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Experimental determinations of universal amplitude combination for binary fluids.
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We have considered for binary fluids the universal dynamic amplitude ratio R which connects the
typical frequency I of the order-parameter fluctuations to the viscosity g and to the correlation
length g. We have analyzed the mode-coupling (MC) approach and the renormalization-group (RG)
theory. The mode-coupling approach accounts for background terms in both g and I, whereas RG
includes corrections to scaling in the transport coefficients with an effective exponent 5=0.7. We
emphasize that the two approaches are similar in formulation, the correction terms from MC show-

ing a leading exponent ~ =0.63, close to X. The correction amplitudes ar (linewidth) and a (viscos-

ity) are essentially positive in the MC approach. Moreover, we claim that their ratio should be
universal if we assume the Bhattacharjee-Ferrell crossover viscosity function: a /aI- ——2x, with

x&-0.06, the critical viscosity exponent. We also define an amplitude factor R (q, t), the asymptotic

value of which is R. It allows the corrections to scaling, in the framework of the RG theory, to be
taken into account. New viscosity measurements have been made with the isobutyric acid-water (I-
W) and triethylamine-water (T-W) systems. New Rayleigh linewidth measurements have been per-
formed in the T-W mixture. Analyses of the viscosity data in I-W, T-W, nitrobenzene-n-hexane
(N-H), nitroethane-3-methylpentane (N-M), and chlorex-n-dodecane (C-D) systems have led us to
introduce correction terms for the I-% and T-W systems, with an experimental exponent =0.7. I-W
corrections have been found negative. The linewidth data, analyzed in the N-H, I-W, C-D, N-M,

and T-W systems, show that corrections are present in R for the N-M and T-W mixtures, with ex-

ponent -0.7. T-W corrections have been found to be negative, when using negative statics correc-
tions. Finally, the asymptotic values of R were found in the range 1.00—1.14, with a mean uncer-

tainty of 7%%ug. They are in agreement with both the recent MC (1.027) and RG (1.038) expectations.

I. INTRODUCTION

Universal combinations among the amplitudes of the
statics properties (order parameter, susceptibility, correla-
tion length, specific heat, etc.) have already been investi-
gated' for binary fluids. These are indeed good represen-
tatives of the class of fluids, characterized by the space
dimensionality d =3 and the n = 1 component of the or-
der parameter, like the three-dimensional Ising model.
Some mixtures have been seen to exhibit corrections to
scaling in their static properties, which obviously had to
be considered in the interpretation of the data. We now
consider in this work the dynamic properties of binary
fluids, especially the ratio R which connects the decay
rate of the order-parameter fluctuations (or the linewidth
I of the Rayleigh spectrum) to the shear viscosity g and
to the correlation length f: R cc I tIg.

The experimental situation is somewhat puzzling con-
sidering the determination of R, as is the theoretical situa-
tion also. For the latter, two approaches have been used:
the mode-coupling (Mc) and the renormalization-group
(RG) theories. The object of this work is to introduce and

compare the two theories, to report linewidth and viscosi-
ty experiments on the nitrobenzene-n-hexane (N-H), iso-
butyric acid-water (I-W), and triethylamine-water (T-W)
systems and to analyze in the framework of RG and MC
theories these data as well as others already published, i.e.,
the nitroethane-3-Methylpentane (N-M) and chlorex-n-
dodecane (C-0) mixtures. We will see that beyond the
determination of R, corrections-to-scaling terms had to be
considered to account for viscosity and linewidth data, as
we have already emphasized in Ref. 3.

II. THEORETICAL

The critical dynamics of binary mixtures is well
described by the so-called model A of Halperin and
Hohenberg. The relevant relaxing modes are the order
parameter P (the relative concentration c —c, in binary
fluids, where c is concentration and c, is the critical con-
centration) and the transverse part of the local velocity,
whose Onsager coefficients are, respectively, the mass
conductivity A and the shear viscosity g.

The MC theory assumes a Gaussian form of the static
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Landau functional in order to solve the Langevin equa-
tions of model A and neglects the proper Feynman dia-
grams of perturbative expansion, as has often been done.
Moreover, the MC expansion is an uncontrolled approxi-
mation in three dimensions.

On the other hand, the RCx approach takes into account
the dissipative quartic term in the Landau functional and
is able to expand in terms of the small parameter
E =d, —d. ' Here d, is the critical dimension above
which the conventional Van Hove theory, neglecting the
critical fluctuations, is valid (d, =4 in binary mixture
dynamics). The MC approach leads to results in good
agreement with those of the RG approach in computing
the universal exponents and the scaling functions because
of the weak viscosity divergence.

X~o'c =o'o4 (2)

Here /=got "is the correlation length, with v the univer-
sal exponent; t =(T—T, )/T, is the reduced tempera-
ture, with T =T, the critical temperature. x is a univer-
sal exponent, and oo and go are nonuniversal amplitudes.
In the critical limit, g~ oo, and the background becomes
negligible. Then it is possible to identify the kinetic coef-
ficient o. with its critical part Ao, However, the back-
ground can be relatively important for temperatures far
enough from the critical temperature, where g is not
much larger than the intermolecular length scale.

Let us consider the local coefficients cr(r) and their
Fourier transforms:

cr(q)= f d r e 'q''o(r) .

Then one has to solve iteratively two coupled integrals for
the viscosity Ag, (q) and the conductivity AA, (q) obtained
from the equations of motion (see Sec. IIA1 below).
Kawasaki was able to give remarkable results assuming a
constant viscosity, i.e., g =g~. We will discuss the
Kawasaki results, and will see that a clearer justification
in the framework of the dynamic RCr theory can be
found. However, let us first briefly review the MC
analysis for the viscosity and the Rayleigh linewidth.

1. The Kawasaki results

The characteristic frequency of the order-parameter
fluctuations is measured by the linewidth I of the Ray-
leigh spectrum. In a Lorentzian approximation, I is de-
fined from the linearized Fick equation of the concentra-
tion diffusion as

I (q) —
q

—D(q)qA(q)
x(q)

(4)

where 7 is the order-parameter static susceptibility,

A. The mode-coupling approach

In the transport coefficient (cr ), the MC approach
separates an anomalous part ho., determined by the long-
wavelength critical fluctuations from a regular back-
ground o~. A simple additive law is assumed:

c7= cTg +Eclat

Scca'

" (g is the usual Fisher exponent ). In the full
critical limit (q~0, gaz oo ) an exact relation, known as
the Kawasaki-Stokes relation, exists: '

kgT,D=R
6trgg

(5)

ddk Xq
D(q)=Ds(q)+kzT I-- (2~)"

k

X
1

g(q)k +(q —k) D(q —k)

(7b)

We have to assume as a first approximation
X

F](q)==kg, (q)=A q ~

and

D(q) =~,(q) =ADq'

with z=.".—g —x~ as trivial from relation (4). The first
attempt to compute the integrals in (7) was made by
Kawasaki, who assumed a constant viscosity (x =0)
and the C)rnstein-Zernicke form (g=0) for the suscepti-
bility, i.e., X =Jog X(qg). With x =qg, X(x)
=(x'+1;-'.

Then oixe obtains, from (7b),

k, TEI, == q =R Q(qg)q
&q 6' rig

where R =:-Rz ——1 and

(8)

Q(x) =Q= —,'x [1+x +(x —x ')tan '(x)] . (9)

The Kawasaki assumption is not too arbitrary because of
the weak viscosity divergence. It leads to a good represen-
tation of the critical dynamics. Using relations (7),
Kawasaki and Lo' subsequently found a nonclosed form

Here kz is the Boltzmann constant and R is a universal
amplitude ratio. If we assume R = 1, the relation (5) pro-
vides the same diffusion coefficient D as for a solid
sphere of radius g moving in a fluid of viscosity rl. The
correlation volumes move as Brownian particles in the
medium.

We should also note that (4) is equivalent to the relation
among the exponents

2 —'g —xh = 1+x-
Fl

The two coupled integrals to solve in MC theory are

g(q) =g~(q)
kgT

2(d —1)q

1 1X~ ~X~
~-, v

X "(2~)" D(k)k'+(- k)'D(q k)
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for Q and a slightly different value of R, 8 =1.027.
On the other hand, Bhattacharjee and Ferre11, as cited

in Refs. 11 and 12, proposed the following form for the
scaling function Q:

Q~(x)=Q+(p x +1) ~ (10)

2. SA,ear viscosity

It is difficult to evaluate the viscosity integral (7a)
which diverges if one tries to insert the first-order
Kawasaki linewidth (8), Of course this problem does not
occur in the RG perturbative expansion where there are
no iterative integrals.

Perl and Ferrell' "' imposed an arbitrary, adjustable,
Debye cutoff qD on the integral (7a), which must be ex-

trapolated a posteriori by fitting the experimental data.
Then it was possible to compute the critical exponent x:

=x-„ln(Q (),
98

x-„= =0.054 .8

15m.

Q =qD in this approximation. From (11) it follows that

with p = —,
' and C(x)=1 a factor taking into account the

difference between the Ornstein-Zernicke and the Fisher-
Burford susceptibilities. The approximant (10) has the
advantage of taking into account the viscosity divergence
but it is based only on heuristical considerations (see Ap-
pendix A}.

necessary to impose a cutoff, supposed to have the same
value qz on the integrals (7a) and (7b). Indeed, the short-
wavelength fluctuations are taken into account by the
backgrounds.

