uncertainties, so the best fit is mainly due to the g,
data. The systematic distortion which appears in (c) is only due to the use of an analytical function instead of the rough experimental
data which were not available. Here corrections to scaling cannot be visible since data have been obtained only close to T,.
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TABLE V. Linewidth data for the N-M system by Calmettes (Ref. 44). ¢=3.065 cm~' and T.=26.4°C. Numbers in

parentheses denote powers of 10, e.g., 1.73486(+2) =1.734 86X 10,

Ly(T—T.) I (radsec™") AT (radsec™') Ly(T —T,) I (radsec™!) AT (radsec™')
1.73486(—2) 7.366 2.8(—1) —2.29263 1.480 3.08(—2)
1.88218(—2) 7.159 4.6(—1) —1.75158 2.288 4.76(—2)
3.47836(—1) 9.768 5.7(—1) —1.74583 2.256 6.72(—2)
3.48542(—1) 9.028 5.7(—1) —1.72597 2.312 8.96(—2)
3.48895(—1) 8.991 8.0(—1) —1.72541 2.246 5.88(—2)
6.92897(—1) 1.214(+ 1) 8.9(—1) —1.41059 2910 1.23(—1)
6.93397(—1) 1.182(+ 1) 1.0 —1.41059 2.804 6.44(—2)
1.069 36 1.600( + 1) 1.2 —1.30933 2.865 1.65(—1)
1.06953 1.731(+ 1) 1.4 —1.30527 2.869 1.20(—1)
1.096 94 1.638(+ 1) 2.5 —1.27297 3.262 2.18(—1)
1.097 11 1.584(+ 1) 1.3 —1.21234 2.882 1.73(—1)
1.595 54 2.529(+ 1) 1.5 —1.20231 3.108 2.38(—1)
1.596 15 2.625(+ 1) 1.2 —1.200 65 3.349 2.32(—1)
2.31851 4.431(+ 1) 5.0 —1.17280 3.000 2.10(—1)
2.31851 4.436(+ 1) 1.3(+ 1 —1.169 57 3.286 2.54(—1)
—6.57128 7.853(—2) 1.4(—2) —1.11933 3.272 1.00(—1)
—6.096 83 1.187(—1) 5.6(—3) —1.11474 3.008 9.80(—2)
—5.54678 1.627(—1) 1.1(=-2) —1.11018 3.474 2.21(—1)
—5.16729 2.387(—1) 1.9(—-2) —8.68692(—1) 3.784 2.40(—1)
—5.11600 2.400(—1) 1.4(-2) —8.67501(—1) 3.803 2.63(—1)
—5.03595 2.808(—1) 5.3(=2) —5.05009(—1) 4911 2.54(—1)
—4.65646 3.399(—1) 2.2(-=2) —4.85320(—1) 5.683 3.89(—1)
—4.59522 3.091(—1) 1.6(—2) —4.85320(—1) 5.466 3.80(—1)
—4.086 38 4.373(—1) 1.9(—-2) —4.61242(—1) 5.139 3.92(—1)
—4.039 86 4.406(—1) 3.3(=2) —4.59657(—1) 5.715 3.61(—1)
—3.54046 6.402(—1) 2.5(—2) —2.27528(—1) 6.082 498(—1)
—3.50323 6.898(—1) 7.8(—2) —2.27528(—1) 6.215 4.56(—1)
—2.81341 1.009 7.8(=2) —2.398 54(—2) 7.546 4.62(—1)
—2.80677 1.083 8.4(—2) —2.37805(—2) 7.383 4.28(—1)
—2.30259 1.486 5.6(—2) 5.48493(—3) 8.110 4.50(—1)

When both the g; and g, data are analyzed together
(Table III), we nearly recover the g, analysis results, as
expected following the remarks of the preceding para-
graph. A value A=0.35+0.11 is found, which is low
compared to the expected value 0.7. However, the T — T,
range is small, and in order to obtain more information on
the corrections it is necessary to consider data obtained in
a wider T —T, range.

(ii) Data from Ref. 44 and Table V. With an investigat-
ed temperature range of 1 mK—10 K at a wave vector of
g=3.065 cm~!, all data, even close to T, lie in the hy-
drodynamic region (g§ <0.18). We have made the ¢ vari-
ation of R visible by applying (46).