In our notation their results can be written

Q-'= —+1 1

qc qD

1 1 1

qc q, 2qD

1 3 1=—C4
QOG

with a„=2x„/q, .

which take the form of (14b) in the limit qD 00 ~ The
correction (15) to q, does not seem to be important in
binary mixtures owing to the small value of qD

'

[qo
' ——(0.7+0.1) A as extrapolated in the N-M viscosi-

ty") which does not essentially change the interpretation
of the linewidth data. ' ' ' Nevertheless, the partition be-
tween the background and the critical part is not a trivial

problem. While the asymptotic behaviors are well deter-

mined [t~0, n-(Qg) i; t~ao, n-nz], the intermedi-
ate region, precisely where the experimental data are
available, is not simply represented by an analytic func-
tion. Bhattacharjee et al. proposed the crossover

function n=nse li. We expanded it in powers of g
Hx —1

(see Appendix B), and found that the viscosity behavior
can be described in a large region around T, by the simple
formula

n= na[1+&„»(QC)]=n-a(QK) (12) 3. Linemidth

Kawasaki and Ohta'" ' were also able to give a value
for x ( x- =0.067) by mixing Mc and e-expansion

il Tl

methods. More recently, Bhattacharjee and Ferrell' "ar-
gued for the "old" value 8/(15~ ).

Oxtoby and Gelbart'""' reached a remarkable result by
considering a background I z in the linewidth due to the
conductivity background Az, i.e., A=hA, „+A&, leading
to the relation I =AI, [1+irg "L '(qg)],

where the amplitude az is

(17)

The Oxtoby and Gelbart result implies that the
linewidth background may be computed using the viscosi-
ty critical part hg, . We do not consider the problem of
determining the regular viscosity, which is not trivial and
somewhat arbitrary, as noted above. The relations (14}
correspond to the assumption

Then they estimated Q without any cutoff on the integral
(7a) and obtained

(Qg) ~
ay=

qc qc
(18)

kyar

Ag
QOG

—[
Ao= —C
Aa ko'

In fact (assuming x~ ——1 and x =0) we have
Yl

where C=0.9 and Ao/Xo=k~ T/6mnpfp Let us defiine .q,
by the relation A~/AD ——I/q, go. The estimate (14a) be-
comes

Q =1/q, , q, = —,C
Qoo

(14b)

Besides, Bhattacharjee et aI. ' '"' and Burstyn et aj. ' '"
pointed out that the contribution to the MC integrals (7)
from large wave vectors is not negligible. It is therefore

The scaling function L(x) =Q(x)/(x +1) ensures that
the background continues to exist up to the critical point
but only when qg»1 (i.e., q&0, T=T, ). In this limit
L (x) compensates exactly the g vanishing power of the
ratio I ii/b, l,„. On the other hand, the value of L is very
close to unity for qg & I.

We note that the ratio al-/a„should be universal if one
admits that the crossover behavior of the viscosity is well
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described by the function H. Namely, we obtain, from
(16) and (18),

w*=0,
(25)

az =2x 8
ar

B. The renormalization approach

1. Corrections to scaling

(19)

)=got "[1+a&t""+O(t)]. (20)

The exponent v has the value v=0.630 according to the
RG estimation.

b. Dynamics. From the equations of model P it is
possible to write the parameters of the bare perturbative
expansion' of the viscosity and of the order-parameter
correlation functions as

kgT Ap
fo= Wp=

Apgp 'gp

mp is an irrelevant parameter vanishing at the fixed point.
It is often neglected since it does not enter in the compu-
tation of the asymptotic behavior. However, we have to
take it into account in order to analyze the dynamical
corrections to scaling. There are, in fact, two transient ex-
ponents, &of and co, and the transport coefficient o (e.g.,
A or i) ) takes the form

(21)

The RG approach analyzes both statics and dynamics
in a quite similar manner. The corrections to the asymp-
totic behavior are governed by universal transient ex-
ponents ~ related to the Wilson functions derivatives
whose zeros give the fixed point of RG transformations. '

The situation is more complicated in dynamics than in
statics because the perturbative expansion involves many
parameters depending on the couplings between the slow
modes and not just the quartic coefficient g of the Landau
functional.

a. Statics. The binary mixtures belong to the universal-

ity class of the three-dimensional Ising model. Then the
Wegner exponent has the value cog =0.78. In the follow-

ing we will be interested in the correlation length:

xp ———„e[1—0.033m'+0 (e')] ~0 (f*')=0.916,

xq, 9e[1+0238e+O(e )]+O(f ) 0 065

while the transient exponents are' '
cof =i:-+0.121m +O(E,f' )=1.121,

co~=2 ——„@+0.136' +0( ef' )=1.241 .

(26)

(27)

(28)

The values in (25) and (28) are obtained from a second-
order e expansion. In principle it is possible to compute
all the scaling functions So(x) in (22), but up to now only
the function Lp(x) for the mass conductivity has been cal-
culated.

The R(s theory justifies the scaling assumption for the
order-parameter decay rate I:

f'(q, g) ~q'Q(qg) . (29)

0, as 0, shows a universal form, z is the characteristic
dynamical exponent '

z =3-+x„. (30)

A relation such as (29) is not valid for the decay rate of
the two other modes of the transverse velocity: we should
speak of "restricted (to the order parameter) scaling" in
model A

3. The scaling function Q

The ur[iversal scaling function 0 can be defined from
(4) as the ratio of the scaling functions of A and X:

f' = -I—, a[1—0. 1e +0 (e3)] .

Here we use, instead of (21), the more convenient defini-
t'on fo= 4golAorio where Kd 2' ——m. Il (d/2) is a
suitable factor, d =4—e is the dimension of interest, I is
the Eulej[' function, and gp measures the coupling
strength. gp&1 in units where kz T, =1. Then it is possi-
ble to compute the critical exponent values from (25): '

cT( q, g) = aors So(x)[1+af Qf (x)g

+a + (x)g + ] . (22)

Q(x) =L (x)X '(x)

and Ref. 17 gives the first-order result

(31)

The S(x) are universal scaling functions which have to
satisfy the requirements

So(x)-x as x~oo

Sf (x)-x f as x~&x&

and the normalization condition

(23)

S(x =0)=1 . (24)

Let us note that, as a consequence of (23), the correc-
tions to scaling can be not negligible near the critical point
for x ~~1.

2. Dynamical exponents

Q=Q = Qx(x)

x +1
(32)

1 —x —~ 2 x +g/2
Qp ——Qx ~ (x +1) ~ (33)

Relation (33), as well as the Bhattacharjee expression of
Eq. (10), satisfies the scaling requirements of Eq. (23):

with xA =——0.96, g =0. We will use the value of x„-found
in the viscosity fit and the fixed dimensional computation
r)=0.0315 (Ref. 7) [instead of the e-expansion value
i)= —,', e (Ref. 15)] in applying the relation (32) to the
analysis of the linewidth data. Then we obtain, using re-
lation (6),

The fixed point of the scale transformation in the space
of the renormalized dimensionless parameters is ' ' 1+@

Q(x,'-x ~ as x~~ . (34)
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R =6mKd „—e[1 +0. 06e+O(e )]=0.79, (35)

setting directly @=1 and d =3. This value does not seem
believable compared to the experimental results. Perhaps
the amplitude ratio and the scaling functions show an e

dependence which is stronger than the e dependence of
the exponents.

In fact, Ref. 6 does not provide an explicit form for
Q(x). Another R estimate is obtained in a rather artificial
manner, mixing RG and MC calculations at d =4:

R =1.2Rx+O(e )=1.2. (36)

I.et us note that (36) corresponds to the Stokes law for a
spherical droplet of viscosity g moving in a medium of
the same viscosity. Finally, a fixed dimensional computa-
tion has given, ' to first order:

R =6rrEd +O(f'—)=1.0375,m 83
3 80

and we think that the second-order correction should be
less than 8%. Then the most reliable prevision of 8 lies
in the range 1—1.12.

On the other hand, from an experimental point of view,
the most important problem to solve is to infer the right
asymptotic R value from linewidth measurements carried
out in a wide region of temperatures. The results (35) and
(37) are inferred with an amplitude ratio R defined as the
inverse of the fixed point value f* of the renormalized pa-
rameter f.

One obtains, with a convenient normalization condi-
tion,

(38)

Therefore we see that R has the same correction to sca!in-g-
terms as f", at least to a first-order approximation. In
other words, we can treat R just as the other dynamical
parameters A, g. Let us generalize the relation (5) at q&0
by defining two scaling functions, Ep(x) for the viscosity

t) and Rp(x) for the amplitude ratio R, according to the
relation (22).

kgT
D(q) =—Rp(qg)

nEp(q()

Then we can identify, from (8), Q(x ) =R p(x ) /Ep(x),
where Rp(x)

~
„~xand Rp(0) =1 following the boun-

dary conditions (23) and (24).
Now we can consider the correction-to-scaling terms by

defining a parameter R(qg),

R (qg) =RR p(qg) [1+att fg Rf (qg)

+aR. 4 R.(qk)+. ]

where the amplitudes aR f,az and the functions Rf
are defined using the general notations of formula (22).

4. The universal amplitude ratio E.

There is some disagreement between different theoreti-
cal prev]Isions concerning the value of R defined by (5).
Siggia et al. found

rt(q„g) =rip/ Ep(x)[1+af „Ef(x-)g

+a „E (x)g + ] . (41)

It is nearly impossible to distinguish between the values of
the transient exponents [see Eq. (28)]. We thus have to
define an effective exponent co,ff which should be experi-
mentally determined. Since q=0 in usual shear flow
viscosimeters, x=0 and E(x)=1 in (41). Therefore the
Eq. (41) becomes, in terms of the reduced temperature t,

~(1+a„t + . . - ), (42)

with Y„:—x„v, 5=—m, f~, and a„- an effective amplitude.
It is important to consider the temperature dependence of
gp because the critical exponent is very small; one usually
assumes an Arrhenius behavior, valid far from T„or sim-

ply a po1ynomial expansion in power of t:

rip( T)=gpexp[E/(1+. t)],
qp(T)=g 0+At+St +

as well as for the MC background in (16).

(43a)

(43b)

6. The linewidth

The considerations concerning the amplitude ratios
developed above allow us to modify the Kawasaki-Stokes
relation (5) as

kgb —i+a Rp(&)
I (q, g)=R

6vrg (T) Eo(&)

I+a&/Rf(x)g +a+ R~(x)g

I + a„fEf(x)g +-a„E(x)g-
(44)

Note that Q:—R 0/Ep.
The scaling functions Rf ~,Ef exhibit a value close to

unity in the hydrodynamical region x & 1, precisely where
the corrections have some importance. Then we shall ap-
ply the same approximation used to obtain the form (42)
of the shear viscosity,

kgT 2I (q, g)=R Qp(x)(1+aRt )q
6p.@'

(45)

with a~ the effective amplitude of the linewidth correc-
tions to scaling and g given by (42).

C. Conclusion of the theoretical part

According to the above analysis, we can make the fol-
lowing remarks.

(1) The critical exponent x is poorly determined by
both MC and RG theories. Indeed x„ is very srna11

(-0.06) and it is 2+x rather than x which is effec-

5. Shear viscosity

Considering the corrections-to-scaling terms in (22), the
shear viscosity takes the form'



30 EXPERIMENTAL DETERMINATIONS OF UNI~IERSAL. . . . II. 2691

tively computed. We will use the RG value 0.063, ' close
to the MC value calculated by Ohta-Kawasaki. ' ' I This
is slightly different from the Bhattacharjee-Ferrell esti-
mate 0.053 ' "'

(2) The values of the amplitude R from the MC and
RG approaches agree within some percent; R is expected
to lie in the range 1.00—1.12.

(3) The corrections to the asymptotic behaviors are not
too large in binary mixtures and in fact they are often
neglected in determining the value of the amplitude ratio
R and of the exponent Y . Nevertheless they may con-
tribute up to 10% at t =10 to the linewidths of some
systems.

An attempt to take into account these contributions has
been made by subtracting the Oxtoby-Gelbart background
related to the critical viscosity. "' ' Gn the other hand,
up to now, there have been no attempts to verify the RG
corrections in binary fluids (except our work ).

(4) The viscosity and linewidth corrections to scaling,
compared to the MC corrections, show a similar tempera-
ture dependence [v=0.63 in (16) and (17), while the first
transient exponent is cofv=0. 7], and the scaling functions

Rf play the same role as I. in (17).
No simple relations exist in RG between the amplitude

of the linewidth corrections az and the amplitude of the
critical viscosity qo. Then we have to consider a~ and a&
as free parameters. To compute them, one has to in-
tegrate the Wilson functions (coupled differential equa-
tions) for the renormalized parameters f and w. Thus it is
possible to show that (aa)f „and (a„-}/ depend on the
initial conditions (see, e.g., the analysis made in Refs. 22
and 23 for the He thermal conductivity), i.e., depend on
both the critical amplitudes go and Ao.

(5) The predictions of MC are precise and restrictive:
the corrections induced by backgrounds are essentially
positive and we have estimated their ratio:

/~r=~„-/~r=2x„-= —, . Here ~r=~r~o ' and corr
sponds to the RG correction az.

III. EXPERIMENTAL

This part is devoted to the viscosity and linewidth mea-
surements. The correlation length, which is the third pa-
rameter entering in the R determination, has been already
examined in detail in Refs. 1 and 7, together with other
static properties.

A. Sample preparation

It is of prime importance to accurately know the criti-
cal composition whenever data very close to T, are need-
ed. Roughly speaking, a deviation bP with respect to the
critical composition P, will lead to some deviations for
data obtained in the temperature region 5To
=T,(bg/B)'~~, where B is the coexistence curve ampli-
tude.

(i) N-H system. Components were of spectroscopic
grade and filtered through 0.2-pm Teflon filters. The
binary mixture has been thought to exhibit the critical
concentration of 0.510 mass fraction of nitrobenzene ac-
cording to Ref. 24. However, recent experimental deter-

minations and analyses' have shown that the critical
composition was 0.525.

The experimental concentration that we used was
0.509+0.M2 for the linewidth measurements, and
0.509+0.007 for the viscosity measurements reported in
Ref. 26. j:)ata have been obtained in a temperature range
further from T, than 0.1 K (linewidth) or 0.03 K (viscosi-
ty), which is much larger than ATO-2 mK, deduced by
using B=0.77 and T, =293 K.' Note that the correla-
tion length( determination, which needs data much closer
to T„has been performed in a sample with the critical
mass fraction 0.525. All samples were frozen in liquid
nitrogen arid then sealed under vacuum.

(ii) I-W system. Isobutyric acid was of quality better
than 99.59o purity, and the water comes from a sophisti-
cated indu, &trial purification setup, giving an Ohmic resis-
tance of 18 MQcm. The experimental mass fraction of
the acid was 0.3889+0.005 (linewidth) and
0.3882+0.0003 (viscosity}, to be compared with the value
0.3885. Deviations to criticality seem negligible here.
The same sample has been used to determine both the
linewidth and the correlation length. ' Due to the presence
of water, we could not freeze the sample without breaking
the cell; so we sealed all samples at atmospheric pressure
and at 0'(." where the vapor pressures of the components
are low.

(iii) T-% system. Purity of the triethylamine was better
than 99.5%. Water was from the same origin as above.
The experimental mass fraction of triethylamine used in
the samples was 0.321+0.001 (linewidth) and
0.3211+0.0001 (viscosity). The generally admitted value
is 0.321 according to Ref. 28 and our determination of
Ref. 2; therefore, the samples that we used did not show
appreciable deviations to criticality. As above, the sample
used for 1:inewidth measurements is the same as that al-
ready used for the correlation length determination. ' '

As explained above, we sealed the samples at O'C at at-
mospheric pressure.

All the cells used in the linewidth measurements were
made of fused quartz; they were of cylindrical shape, with
an inner radius of 1.0 cm and inner length of
2.000+0.M1 cm (N-H) or 5.000+0.0002 cm (I-W, T-W).
The visco~imeter was made of Pyrex (see below).

B. Thermal regulation

The cells for the linewidth measurements were placed
into a thejmally stabilized copper oven, enclosed inside an
air regulated box. Over time intervals of some hours, the
stability was within +0. 1 rnK. The viscosimeter was im-
mersed in a large water bath giving a stability of +0.5
mK. Ten. iperature was measured with a quartz thermom-
eter that we calibrated with the triple point of water
(+0.01'C').

C. Linewidth measurements

We have applied a conventional light beating spectros-
copy method, in a homodyne arrangement. As a light
source, w» used a He-Ne laser with power up to 80 mW.
Particular attention was given to spurious heating by the
laser beam near T„which was seen to reach in some cases
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0.5 mK per mW incident power. Fortunately, it is pre-
cisely near T, that the signal-to-noise ratio is the highest,
so that low exciting power can be used.

The scattering angle was nearly equal to 90', where the
spurious contributions from stray light and multiple
scattering are minimized. This angle was measured with
a goniometer allowing an accuracy of some minutes of an-

gle to be obtained. In fact it was rather the incident beam
convergence and the solid angle of collection which con-
tributed to the mean uncertainty of 0.5% to the transfer
wave vector q.

The signal was analyzed with a single clipped correla-
tor, whose calibration was checked. The correlation f'unc-

tion that we obtained fitted well to a single exponential
function whose characteristic time ~ could be related of
the typical frequency I by l = 1/2r.

Multiple scattering had negligible effects here, owing to
the weak turbidity of the I-W and T-W systems and/or
the temperature range of interest (N-H), Gravity effects
were negligible since the laser beam was located nearly in
the middle of the sample. ' Moreover, these effects take a
very long time to settle close to T, , and show negligible
amplitudes far from T, .

D. Viscosity measurements

We use a calibrated capillary Aow viscosimete~ from
Allen's group (the same as in Ref. 26). It was filled with
the mixture and sealed as indicated above. It was placed
on a special rotary mount immersed in a large water bath.

The inner diameter of the capillary was /=0. 02 cm.
With p the density, the mean shear rate S can be easily de-
duced, g=10' cm /s being the gravitational acceleration:
S=gg/16(t)/)p). To prevent deformations of the critical

Auctuations by shear (see Ref. 32), leading to a leveling
of& of the viscosity behavior, we had to consider tempera-
ture regions such that the lifetime of fluctuations
r=(16t)/ka T)( is lower than the typical shear time 5

The conditions Sv. ~ 1 means that data are considered
only in the region ETs)g' '(pgPT, Ns)' '. Taking go
from Ref. 1„one finds, for N-H, studied in Ref. 26 with
the same viscosimeter,

AT, =0.03 K,

AT, =0.05 K. ,

and for T-W

AT, =0.01 K .