Corrections, up to 20%, are visible in Fig. 6(b), whose
estimation is in agreement with that performed above in
(i) for the same system, i.e., A=0.7+0.1 and when A=0.7
is imposed, a =2.810.5. However, R is somewhat dif-
ferent since here

R=1.14%0.07

(all uncertainties are accounted for).

(iii) Data from Ref. 45. We considered the best fit I'(z)
describing the data. They cover the range 0.1 mK—0.2
K, which prevents corrections to scaling from being im-

portant [see Fig. 6(c)]. We have estimated
R =1.054+0.09 .

The uncertainty is higher, because we could not analyze
the rough experimental data.

As a conclusion on this particular system, corrections
to scaling seem to be evidenced, with data from two dif-
ferent origins, and the correction amplitudes agree with
each other. However, the values of R, which include a
third independent determination, lie in the range 1—1.14;
the mean value

R=1.06

is in satisfactory agreement with all determinations, con-
sidering the experimental uncertainties. The disagreement
in these experimental values can be attributed to differ-
ences in calibrations of I" and g, and to small differences
in the mixture composition. This should affect only R,
and not its temperature variations.

F. Triethylamine-water

This system was seen to show important corrections-
to-scaling® terms in the specific heat, order parameter,
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TABLE VI. Shear viscosity of the T-W system.
T,=18.1700°C. Shear rate is about 30 sec™'. For absolute
values, multiply 7 by 0.93. Typical relative uncertainty is 0.9%.

Ly(T,—T) % (1072P) Ly(T,—T) 7 (1072Py)
2.35328 6.652 —1.078 80 4.184
2.42303 6.937 —1.13942 4.184
2.306 58 6.463 —1.20396 4.174
2.23858 6.241 —1.20396 4.283
2.48823 7.235 —1.28372 4.228
2.37304 6.727 —1.33559 4.244
2.47401 7.195 —1.44391 4.321
2.12465 5.943 —1.562 54 4.345
2.064 33 5.766 —1.55304 4.197
2.00148 5.620 —1.54176 4.211
1.93297 5.473 —1.609 42 4.306
1.87947 5.375 —1.968 95 4.269
1.82777 5.373 —1.87338 4.232
1.77156 5.213 —1.75444 4.306
1.702 93 5.210 —2.28275 4.320
1.63900 5.044 —1.12392 4.207
1.58104 4.975 —7.68725(—1) 4.196
1.51623 4.895 —8.98933(—1) 4.172
1.43984 4.802 —1.69009 4.184
1.35326 4.721 4.17396(—1) 4.350
1.266 95 4.652 1.37153(—-1) 4.264
1.17557 4.584 1.05264(—1) 4.208
9.55513(—1) 4.480 —6.83190(—1) 4.147
8.32911(—1) 4.394 —3.64952 4474
6.93145(—1) 4.344 —3.64952 4.557
6.93149(—1) 4.359 —3.88229 4.576
5.39415(—1) 4.439 —2.97586 4.441
5.82724(—2) 4.316 —3.68873 4.592
—3.56234(—2) 4.310 —3.68873 4.539
—1.41559(—1) 4.249 —3.21878 4.460
—2.98401(—1) 4.216 —2.88234 4.372
—8.20972(—1) 4.244 —2.748 81 4.349
—4.68399(—1) 4.199 —2.67360 4.376
—7.10082(—1) 4.310 —2.52568 4.399
—9.59711(—1) 4.196 —2.37512 4.304
—1.05382 4.221 —4.604 80 4.685
—8.98933(—1) 4.217 —4.34252 4.662
—8.91589(—1) 4.159
—9.54502(—1) 4.212
—1.01887 4.196

and susceptibility. Direct measurements of the correla-
tion length in a wide range of temperature do not exist at
the present time, one of the reasons being the lack of
knowledge of a correlation function which includes
corrections to scaling. However, turbidity measurements
close to T, are available,?? and with a few approximations
it is possible to infer values for £. The correlation length
correction ag can be inferred from the other corrections,
for instance, from the susceptibility correction
ay=—5.1+0.6 and the universal ratio*®
ag/ay=0.68+0.03. Then the value a;=—3.5+0.6 can
be deduced, which leads, when imposed in the analysis of