In such a viscosimeter, we measured a flow time related
to the kinematic viscosity (g/p), and we needed density
data to obtain the shear viscosity g. Care had to be taken
since p exhibits some anomaly near T„related to the
(weak) divergence of the specific heat. For I-W the densi-
ty is taken from Refs. 27, 34(a), and 34(b):

p =0.9930—[6.15 x 10 ( T —T, )j .

For T-W the critical density is deduced from Ref. 35.
This system exhibits a relatively large anomaly near T, .
Since refractive index data have been shown' to behave
as the density„we have used the relative data from Ref.
36.

pT ~——p, +(Bp/Bn)(n —n, ),

p, =0.9242, (Bp/Bn ) =2.3,

n —n, =2.34' 10-'(T, —7 )+16.2 g 10-'( I;—T)'

—1.93X10 '(T, —T)'+6. 14x10 '(7', —T)' "[1—0.278(T, —T)'"'] .

Finally, we checked the viscosimetel calibratiGll Evil h

pure water. By varying temperature, it was possible to
vary q from 0.6&& 10 Po to 1.5 g 10 -Po. Figure 1

shows that the previous calibration given with the
viscosimeter did not take into account all the kinetic ener-

gy corrections. We have therefore determined another
calibration formula, and have consequently recalibrated
the data of Ref. 26 obtained in a region where a simple
proportionality constant is not sufficient. 095—

I 1
i
« I I

)
I r

Our calibration

e~
4~

E. Determination of T,

Two striking phenomena are associated with the
phase-separation process; the transmission goes practically
to zero, and intense speckles appear at low scattering an-
gles. By performing temperature steps of about 0.2 mK
(linewidth), or I mK (viscosity), it is possible to determine
T, to within the same accuracy.

05

+
I I I I I

15 Ti(10-iP )

FKJ. 1. Calibration of the viscosimeter. The ratio of the
viscosity of water (g j to the measured viscosity (g ), using the
chlibration given with the viscosimeter, is plotted vs g. The
curve represents our calibration, which has been used for binary
Auids.
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IV. RESULTS AND DISCUSSION B. Nitrobenzene and n-hexane

Three quantities g, ri, and I enter in the determination
of R, and they will be successively analyzed below. Since
R is defined only in the critical limit q~0, t~0, we
must extrapolate its asymptotic value according to the
scheme developed above, which includes corrections to
scaling.

Static corrections (a~) were found only in the mixture
T-W. In the other systems we will simply use the correla-
tion length with at ——0, i.e., g=gpt ", the theoretical ex-

ponent v=0.630 being imposed. But before analyzing in
detail the results on the five systems N-H, I-W, C-D,
N-M, and T-%', we will describe the fitting procedure.

A. Fitting procedure

We have used the Tournarie statistical refining
method. Among other qualities, it has the advantage of
giving, for each fit, the contribution of the experimental
information to the determination of a given parameter. It
also enables an estimate to be made of the systematical
distortion by means of a statistical quality coefficient Q:

The coirelation length is taken from Refs. 1 and 25,
where it was found to be gp

——(2.65+0.07) A.
The viscosity data, obtained in the range 10 mK —45 K,

using the viscosimeter we described in Sec. III, has been
already analyzed in Ref. 26. We have reported in Table I
the value& corresponding to the new calibration of the
viscosimeter. We have reported in Table II the parameter
values of the best fit. The exponent Y is found to be
close to the expected theoretical value, so corrections to
scaling are indeed very small in this system. We note the
nearly identical result obtained on F„assuming for gp(T)
either an Arrhenius or a polynomial function.

Linewia'th data are reported in the range 0.1—5 K or
qg= 1—0.08; most of the data lie therefore in the hydro-
dynamic region, leading to a difference between the func-
tions Qx and Qp lower than 1.5%. R(t), as obtained
from (46), has been plotted in Fig. 2 where no clear varia-
tions appt. ar, indicating the smallness of corrections to
scaling. The results of the fit are given in Table III, and
corrobora)'. e the absence of corrections. We think that the
more reliable result is the first one ( Q =0.818}. Account-
ing for tht different experimental sources of uncertainties,
we obtain

bY; bY+,
2 2

Os+i

where AY, is the deviation of the data F; with respect to
the function of fit and o; is the corresponding statistical
error. We also have an access to the correlation coeffi-
cients between the parameters to be determined. The
Uiscosity data have been fitted to Eq. (42) as follows:

(i} all parameters free;
(ii} Y„ imposed to 0.04;
(iii) Y„=0.04 and X=0.7 imposed.

The linewidth data have been fitted in nearly the same
way:

(i) all parameters free, except v=0.63 and Y„-=0.04;
(ii) all parameters free, except v=0.63, Y„=0.04, and

6=0.7.
We used formula (42) as the fitting function for the

viscosity, and for the linewidth, formula (45). The t
dependence of q has been taken into account, through the
coefficient (1/q)dq/dT=(l/n)dn/dT, , which can be in-
ferred from refractive index data. The weak anomaly of
the refractive index near T, has been accounted only for
the T-W system, where it was found to be important.

When determining 5 by the viscosity analysis, we have
fixed Y„ to 0.04, the value we considered the most prob-
able. Finally, we have always fixed in the linewidth fit-
ting function (45) Y„ to the same values as those used in

the viscosity fit in order to preserve the I limiting
behavior. We have also made visible the temperature
variation of R. From formula (45)

R (t)=[I /ks TQp(x))6m. rig .

R =1.03+0.06 .

These results are not in agreement with others ob-

tained in the same mixture. However, the concentration
was not the same, leading to discrepancies in both I and

gp. Also, the R value is now changed compared to the
value one of us reported in Refs. 7, because the gp value

has been changed according to Refs. 1 and 25 (see above
Sec. IIIA). The 4% discrepancy with the analysis made
in Ref. 2 ~ is due to the new calibration of the viscosime-
ter.

C. Isobutyric acid-water

I I I I I I I I

N-H

1.0—

~ ~
~ ~ 0~ ~ 0 ~~ ~

4 $0

R = 1.03
} } I I i I I I I

0.2 05 1

~ ~0
I

0 ~ I

~ tI ~ ~ ~ ~
0

~ 0 0
0e

~ ~

I T ~ I

1.5T- Tc(K)

FIG. 2. Temperature variation of R for the N-H system.

The correlation 1ength amplitude has been determined

by two groups' and leads to the same value

gp
——(3.625+0.065) A.
The viscosity data are reported in Table IV and Fig. 3.

They covt:r the range 0. 1—15 K and agree well with the
Ref. 34 data. Although the data from Ref. 34 are in
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TABLE I. Shear viscosity of the N-H system. T, =20.00 C. Shear rate is about 150 sec . Typical relative uncertainty is 0.5%.

g(10 'Pp) g (10 Pp) g (10 Pp)

—1.836
—2.053
—2.344
—2.508
—2.618
—2.867
—2.984
—3.169
—3.290
—3.443

3.667
3.953
4.348
4.514
4.657
4.883
5.003
5.138
5.269
5.361

—5.115
—5.210
—5.228

—5.351
—5.373
—5.494
—5.515
—5.604
—5.621

6.130
6.246
6.187
6.179
6.236
6.261
6.274
6.270
6.303
6.350

—6.700
—6.759
—6.840
—6.936
—6.990
—7.027
—7.341
—7.368
—7.512
—7.577

6.6S7
6.677
6.698
6.758
6.718
6.718
6.839
6.839
6.859
6.879

—3.458
—3.458
—3.542
—3.542
—3.604
—3.603
—3.603
—3.662
—3.662
—3.770

5.350
5.322
5.386
5.386
5.449
5.429
5.429
5.471
5.471
5.594

—5.652
—5.786
—5.809
—5.903
—5.918
—5.967
—6.074
—6.209
—6.250
—6.287

6.278
6.343
6.400
6.416
6.425
6.434
6.466
6.478
6.535
6.519

—7.610
—7.647
—7.721
—7.761
—7.801
—7.888
—7.983
—7.983
—8.088
—8.145

6.920
6.904
6.920
6.952
6.940
6.992
6.980
7.013
7.049
7.101

—3.766
—3.766
—3.796
—3.796
—3.843
—3.843
—3.909
—3.981
—4.079
—4.194

5.555
5.555
5.576
5.596
5.598
5.598
5.601
5.682
5.716
5 ~ 800

—6.502
—6.550

—7.106
—7.293
—7.505
—5.663
—5.663

6.616
6.600
6.677
6.685
6.750
6.738
6.839
6.879
6.33 l.

6.331

—8.206
—8.206
—8.170
—8.368
—8.386
—8.412
—8.412
—8.412
—8.492
—8.492

7.061
7.101
7.061
7.161
7.141
7.154
7.129
7.162
7.202
7.161

—4.194
—4.194
—4.260
—4.284
—4.284
—4.342
—4.345
—4.345
—4.431
—4.511

5.761
5.828
5.803
5.799
5.799
5.857
5.872
5.852
5.934
5.928

—5.663
—5.663
—5.722
—5.726
—5.839
—5.853
—5.863
—5.956
—5.956

6.307
6.318
6.331
6.331
6.400
6.372
6.372
6.413
6.413
6.393

—8.492
—8.673
—8.673
—8.673
—8.721
—8.902
—8.902
—9.190
—9.190
—9.190

7.141
7.181
7.162
7.154
7.262
7.275
7.262
7.323
7.323
7.283

—4.543
—4.566
—4.570
—4.674
—4.709
—4.740
—4.813
—4.874
—4.938
—5.002

5.917
5.878
5.878
5.980
5.968
6.012
6.041
6.062
6.068
6.084

—5.983
—5.983

—6.287
—6.336

6.394
6.413
6.543
6.S15
6.535

—9.256
—9.593
—9.593
—9.593

7.371
7.444
7.484
7.484



30 EXPERIMENTAL DETERMINATIONS OF UNIVERSAL. . . . II. 2695
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TABLE II. Fit of the viscosity data to g(t) =gp(t)t ~(1+a t ), where gp(t) is either a polynomial function

rto(t)=qo+At+Bt'+Ct or an Arrhenius function t)0(t)=r70exp[E/(1+t)]. Values in parentheses have been imposed in the fit. Q
measures the quality of the fit (see text). PF stands for a polynomial function foi gp(t), AF denotes an Arrhenius function for gp(f).

System
gp

(10 Pp)
Ip A B C

(10 Pp) (10 Pp) (10 Pp) (10 Pp)

N-H PF

AF

0.0397
+0.0004

0.0398
%0.0003

(0)

(0) 2.696
+0.040

2.941
+0.03

5.111
+0.015

—15.3
+0.6

41
+10

—78 0 814
+47

0.810

I-W PF

AF

0.0454
+0.0018

0.0484
+0.0015
(0.04)

(0.04)

(0)

(0)

—1.5 0.65
k4.8 +0.42
—2.13 (0.7)
20.46

27.4
+4.7
16.9

2 190
72

2113

6.50
+0.18

2.45
2 11.2

0.99
+1.6

18.70
+0.25

—146
+12

925
1210

—31 0 976
+1000

0.808

0.935

0.920

N-M' PF

AF

0.0398'
+0 0003'

0.0399
+0.0002

(0)

(0) 2.208
+0.086

2.76
+0.04

0.518

T-W PF 0.0306
+0.0020

(0) 31.51
+0.52

474
+30

5380
1970

5430 0.468
+9900

AF 0 032

+0.001

(0.04)

(0)

1.4 0.75

+0.32

0.536+
0093 x 10

3.57+
0 12 X10

15.6

+0.1

13.6

+3.1

0.785

0.669

(0.04) 1.45 (0.7)

+0.2

5.79k
3.3

X10-' 13.1

+0.5

0.730

'Data from Ref. 43, with the calibration of Ref. 11.
bFrom Ref. 19.

I I

q(10 ~Pp)

2.5—

I I I I i I

(a)

5=60 sec '

hgtcPo)
+0.05—

0 ~

~ ~

-0.05—

(b)
Without corrections ~

+Op

~ I)
0

2.0— alt- -08
(8, = 07)
Yq= 004

+0.05—

p a '~ 8
~ ~

4~0 0 'Oa 0e
~ ~0

0.1
~ i ~ s & i I

T-Tc{K) 10

p.05 With corrections, 5=0.65+ 0.42
l I I

10-' 1 T-TctK) 10

FIG. 3. (a) Temperature variation of the shear viscosity g in the I-W system at the shear rate S =60 sec '. Data affected by shear

( T—T, &0. 1 K) have been discarded. ~, our data; +, data from Ref. 34(a); o, data from Ref. 34(b). Full line is the fit to our data
with 5=0.7 and Y =0.04 imposed. (b) Deviation hg between our shear viscosity data and formula (42), imposing Y&

——0.04.
Without correction to scaling, systematic distortions appear.
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TABLE III. The values in parentheses are imposed.

N-H
( P =0.043)

1.033 +0.006
1.10 +0. 16

(0)
—0.3 a0, 5 0.27 +0.70

0.893
0.980

I-W
( F =0.04)

(a = —1.50)
1.062 20.008
1.066 +0.02

(0)
—0.06+0.2 O.S +10

0.601

0.632

N-M
( F =0.0399)

1.006 +0.00l
0.998 +0.001
1.0005 +0.0007
1.007 +0.001
0.994 +0.003
1.0001+0.0007
1.166 +0.009
1.138 +0.012
1.136 +0.009

(0)
0.76+0.08
1.97+0. 12

(0)
0.28+0.09
1.9 +0. 1

(0)
2.74+0.86
2.85 +0.50

Q. S27+0.015
(0.7)

0.35 +0. 1

(0.7)

0.70 40. 10
(0.7)

0.197
0.636
0.451
0.211
0.458
0.339
0.696
0.919
0.920

T-W
( F =0.04)
( o = l.45)

1.00 k Q. 0 1

1.065 +0.006
(0)

—7.3 +1.4
0.212
0.962

0.989
0.571

0.683+0.044
(0.7)1.057 +0.004 —7.78+0.25

(0)og=Q

'From Ref. 11, q&
——1.92X10' cm '. Typical uncertainty is 0.3%.

From Ref. 11,both ql and q& ——7,04~ 10 cm ', with a typical uncertainty of 1.6%.
'From Ref. 44„q~ ——3065 cm
We imposed the K range to be 0. 5—0.9. %'hen Z was set completely free, the value 5=0.11+0.04 was found. This is why in Ref. 3

we estimated E=Q. S~ 0.4.

agreement with ours, we have not considered them in our
analysis because they have been obtained in mixtures with
a somewhat different concentration. The results of the
fl ts are reputed in Table II, where weak corrections to
scaling have been detected. The value of the exponent
found here (6=0.65+0.42) is slightly different from the
value (0.45+0.4) ci'.Cd in our Ref. 3. This is due to the
fact that in Ref. 3 we simply recalibrated the rough
viscosity data by a constant value (0.94). Considering Fig.
1, the calibration error is small, but this changes the 6
central value. We have retained the best fit ( Q =0.935) to
analyze the linewidth data.

I.inemidth data are from Ref. 39 (q=1.90+10 cm ')
and from Ref. 40 where the data have been extrapolated
at q =-0 from experiments performed in the range
q=(1—2.5)X10' cm '. In order to remove this source
of error, we have considered only the data in the range
T —T, =1.39—15 K (q(& 1), where Q~=Qs=Qp=l
within 1%.

The results of the fits are given in Table III. No avail-
able information, as shown in Fig. 4, could be extracted
concerning corrections to scaling. The more reliable value
is thus

R =—1.06+0.07

taking into acount all the experimental uncertainties.

D. Chlorex- n-dodecane

We only report here the main results obtained with this
system. Details can be found elsewhere. '

The Uiscosity data, obtained in the range 0. 1—15 K,
have been obtained in the same viscosimeter we used for
the N-H, I-W, and T-W systems. The exponent found,
F„=0.0415+0.0005, is close to the expected theoretical
value, so corrections to scaling should be very small in
this system. The Iinemidth data, obtained in the range
6X10 to 6 K or q(=2X10 to 20 at the wave vector

aR= 0
R = 1.06.

103 +
0.5 5 T-T&(K) 50

I

R

1.1 .

4
~ te ~ ~ 04

~ ~ so ~
Q 4

R - 1.055

4 4I

0

~ 0

s
~ ~ ~

~ ~

O~~ ~

p~ ~

FIG. 4. Temperature variation of R for the I-W system. No
corrections are visible. Points correspond to Ref. 41 and crosses
to Ref. 40. Both are strictly in the hydrodynamic region.

10 1P ~ 1 T-T,(K)

FIG. 5. Temperature variation of R for the C-D system. No
corrections are visible (from Ref. 41).
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TABLE IV. Shear viscosity of the I-W system.

T, =26.6030'C. Shear rate is about 60 sec '. Typical relative

uncertainty is 0.6%.

T —T.
LN

q=2.04)&10 cm ' exhibit no corrections as it can be
seen in Fi.g. 5. The value of the amplitude ratio R has
been found to be

R = 1.055+0.05,

—3.084 98
—3.221 56
—3.341 35
—3.507 07
—3.695 01
—3.921 59
—4.216 59
—4.575 44
—5.259 56
—5.821 74

—6.062 49
—6.343 51
—6.74425
—7.258 86
—7.258 86
—7.24008
—7.627 11
—8.144 81
—8.015 59
—7.627 11

—7.69073
—7.151 13
—7.00491
—6.72461
—6.51040
—6.388 14
—6.11847
—5.88448
—5.597 70
—5.388 15

—5.222 39
—5.11684
—5.002 98

1.601
1.655
1.718
1.797
1.833
1.906
2.018
2.126
2.274
2.368

2.403
2.445
2.502
2.609
2.578
2.568
2.608
2.675
2.677
2.621

2.597
2.581
2.541
2.487
2.465
2.454
2.413
2.379
2.334
2.301

2.279
2.242
2.216

where all the experimental uncertainties have been ac-
counted for.

E. Nitroethane-3-methylpentane

In Ref. 42 can be found a value for go, the theoretical
exponents being fixed: go ——(2. 13+0.05) A. For the
viscosity, we have taken the data from Ref. 43, multiplied
by 1.031 according to Ref. 11. The useful range was 3
mK —7 K. As reported in Table II, it is of no use to look
for corrections to scaling, since the effective exponent 7
is found ~cry close to the theoretical value. Concerning
the linemidth, three laboratories have already studied this
system, and we will successively analyze their data ob-
tained at various q values and T —T, ranges.