fito-2pg) ——— T e — r
7+ (a) 4
T-W
6 S = 30 sec” |
ag= 14
(g= 0.7
Yg= 004
sk i
[t —ga
+ .
L M‘*‘M—.—-@m"" 4
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1. 1l I S A W N Lol
10~ 107! 1 T-TclK) 10
Aol [0 T ) "]
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FIG. 7. (a) Shear viscosity 7] of the T-W system vs tempera-
ture. Shear rate is about S =30 sec~!. Data affected by shear
(T—T, <0.01 K) have been discarded. ®, our data; 4+, Ref. 46
data. Full line is the best fit with A=0.7 and Y,=0.04 im-
posed. (b) Deviation A7 between the shear viscosity data and
formula (42), imposing Y, =0.04. When corrections are not al-
lowed, distortions appear.

the data of Ref. 29, to the value £,=(1.28+0.05) A.

Our viscosity data (Table VI and Fig. 7) cover the range
0.01—12 K and agree with the Ref. 47 data, checking both
the viscosimeter calibration and the density behavior. The
analysis, performed in Table II, shows that the exponent
Y; can reach the value 0.04 only if corrections to scaling
are considered.

Linewidth measurements have been obtained in the
range 10 mK—10 K (Table VII and Fig. 8), at
g=(2.044:0.01)Xx 10° and (1.91+0.01)X10° cm~!. The
gé& range is 1.5—0.02, therefore the data lie mainly in the
hydrodynamic region. In Table III is reported the

1
T-Te(K)

FIG. 8. Temperature variation of R in the T-W system.
Amplitudes (ag,R) are given with A=0.7 imposed. Full line is
the best fit with A=0.7 imposed. @, set 1; O, set 2. The accu-
racy of set 2 is lower. For sake of comparison, data from Ref.
39 (+) have been reported.
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TABLE VII. Linewidth data for the T-W system. ¢;=2.04Xx10° cm~! and ¢q,=1.91%X10° cm~!. Thermal variation of ¢ comes

from n —n, as given in the text or in Ref. 36.

Lny(T.—T) I" (10° radsec™!) AT (10° radsec™"') LT, —T) I (10° radsec™!) AT (10° radsec™!)
set 1 (qy) set 1 (q)
1.757 57 1.535(—2) 2.6(—3) —3.35046(—1) 4.545(—3) 1.3(—4)
1.85212 1.533(—-2) 5.6(—3) —4.56802(—1) 4.299(—3) 8.8(—5)
1.83598 1.250(—2) 3.7(=3) —5.31189(—1) 4.079(—3) 1.3(—4)
1.81276 1.075(—2) 2.2(—3) —7.59062( —1) 3.571(—=3) 3.2(—4)
1.77127 1.128(—2) 3.0(—3) —7.59275(—1) 3.472(—-3) 5.7(-5)
1.71565 1.562(—2) 3.1(=3) —1.06623 2.849(—3) 5.1(—=5)
1.976 90 1.524(—2) 4.8(—3)
2.04087 1.937(—-2) 7.8(—3) —1.07293 2.849(—3) 6.4(—5)
1.97690 1.731(—2) 6.2(—3) —1.24131 2.564(—3) 6.3(—5)
1.943 67 1.393(—2) 4.0(—3) —1.38507 2.347(—3) 5.2(=95)
—1.51274 2.212(—3) 4.2(-5)
1.92677 1.388(—2) 4.6(—3) —1.73045 1.953(—3) 2.4(—-95)
1.890 14 1.307(—2) 3.2(=3) —1.965 36 1.644(—3) 2.1(—=5)
1.87323 1.843(—2) 5.4(—3) —2.06117 1.533(—3) 3.7(-=5)
1.68405 1.219(—-2) 1.9(-3) —2.39574 1.293(—3) 1.3(—5)
1.65581 9.433(—3) 2.5(—3) —2.777 31 1.038(—3) 1.3(—5)
1.63711 1.190( —2) 2.2(—3)
1.607 00 1.282(—2) 2.1(—3) —3.01175 9.090( —4) 1.3(=5)
1.606 90 1.388(—2) 2.4(—3) —3.01175 9.090(—4) 1.3(=5)
1.587 87 1.329(—-2) 1.6(—3) —3.33807 8.064( —4) 1.0(=5)
1.53607 1.282(—2) 1.8(—3) —3.68467 6.802( —4) 1.1(-5)
—3.93195 6.410( —4) 1.5(=5)
1.53521 1.041(—-2) 2.0(—3) —4.10407 6.476(—4) 1.0(—-5)
1.481 67 1.086( —2) 1.5(—3) —4.24712 5.773(—4) 9.6(—6)
142751 9.615(—3) 2.0(—3) —4.48247 5.952(—4) 8.5(—6)
1.33060 1.000(—2) 1.2(—3) —4.70993 5.494(—4) 8.6(—6)
1.30571 1.086( —2) 2.2(—=3)
1.287 66 1.250(—2) 1.2(—3)
1.19007 1.006(—2) 9.1(—4) set 2 ()
1.19007 1.095(—2) 9.6(—4) —1.29828 1.811(—3) 1.9(—4)
1.16823 1.000( —2) 1.7(-3) —1.31677 1.845(—3) 2.0(—4)
1.14145 1.111(=2) 5.9(—4) 2.15918(—1) 5.494(—3) 1.8(—3)
7.84358(—1) 7.042(—3) 2.9(—-3)
1.05928 1.079(—2) 9.3(—4) 5.31216(—1) 5.694(—3) 1.9(—3)
9.68620(—1) 9.523(—3) 5.8(—4) —2.85019(—1) 4.032(—-3) 9.7(—4)
8.70584(—1) 9.259(—3) 6.8(—4) —2.86350(—1) 3.906(—3) 9.1(—4)
8.69746(—1) 9.615(—3) 1.7(-3) —5.56870(—1) 3.906( —3) 9.1(—4)
7.60949(—1) 8.333(—3) 5.5(—4) —5.56870(—1) 3.401(—-3) 6.9(—4)
6.39907(—1) 8.163(—3) 3.1(—4) —7.72190(—1) 2.890(—3) 5.0(—4)
5.84061(—1) 7.440( —3) 1.0(—-3)
5.00960(—1) 7.246(—3) 5.0(—4) —7.94073(—1) 2.994(—3) 5.3(—4)
3.37404(—1) 6.885(—3) 1.5(—4) —9.46750(—1) 2.717(-3) 4.4(—4)
1.80074(—1) 6.097( —3) 3.5(—4) —1.39837 2.040(—3) 2.4(—4)
—1.55117 1.853(—3) 2.1(—4)
6.607 37(—2) 5.882(—3) 2.7(—4) —2.04022 1.420(—3) 1.2(—4)
—2.70574( =2) 5.636(—3) 3.0(—4) —3.35241 7.530(—4) 3.4(-95)
—1.06133(—1) 5.229(—3) 2.1(—4) —4.268 70 5.096(—4) 1.5(-5)
—1.73990(—1) 5.050(—3) 2.4(—4) —3.91202 5.903(—4) 2.0(-5)
—3.35046(—1) 4.545(—3) 1.3(—4) —4.828 31 4.504(—4) 1.2(-5)

analysis of such data. We used the viscosity fit with
corrections to scaling (Q =0.730 in Table II), and dynam-
ic corrections appeared with an amplitude nearly four
times that found in the N-M systems. We also tried a fit
with ag=0, which lead to a lower fit quality. The con-
clusion is that dynamic corrections appear clearly in the

linewidth only because the static corrections have been
imposed.

Finally, it is interesting to note that the sign of the
corrections in this T-W system always shows an opposite
sign when compared to that in other systems, in both stat-
ics (corrections <0) and dynamics (a5 >0, ar <0). This
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may be connected to the nature of the critical point, a
lower one, which changes the sign of ¢.*® It is known that
such systems have the particularity of revealing strong de-
viations from ideality.

The value of R can be estimated from Table III, with
A=0.7, and is

R =1.061+0.06

(all experimental uncertainties included). This value is
more reliable than the former value R =1.21 which was
given in Ref. 7; the disagreement is chiefly due to new
viscosity data and to the use of a different fitting pro-
cedure which now includes corrections to scaling in both &
and R.