(i) Data from Ref. 11. We have not retained the largest
wave vector because of multiple scattering corrections.
The data at q~

——1.92&&10 cm ' have been obtained in
the range 0.3 mK —12 K, or qua=25 —0. 1. The analysis is
made in Table III. Although some of the data have been
obtained in a range qg& 1, it is not useful, as stressed in
Ref. 3, to consider the q dependence of the corrections
Rf (X) [from formula (44)]. Indeed, the coefficients

Rf Mi(X) aire different from unity precisely in a region
where the corrections become negligible. Anyway, as is
also shown in Fig. 6(a), corrections far from T, are visi-
ble. A value

R = 1.00+0.06

can be inferred, which is in agreement with the Ref. .1

analysis which nevertheless applied a MC approach. All
uncertainties have been taken into account.

The data obtained in the range 0.4 mK —0.4 K at

qz
—7.04;(10 cm ' are less accurate [Fig. 6(a)]. There-

fore, it is of no use making a special analysis of these q2
data.

1.04—

102 — +

+ y
+ +

10-' 10 3
I

10-2

1.00 ~ —:-pre+

10 '

aR= 1,9+0.1
R = 1.00

1 T-Tc(K)

12—

1,0—

10 3

aR= 2805
Rp = 1.14

~ ~

~ ~ ~

I

10 2

I

10 '

N-N (L)

1 T —Tc(K) 10

1.065

N-N (S)

EXP. ERROR 0 5 /o

I

T -Tc(K) 10 "

{c)
~ y ~ ~ ~ ~ e ~

~ ~

R= 1.051 ~

~ ~
pi

4 ~ ~ 0

10-'

FIG. 6. Temperature variation of R in the N-M system, showing the presence of corrections to scaling. Full line is the best fit
with 5=0.7 imposed. All amplitudes (a~, R) are given with Z fixed to 0.7. B in (a), C in (b), and S in (c) correspond, respectively, to
the data of Refs. 11, 44, and 45. In (a) points represent data obtained at ql ——1.92X10 cm ', and crosses are data at

qz
——7.04X10 cim '. Uncertainties on the q2 data are much larger than the q~ uncertainties, so the best fit is mainly due to the ql

data. The systematic distortion which appears in (c) is only due to the use of an analytical function instead of the rough experimental
data which were not available. Here corrections to scaling cannot be visible sine» data have been obtained only close to T, .
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TABLE V. Linewidth data for the N-M system by Calmettes (Ref. 44). q=3.065 cm ' and T, =26.4'C. Numbers in

parentheses denote powers of 10, e.g., 1.73486(+2) =1.73486)& 10'.

Lg(T —T, )

1.734 86( —2 )

1.882 18( —2)
3.478 36( —1)
3.485 42( —1 )

3.488 95( —1)
6.928 97( —1)
6.933 97( —1)
1.069 36
1.069 53
1.09694

I (rad sec '
)

7.366
7.159
9.768
9.028
8.991
1.214( + 1)

1.182(+ 1)
1.600( + 1)
1.731(+ 1)

1.638(+ 1)

AI (rad sec '
)

2.8( —1)
4.6( —1)
5.7( —1)
5.7( —1 )

8.0( —1 )

8.9( —1 )

1.0
1.2
1.4
2.5

Lg(T —T, )

—2.292 63
—1.751 S8
—1.745 83
—1.72597
—1.725 41
—1.410 59
—1.410 59
—1.309 33
—1.305 27
—1.272 97

I (rad sec ')

1.480
2.288
2.256
2.312
2.246
2.910
2.804
2.865
2.869
3.262

AI (rad sec ')

3.08( —2)
4.76( —2)
6.72( —2)
8.96( —2)
5.88( —2)
1.23( —1)
6.44( —2)
1.65( —1 )

1.20( —1)
2.18( —1)

1.097 11
1.S95 54
1.S96 15
2.318 51
2.318 51

—6.571 28
—6.096 83
—5.546 78
—5.167 29
—5.11600

1.584(+ 1)
2.529(+ 1)
2.625(+ 1)
4.431(+ 1)
4.436(+ 1)
7.853( —2)
1.187( —1 )

1.627( —1)
2.387( —1)
2.400( —1)

1.3
1.5
1.2
5.0
1.3( + 1)

1.4( —2)
5.6( —3 )

1.1( —2)
1.9( —2)
1.4( —2 )

—1.21234
—1.202 31
—1.20065
—1.17280
—1.159 57
—1.11933
—1.11474
—1.11018
—8.686 92( —1)
—8.675 01( —1)

2.882
3.108
3.349
3.000
3.286
3.272
3.008
3.474
3.784
3.803

1.73( —1)
2.38( —1 )

2.32( —1)
2.10( —1)
2.54( —1)
1.00( —1)
9.80( —2)
2.21( —1)
2.40( —1 )

2.63( —1)

—5.035 95
—4.6S646
—4.595 22
—4.086 38
—4.039 86
—3.54046
—3.S03 23
—2.81341
—2.806 77
—2.302 59

2.808( —1)
3.399( —1)
3.091(—1)
4.373( —1)
4.406( —1)
6.402( —1 )

6.898( —1)
1.009
1.083
1.486

5.3( —2)
2.2( —2 )

1.6( —2)
1.9( —2)
3 ~ 3( —2)
2.5( —2 )

7.8( —2)
7.8( —2)
8.4( —2 )

5.6( —2)

—5 05009( —1)
—4.853 20( —1)
—4.853 20( —1)
—4.612 42( —1)
—4.596 57( —1 )
—2.275 28( —1 )

—2.275 28( —1)
—2.398 54( —2)
—2.378 05( —2)

5.484 93( —3 )

4.911
5.683
5.466
5.139
5.715
6.082
6.215
7.546
7.383
8.110

2.54( —1)
3 ~ 89( —1)
3.80( —1)
3.92( —1)
3.61(—1)
4.98( —1 )

4.56( —1)
4.62( —1)
4.28( —1)
4.50( —1 )

When both the q& and qz data are analyzed together
(Table III), we nearly recover the q& analysis results, as
expected following the remarks of the preceding para-
graph. A value 6=0.3S+0.11 is found, which is low
compared to the expected value 0.7. However, the T —T,
range is small, and in order to obtain more information on
the corrections it is necessary to consider data obtained in
a wider T —T, range.

(ii) Data from Ref. 44 and Table V. With an investigat-
ed temperature range of 1 mK —10 K at a wave vector of
q=3.065 cm ', all data, even close to T„ lie in the hy-
drodynamic region ( qg & 0. 18). We have made the r vari-
ation of R visible by applying (46).

Corrections, up to 20%, are visible in Fig. 6(b), whose
estimation is in agreement with that performed above in
(i) for the same system, i.e., 6=0.7+0.1 and when 6=0.7
is imposed, a=2.8+0.5. However, R is somewhat dif-
ferent since here

R = 1.14+0.07

(all uncertainties are accounted for).
(iii) Data from Ref. 45. We considered the best fit I (t)

describing the data. They cover the range 0.1 mK —0.2
K, which prevents corrections to scaling from being im-

portant [see Fig. 6(c)]. We have estimated

R =1.05+0.09 .

The uncertainty is higher, because we could not analyze
the rough experimental data.

As a conclusion on this particular system, corrections
to scaling seem to be evidenced, with data from two dif-
ferent origins, and the correction amplitudes agree with
each other. However, the values of 8, which include a
third independent determination, lie in the range 1—1.14;
the mean value

is in satisfactory agreement with all determinations, con-
sidering the experimental uncertainties. The disagreement
in these experimental values can be attributed to differ-
ences in calibrations of I and q, and to small differences
in the mixture composition. This should affect only R,
and not its temperature variations.

F. Triethylamine-water

This system was seen to show important corrections-
to-scaling terms in the specific heat, order parameter,
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TABLE VI. Shear viscosity of the T-W system.

T, =18.1700'C. Shear rate is about 30 sec '. For absolute
values, multiply g by 0.93. Typical relative uncertainty is 0.9%.

Lm(Tc —T) g (10 Po) LN(Tc —T) g (10 Po)

Y((10'P )
~

7—

T-W

5 = 30 sec '

2.353 28
2.423 03
2.306 58
2.238 58
2.488 23
2.373 04
2.47401
2.124 65
2.064 33
2.001 48

6.652
6.937
6.463
6.241
7.235
6.727
7.195
5.943
5.766
5.620

—1.078 80
—1.13942
—1.203 96
—1.203 96
—1.283 72
—1.335 59
—1.443 91
—1.562 54
—1.553 04
—1.541 76

4.184
4.184
4.174
4.283
4.228
4.244
4.321
4.345
4.197
4.211

3—
J

10-

al --l.i

(8 = 0.7j
Yq= 00i

10

I I I I I I I I

T- Tc(Kj 10

1.932 97
1.879 47
1.827 77
1.771 56
1.702 93
1.63900
1.581 04
1.51623
1.439 84
1.35326

5.473
5.375
5.373
5.213
5.210
5.044
4.975
4.895
4.802
4.721

—1.609 42
—1.968 95
—1.873 38
—1.75444
—2.282 75
—1.123 92
—7.687 25( —1 )
—8.989 33( —1 )

—1.69009
4.17396( —1)

4.306
4.269
4.232
4.306
4.320
4.207
4.196
4.172
4.184
4.350

h g(cPoj
+0.2—
+0.1-

0—
-0.1 IL

+0.1 i
0 ~ =

-0.1—
-0.2—

I

10

(b)
Without corrections

Na ~ ~

I ~ p, %~+
T-W

~ t ~ w~ ~
~ g gP A

e~ ~ea'ah

With corrections, K=0.75+0.32
I I )

10-1 1 T-Tc(K) 10

1.266 95
1.175 57
9.555 13(—1)
8.329 11(—1)
6.93145( —1)
6.931 49( —1)
5.394 15(—1)
5.827 24( —2)