V. GENERAL CONCLUSION

The values of the universal ratio R in binary fluids that
we have found here lie in the range 1—1.14 (Table VIII
and Fig. 9). These values are lower than those published
in Ref. 7 where the mean value was 1.16, and agree well
with others in pure fluids***° or polymers.’! This change
is due, first, to the elimination in the analysis of systems
where we could not check both the viscosity and the
linewidth calibrations; second, to the use of new informa-
tion (correlation length for N-H, viscosity calibrations for
I-W and T-W), and finally to the use of an analysis which
includes static and dynamic corrections to scaling (T-W).
We would like to emphasize that a great number of pa-
rameters enter in the determination of R; some of them,
such as the correlation length, are measured indirectly,
and thus the experimental uncertainty is probably higher
than 6% in the best case. For this reason, a comparison
with the theoretical predictions R=1.027 (MC) and
R =1.038 (RG) has little significance.

Another result of this work is the apparent relevance of
corrections to scaling in both the viscosity and the
linewidth. Both MC and RG theories predict corrections,
with exponent v=0.63 for MC and A~0.7 for RG. Al-
though we have shown that the formulations were similar,
their meaning is quite different since MC corrections are
essentially positive.

Moreover, we have shown that according to MC the ra-
tio of corrections a;/ar should be universal and equal to

120 - -

110 |- —

090~ N-H N-M T-W I-W D

FIG. 9. Dynamic amplitude ratio R when corrections to scal-
ing are taken into account and using the function Q.

2x5. Let us compare in greater detail these predictions
with experiments.

(i) Exponent of the corrections. The exponent A has
been found to be in the range 0.35—0.75 (Table VIII),
with most of the values closer to 0.7. However, the exper-
imental accuracy is not sufficient to distinguish between
MC (A=v=0.63) or RG (A=~0.7).

(ii) Sign of corrections. Concerning the linewidth, the
correction in the N-M system is positive (ag ~2), but for
T-W it is niegative (ag ~ —8).

The analysis of the viscosity results is more complicat-
ed. Indeed the divergence with exponent Y;, ~0.04 is very
weak and its precise theoretical value is not definitely ad-
mitted. The existence of corrections will induce an “‘effec-
tive” expcnent Y%ff, larger than the theoretical one if
a <0, and smaller if ag >0. According to MC, one ex-
pects az>0, and therefore all the effective exponents
should be lower than the theoretical value. It follows that
the corrections should be weaker for the larger experimen-
tal values. This will lead in the present study to a theoret-
ical value Y;>0.045 (I-W mixture, Table VIII). This
value seem:s large compared to that we considered as the
most probable: Y;=0.04. Now, if one imposes Y; to be
0.04, positive corrections (T-W system) or negative correc-
tions (I-W) are detected.

TABLE VIII. Values of the universal amplitude ratio R, of the effective exponents A and Y;’", and of the correction amplitudes

ag and a, when the values A~0.7 and Y;=0.4 have been imposed.

System R? Ag® ag® Y,‘"" b A’ a,’
N-H 1.03 +£0.06 0.0397+0.0004
I-w 1.06 £0.07 0.0455+0.002 0.65+0.4 —2.1 £0.5
C-D 1.055+0.05¢ 0.0415+0.0005°¢
N-M 1.00 +£0.05 0.35+0.1 1.91+0.1 0.0398+0.0003
1.14 +£0.07 0.7 £0.1 2.9+0.5
1.05 +0.09¢
T-W 1.06 £0.06 0.681+0.05 —7.810.3 0.031 +0.002 0.75+0.3 1.45+0.2
#From Table III.

"From Table II.
°From Ref. 41.
9From Fig. 6.
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(iii) Amplitude ratio of corrections. In the N-H and
C-D systems no corrections are visible. It is possible, us-
ing the determination of the linewidth correction, to infer
a value for the viscosity correction. In the N-M mixture
one obtains a;=ag /8~0.3. This low value is not experi-
mentally detectable. For the T-W mixture the absolute
value of the ratio is |ag/ag | ~=. To conclude about
these corrections, the MC predictions seem compatible
with the experiment results in N-H, C-D, and N-M, but
not in I-W and T-W.