—3.562 34( —2)
—1.415 59( —1)

—2.984 01(—1)
—8.209 72( —1)
—4.683 99( —1)
—7.10082( —1)
—9.59711(—1)
—1.053 82
—8.989 33( —1)
—8.915 89( —1)
—9.545 02( —1)
—1.018 87

4.652
4.584
4.480
4.394
4.344
4.359
4 439
4.316
4.310
4.249

4.216
4.244
4.199
4.310
4.196
4.221
4.217
4.159
4.212
4.196

1.371 53( —1)
1.052 64( —1)

—6.831 90( —1)
—3.649 52
—3.649 52
—3.88229
—2.975 86
—3.688 73
—3.688 73
—3.218 78

—2.882 34
—2.748 81
—2.673 60
—2.525 68
—2.375 12
—4.604 80
—4.342 52

4.264
4.208
4.147
4.474
4.557
4.576
4.441
4.592
4.539
4.460

4.372
4.349
4.376
4.399
4.304
4.685
4.662

FIG. 7. (a) Shear viscosity g of the T-W system vs tempera-
ture. Sheaj rate is about S =30 sec '. Data affected by shear
( T—T, &0.01 K) have been discarded. ~, our data; +, Ref. 46
data. Full line is the best fit with 5=0.7 and Y =0.04 im-

posed. (b) Deviation hg between the shear viscosity data and
formula (4:!),imposing P =0.04. When corrections are not al-

lowed, distortions appear.

the data olI' Ref. 29, to the value gp =(1.28+0.05) A.
Our Uiscosity data (Table VI and Fig. 7) cover the range

0.01—12 I; and agree with the Ref. 47 data, checking both
the viscosimeter calibration and the density behavior. The
analysis, performed in Table II, shows that the exponent
F„- can reach the value 0.04 only if corrections to scaling
are considered.

Lineuid'th measurements have been obtained in the
range 10 mK —10 K (Table VII and Fig. 8), at
q =(2.04~:0.01))& 10 and (1.91+0.01)&(10 cm '. The
qg range i.s 1.5—0.02, therefore the data lie mainly in the
hydrodynamic region. In Table III is reported the

and susceptibility. Direct measurements of the correla-
tion length in a wide range of temperature do not exist at
the present time, one of the reasons being the lack of
knowledge of a correlation function which includes
corrections to scaling. However, turbidity measurements
close to T, are available, and with a few approximations
it is possible to infer values for g. The correlation length
correction ag can be inferred from the other corrections,
for instance, from the susceptibility correction
a& ———5. 1+0.6 and the universal ratio
a~/a~ ——0.68+0.03. Then the value a~ ———3.5+0.6 can
be deduced, which leads, when imposed in the analysis of

R

0~ ~
'(.0 —~ ' ' 0& ~~~

T-W

R=1.06'
(l.5—

10 1 10
T- T~(K)

FIG. 8. Temperature variation of R in the T-W system.
Amplitude~ (aR,R) are given with 5=0.7 imposed. Full line is
the best fit with 5=0.7 imposed. , set 1; 0, set 2. The accu-
racy of set 2 is lower. For sake of comparison, data from Ref.
39 (+ ) have been reported.
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TABLE VII. Linewidth data for the T-W system.
from n —n, as given in the text or in Ref. 36.

q~
——2.04&& 10 cm ' and q2

——1.91 && 10 cm '. Thermal variation of q comes

Lg(T, —T)

1.757 57
1.852 12
1.835 98
1.812 76
1.771 27
1.715 65
1.976 90
2.040 87
1.976 90
1.943 67

1.926 77
1.890 14
1.873 23
1.68405
1.6S5 81
1.63711
1.60700
1.606 90
1 ~ 587 87
1.53607

1.535 21
1.481 67
1.427 51
1.33060
1.305 71
1.287 66
1.19007
1.19007
1.168 23
1.141 45

1.0S9 28
9.686 20( —1 )

8.705 84( —1)
8.697 46( —1)
7.609 49( —1 )

6.39907( —1 )

5.8406& ( —1 )

S.OO96O( —1)
3.37404( —1)
1.800 74( —1 )

6.607 37( —2)
—2.705 74( —2)
—1.061 33( —1)
—1.739 90( —1)
—3.35046( —1 )

(10 rad sec ')
set 1 (q&)

1.535( —2)
1.533( —2)
1.250( —2)
1.075( —2)
1.128( —2)
1.562( —2)
1.524( —2)
1.937( —2)
1.731( —2)
1.393( —2)

1.388( —2)
1.307( —2)
1.843( —2)
1.219( —2)
9.433( —3)
1.190( —2)
1.282( —2)
1.388( —2)
1.329( —2)
1.282( —2)

1.041( —2)
1.086( —2)
9.615( —3)
a.ooo( —2)
1.086( —2)
1.250( —2)
1.006( —2)
1.095( —2)
1.000( —2)
1.111(—2)

1.079( —2)
9.523( —3)
9.259( —3)
9.615( —3)
8.333( —3)
8.163(—3)
7.440( —3)
7.246( —3)
6.885( —3)
6.097( —3)

5.882( —3)
5.636( —3)
5.229( —3)
5.050( —3)
4.S45( —3)

(10 rad sec ')

2.6( —3 )

5.6( —3)
3.7( —3 )

2.2( —3 )

3.0( —3)
3.1( —3 )

4.8( —3 )

7.8( —3 )

6.2( —3)
4.0( —3 )

4.6( —3 )

3.2( —3 )

5.4( —3 )

1.9( —3)
2.5( —3)
2.2( —3 )

2.1( —3 )

2.4( —3 )

1.6( —3 )

1.8( —3 )

2.0( —3 )

1.5( —3)
2.0( —3)
1.2( —3 )

2.2( —3 )

1.2( —3)
9.a( —4)
9.6( —4)
1.7( —3)
5.9( —4)

9.3( —4)
5.8( —4)
6.8( —4)
1.7( —3)
5.5( —4)
3.1( —4)
1.0( —3)
5.0( —4)
1.5( —4)
3.5( —4)

2.7( —4)
3.0( —4)
2.1( —4)
2.4( —4)
1.3( —4)

Lg(T, —T)

—3.350 46( —1)
—4.568 02( —1)
—5.311 89( —1)
—7.590 62( —1 )

—7.S92 75( —1)
—1.066 23

—1.072 93
—1.241 31
—1.385 07
—1.512 74
—1.73045
—1.96S 36
—2.061 17
—2.395 74
—2.777 31

—3.011 75
—3.011 75
—3.338 07
—3.684 67
—3.931 95
—4.10407
—4.247 12
—4.482 47
—4.709 93

—1.298 28
—1.31677

2.159 18( —1)
7.843 58( —1)
5.312 16( —1)

—2.850 19(—1)
—2 863 50( —1)
—5 S6870( —1)
—5.568 70( —1)
—7.721 90( —1)

—7.940 73( —1)
—9.467 50( —1)
—1.398 37
—1.551 17
—2.040 22
—3.352 41
—4.268 70
—3.91202
—4.828 31

(10' rad sec ')
set 1 (q~ )

4.545( —3)
4.299( —3)
4.079( —3)
3.S71( —3)
3.472( —3)
2.849( —3)

2.849( —3)
2.564( —3 )

2.347( —3)
2.212( —3)
1.953( —3)
1.644( —3)
1.533( —3)
1.293( —3)
1.038( —3)

9.090( —4)
9.090( —4)
8.064( —4)
6.802( —4)
6.410( —4)
6.476( —4)
5.773( —4)
5.952( —4)
5.494( —4)

set 2 (q2)

1.8aa( —3)
1.845( —3)
5.494( —3)
7.042( —3)
5.694( —3)
4.032( —3)
3.906( —3)
3.906( —3)
3.401( —3)
2.890( —3)

2.994( —3)
2.717( —3)
2.040( —3)
1.853( —3)
1.420( —3)
7.530( —4)
5.096( —4)
5.903( —4)
4.504( —4)

~I (106 rad sec ')

1.3( —4)
8 ~ 8( —5)
1.3( —4)
3.2( —4)
5.7( —5)
5. 1( —5)

6.4( —S )

6.3( —5)
5.2( —5)
4.2( —S)
2.4( —5)
2 ~ 1( —5)
3.7( —5 )

1.3( —5)
1.3( —5)

1 ~ 3( —5)
1 ~ 3( —5)
1.0( —5)
1 ~ 1( —5)
1.5( —5)
1.0( —5)
9.6( —6)
8.5( —6)
8.6( —6)

1.9( —4)
2.0( —4)
1.8( —3)
2.9( —3)
1.9( —3)
9.7( —4)
9.1( —4)
9.1( —4)
6.9( —4)
5.0( —4)

5.3( —4)
4.4( —4)
2.4( —4)
2.1( —4)
1.2( —4)
3.4( —5 )

1.5( —5)
2.0( —5)
1.2( —5)

analysis of such data. We used the viscosity fit with
corrections to scaling ( Q =0.730 in Table II), and dynam-
ic corrections appeared with an amplitude nearly four
times that found in the N-M systems. We also tried a fit
with a~ ——0, which lead to a lower fit quality. The con-
clusion is that dynamic corrections appear clearly in the

linewidth only because the static corrections have been
imposed.