More work with pure fluids, which belong to the same
universality class and are currently studied in the frame-
work of a MC analysis assuming backgrounds, should
give interesting results. Let us note the viscosity RG
analysis of Ref. 21 for ecthane, leading to the value
A =0.45+0.09, with a positive amplitude.
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APPENDIX A: THE SCALING FUNCTION Q

It is interesting to discuss in greater details the form of
the scaling function Q. The first approximation
(Kawasaki®) consisted in considering both a constant
viscosity [x;=0, E¢(g§)=1] and the Ornstein-Zernicke
static susceptibility (7=0, X(g&)=[1+(g&)*]~"). It fol-
lows, estimating the MC integral (7a) for the critical part
of the conductivity AA,;

QK(X)

(A1l
(x2+41) )

xpa=1, Lglx)=
with x =4¢.

Then, in terms of the relation (39), i.e., =R, /E,, the
Kawasaki result corresponds to

QUx)=Rp(x)=0k(x) . (A2)

A reasonable assumption for the scaling function E, is
suggested by Ref. 19:

Eox)=[X ()] (A3)

In the Bhattacharjee approximant (10) the Fisher-Burford
susceptibility is used,

2,.2yn/2
X(x)= —HEEXTT
1+(149/262)

where 11=0.024, $=0.014. In fact, in Ref. 11 an approx-
imation for E, was proposed which is very similar to
(A3): Eolx)=C(x)[(x/2)*+ 1];:11/ . Here C is a numeri-
cally computed factor which takes into account the differ-
ence between the Fisher-Burford susceptibility (A4) and
the Ornstein-Zernicke susceptibility. Let us note that C is
always very close to unity: C(gé=100)=1.012,

(A4)
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FIG. 10. R=T,/[ksTQx 5 pq’/677&] plotted vs 7 in the
range (0.1—10) mK. Experimental data T, are from Ref. 11
at ¢;=1.92x10° cm~'. K,B,P represent either the Kawasaki,
Bhattacharjee-Ferrell, or Paladin-Peliti function. One expects R
to be a constant in this ¢ range, the correction to scaling being
negligible.

C(g§=0)=1.003. On the other hand, Ref. 11 assumed
the first-order approximation R,=k obtained for
x5=0,7=0. Itis possible to find in this way'"!?

Ry(x)
Eo(x )

However, the Bhattacharjee function (A5) uses the R,
and E functions which are computed at different pertur-
bative orders. We think that Qp, as defined in (33), is
more correct than Qp, since all the “one-loop™ forms of
the scaling functions have been left unchanged. In fact,
we only inserted in (33) the two-loop exponent values
(7=0.0315, x;~0.063) instead of the one-loop values
(=0, x;=0.07). In order to make a comparison
between the different approximants Qg, Qp, and Qp
of the function €, we have plotted R(t)
=TCexpulkp TQgE)g?/6m7E]~" in a range close to the crit-
ical point, where either corrections to scaling or back-
ground terms are negligible. Figure 10 shows that the
Kawasaki function Qk gives clear distortions since it does
not take into account the viscosity divergence. The
Paladin-Peliti [Eq. (32)] and Bhattacharjee-Ferrell [Eq.
(A5)] functions provide better agreement.

0y0x)= = O (x)C)[(x /2241777 . (A5)

APPENDIX B: EXPANSION OF THE CROSSOVER
VISCOSITY FUNCTION

We follow here the notation of Ref. 14(c), which is
slightly different from our notation. The background
contribution to the diffusion coefficient is now!#®’

— kpT ¢ 2£2)
Dy el U+g8) _ jp |U4x%) |5 1),
167§ ch Q(x) 9c
Therefore, we see that
ZB = (im =L (B2)
@ 4

which differs from the wave vector g, defined in the rela-
tions (14) and (15) by a factor 3. The crossover function
H of Bhattacharjee et al. has the following form:

. 1
H=5sin3¢p — —— TacE St §)2 [1—2(ge£)Isind
e §)3 {[1— (QC§)2]¢D— [ (gc&’—1°L(w)} ,
(B3)
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where
Yp=arccos(1+g3£%) 172, (B4)
172
qc§—1 ¥p
— —_— e , B
P tan > (B5)
14w .
1 f 1
L= M1y f9cE> (B6)

2arctan |w | ifgcé<l.

In the experimental region gc& and gp& are larger than
1 and we can expand H in powers of 1/qc& and 1/gpé.
This work has been done using a computer. The first
term of the expansion is analytical:

~—H.
e T=1+(im) xg4 o =142x

*
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