Finally, it is interesting to note that the sign of the
corrections in this T-W system always shows an opposite
sign when compared to that in other systems, in both stat-
ics (corrections &0) and dynamics (a- &0, ar &0). This
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may be connected to the nature of the critical point, a
lower one, which changes the sign of t . It is known that
such systems have the particularity of revealing strong de-
viations from ideality.

The value ofR can be estimated from Table III, with
5=0.7, and is

R = 1.06+0.06

1.20—

1.10—

(all experimental uncertainties included). This value is
more reliable than the former value R =1.21 which was
given in Ref. 7; the disagreement is chiefly due to new

viscosity data and to the use of a different fitting pro-
cedure which now includes corrections to scaling in both g
and R.

1.00—

T-W I-W C-0

V. GENERAL CONCLUSION

FIG. 9. ])ynamic amplitude ratio R when corrections to scal-
ing are taken into account and using the function Qp.

The values of the universal ratio R in binary fluids that
we have found here lie in the range 1—1.14 (Table VIII
and Fig. 9). These values are lower than those published
in Ref. 7 where the mean value was 1.16, and agree well
with others in pure fluids ' or polymers. ' This change
is due, first, to the elimination in the analysis of systems
where we could not check both the viscosity and the
linewidth calibrations; second, to the use of new informa-
tion (correlation length for N-H, viscosity calibrations for
I-W and T-W), and finally to the use of an analysis which
includes static and dynamic corrections to scaling (T-W).
We would like to emphasize that a great number of pa-
rameters enter in the determination of R; some of them,
such as the correlation length, are measured indirectly,
and thus the experimental uncertainty is probably higher
than 6%%uo in the best case. For this reason, a comparison
with the theoretical predictions R = 1.027 (MC) and
R =1.038 (RG) has little significance.

Another result of this work is the apparent relevance of
corrections to scaling in both the viscosity and the
linewidth. Both MC and RG theories predict corrections,
with exponent v=0.63 for MC and 5==0.7 for RG. Al-
though we have shown that the formulations were similar,
their meaning is quite different since MC corrections are
essentially positive.

Moreover, we have shown that according to MC the ra-
tio of corrections a„/a~ should be universal and equal to

2x-. Let us compare in greater detail these predictions
. "I'

with experiments.
(i) Exponent of the corrections. The exponent 5 has

been found to be in the range 0.35—0.75 (Table VIII),
with most of the values closer to 0.7. However, the exper-
imental accuracy is not sufficient to distinguish between
MC (5—=i =0.63) or RG (5=0.7).

(ii) Sign of corrections. Concerning the linewidth, the
correction in the N-M system is positive (az -2), but for
T-W it is rlegative (aq ——8).

The analysis of the viscosity results is more complicat-
ed. Indeedy the divergence with exponent Y =0.04 is very
weak and:its precise theoretical value is not definitely ad-
mitted. The existence of corrections will induce an "effec-
tive" expcnent 7'-, larger than the theoretical one if7

a &0, an~i smaller if a ~0. According to MC, one ex-7

pects a 0, and therefore all the effective exponents7

should be j',ower than the theoretical value. It follows that
the corrections should be weaker for the larger experimen-
tal values. This will lead in the present study to a theoret-
ical value Y„&0.045 (I-W mixture, Table VIII). This
value seerr(s large compared to that we considered as the
most probable: Y-„=0.04. Now, if one imposes Y„ to be
0.04, positi. ve corrections (T-W system) or negative correc-
tions (I-W) are detected.

TABLE VIII. Values of the universal amplitude ratio R, of the effective exp)onents Z and Y', and of the correction amplitudes
az and a& when the values 5=0.7 and Y =0.4 have been imposed.

System

N-H
I-W
C-D
N-M

T-W

'From Table III.
From Table II.

'From Ref. 41 ~

4From Fig. 6.

R'

1.03 +0.06
1.06 +0.07
1.055 +0.05'
1.00 +0.05
1.14 +0.07
1.05 +0.09
1.06 20.06

0.35+0. 1

0.7 +0. 1

0.68+0.05

aR

1.9+0. 1

2.9+0.5

—7.8+0.3

Yeff b

0.0397+0.0004
0.0455 +0.002
0.041520.0005'
0.0398+0.0003

0.031 %0.002

0.65+0.4

0.75 XO. 3

ba

—2.1 +0.5

1.45 XO. 2
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(iii) Amplitude ratio of corrections. In the N-H and
C-I3 systems no corrections are visible. It is possible, us-

ing the determination of ihe linewidth correction, to infer
a value for the viscosity correction. In the N-M mixture
one obtains a =a~/8=0. 3. This low value is not experi-

vl

mentally detectable. For the T-W mixture the absolute
value of the ratio is la /t2R

l

——, , To conclude about

these corrections, the Mc predictions seem compatible
with the experiment results in N-H, C-D, and N-M, but
not in I-W and T-W.

More work with pure fluids, which belong to the same
universality class and are currently studied in the frame-
work of a MC analysis assuming backgrounds, should
give interesting results. Let us note the viscosity RG
analysis of Ref. 21 for ethane, 1eading to the value
5=0.45+0.09, with a positive amplitude.
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APPENDIX A: THE SCALING FUNCTION Q

It is interesting to discuss in greater details the form of
the scaling function Q. The first approximation
(Kawasaki ) consisted in considering both a constant
viscosity [x„=O, Eo(qg)=1] and the Ornstetn-Zernicke
static susceptibility {2)=0,X(qg)=[1+(qg) ] '). It fol-
lows, estimating the MC integral (7a) for the critical part
of the conductivity hA, ;

Q~(x)
xA ——l, Lp(x) =

(x +1)
(A 1)

with x —=qg.
Then, in terms of the relation (39), i.e., Q=Rp/Ep, the

Kawasaki result corresponds to

Q(x)=ED(x)=Qz(x) . (A2)

A reasonable assomption for the scaling function Z„ is
suggested by Ref. 19:

x f2
Eo(x)=[X(x)]~

In the Bhattacharjee approximant (l0) the Fisher-Burford
susceptibility is used,

( 1 +$2x 2 )'g/2
X(x)=

1+( 1+q/2d ')'
where =2). 002$4=0.014. In fact, in Ref. 11 an approx-
imation for Fp was proposed which is very similar to

x /2
(A3): Eo(x)=C(x}[(x/2) +1] ~ . Here C is a numeri-
cally computed factor which takes into account the differ-
ence between the Fisher-Burford susceptibility (A4) and
the Omstein-Zernicke susceptibi1ity. Let us note that C is
always very close to unity: C(qua=100) =1.012,

12—

+—+ —+- +V~++~~-

10 1O-' 1P 2 T-&t(K)

FIG. 10. 8 = 1 ~,&/[ks &Qg s pq'/6trt)S ] plotted vs t in the
range (0. 1 —10) mK. Experimental data I,„pt are from Ref. 11
at q~ ——1.92)&10' cm '. E,B,P represent either the Kawasaki,
Bhattacharjee-perrell, or Paladin-Peliti fUnction. One expects R
to be a constant in this t range, the correction to scaling being
negligible.

C(qg=O)=1. 003. On the other hand, Ref. 11 assumed
the first order -approximation R o

——Qx obtained for
x- =0, g =O. It is possible to find in this way"'

Rp(x) x /2
Qtt(x) = =Qx(x)C(x)[(x/2) +1] & . (A5)

Ep(x)
However, the Bhattacharjee function (A5) uses the Rp

and Ep functions which are computed at different pertur-
bative orders. We think that Qp, as defined in (33), is
more correct than Qq, since all the "one-1oop" forms of
the scaling functions have been left unchanged. In fact,
we only inserted in (33) the two-loop exponent values
(2)=0.0315, x„=0.063) instead of the one-loop values

(2) =0, x =0.07). In order to make a comparison
between the different approximants Qz, Q~, and Qp
of the function Q, we have plotted R (t)
=I,„~,[ktt TQ(qg)q /6trt)g] ' in a range close to the crit-
ical point, where either corrections to scaling or back-
ground terms are negligible. Figure 10 shows that the
Kawasaki function Q~ gives clear distortions since it does
not take into account the viscosity divergence. The
Paladin-Peliti [Eq. (32)] and Bhattacharjee-FerreH [Eq.
(A5)] functions provide better agreement.

ka7 (1+q g ) ~ (1+ ) 1 (Bl
Q(x) '

q,
'

Therefore, we see that

Ag
go

——( —,tr)8 (B2)

which differs from the wave vector q, defined in the rela-
tions (14) and (15) by a factor , tr. The crossover f—unction

H of Bhattacharjee et al. has the following form:

I I+=
i ~ stn34D stn24D+

2 [1——,(qcg)2]singD
4qck (q,g)'

3 I [1 2(qck)']ID —
I
(qc&)' —I —'"L (tD) l,(qc4)'

APPENDIX 8: EXPANSION OF THE CROSSOVER
VISCOSITY FUNCTION

We follow here the notation of Ref. 14(c), which is
slightly different from our notation. The background
contribution to the diffusion coefficient is now' "'
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where

Pti ——arccos(1+qDg )

1/2
qck —1

(B4)

(B5)

In the experimental region qcg and qDg are larger than
1 and we can expand H in powers of 1/qcg and 1/qD(.
This work has been done using a computer. The first
term of thr: expansion is analytical:

ln if qcg& 1
1+@

L(w)= 1 —w

2arctan
l

w
I

'f qck(1 .
(B6)

—Hx Ag~=1+(—,~), 2x-+ . =1+2x-
qck

+ 0 ~ ~ (B7)
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