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Magnetic field effects on electron heat transport in laser-produced plasmas
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The classical treatment of thermal heat transport in the presence of magnetic fields has been

modified to include effects associated with steep temperature gradients by extending the one-

dimensional model of Shvarts et al. [Phys. Rev. Lett. 47, 247 (1981)j to three dimensions. The ef-

fects of inagnetic field inhibition are described in terins of the parameter Pp=Q) 1,;, where cv, is the
electron gyrofrequency and r„ the (thermal) electron-ion collision time. The model has been applied
to plasmas whose zeroth-order distribution functions (fo) are Maxwellian, and solutions have been

obtained for the components of the heat flux across the magnetic field, parallel and perpendicular to
the temperature gradient. It is found that it is only for small Pv ( &0.2) that the anisotropic portion

of the distribution function (Xi) is limited, according to the prescription of Shvarts et ai. , to 5fp
where 5 is an ad hoc cutoff parameter of value approximately unity; for higher values of Pp, a

strong reduction of both components of the heat flux occurs due to the inhibition of the more ener-

getic heat-carrying electrons in the distribution, and the classical Braginskii results are valid (in the
sense that f i &fv for heat-carrying electrons). The sensitivity of the results to the parameter 8 is ex-

amined. For parameters typical of glass-laser-generated plasmas, strong inhibition may occur for
magnetic fields as small as 100 kG.

I. INTRODUCTION

Thermal transport in laser-produced plasrnas is a topic
of great importance to laser fusion, and has attracted con-
siderable attention in the literature. In one-dimensional
situations, and where moderately steep temperature gra-
dients are believed to occur, heat fluxes considerably
smaller than those predicted by the classical theories of
Spitzer' and Braginskii have been inferred experimental-
ly; such results are usually parametrized in terms of a
"flux limiter" f, with the heat flux q given as a inultiple

f of the "free-streaming flux" qF, defined here as

qF n, kT(kTlm——)'~

where n„T, and m are the electron number density, tem-
perature, and mass, respectively, and k is Boltzmann's
constant. The absorption fractions observed in various
short-wavelength experiments (laser wavelength )i, & 1 pm)
dominated by inverse bremsstrahlung, for example, are
generally consistent with a flux limiter of the order of
0.03, although there are exceptions.

Many attempts have been made to understand the phys-
ical basis of reduced heat fluxes in terms of microscopic
processes such as ion-acoustic turbulence, " or in terms
of kinetic theory alone. ' ' In particular, the Fokker-
Planck calculations performed by Bell et al. ' indicated
values of f of the order of 0.1. A good review of some of
the experimental evidence for reduced heat fluxes is given
by Kruer. '

In two-dimensional situations, the existence of large
magnetic fields ( —1' MG), perpendicular to the plane con-

taining the temperature and density gradients, has been
known for some time, ' and various authors have modeled
the reduction of thermal conductivity caused by such
fields' using either Braginskii's theory or a subset of
his equations. In such calculations it is assumed that the
localization of electron orbits provided by the magnetic
fields will guarantee the validity of Braginskii's model,
even in situations where the Braginskii model is applied
outside its domain of validity (electron mean free path
& 0.01 of the temperature scale length ).

It has always been a possibility that magnetic fields
could be the cause of the experimentally observed "flux
inhibition, " in which case a particular value of f inferred
from an experiment would be related to the value of Pp

[=co,re, , where co, is the electron gyrofrequency and ~„ is
the (thermal) electron-ion collision time] in the region of
magnetic field inhibition. There is currently little evi-
dence for this explanation, unfortunately, since to our
knowledge no experimental correlations have been report-
ed between inferred values of f and either measured or
calculated magnetic fields. It is still useful, however,
when given some calculated heat flux q, to introduce the
term "effective flux limiter" to describe the quantity
q/qF. It will be seen that in typical parameter regimes ef-
fective flux limiters of less than 0.1 are implied by modest
magnetic fields.

Recent experiments and simulations performed at Los
Alamos, for 10-pm laser radiation, have illustrated the
role of magnetic fields in enhancing lateral energy trans-
port along the target surface and away from the focal
spot. The transport mechanism here is essentially
collisionless, the dominant heat flux being the convective
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flux associated with the current. Our results are not ex-
pected to apply to these experiments, since the collision-
less regime is outside the scope of this paper.

In simulations of a typical two-dimensional laser-
produced plasma, there may be spatial regions of large
magnetic fields where Braginskii's theory is applicable,
and other regions of small or zero magnetic field where
some additional treatment (e.g. , flux limiting) is required
to prevent unphysically large heat fluxes. While the use
of a flux limiter in magnetic-field-free calculations and
the use of Braginskii s equations in magnetic field calcula-
tions are both commonplace in hydrodynamic simula-
tions, a consistent treatment of both effects in a two-
dimensional fluid code has to the best of our knowledge
not been reported in the literature. As a step towards this
end, this paper develops a simple model which attempts to
combine these two effects.

A number of problems arise when attempting flux lim-
iting in a two-dimensional fluid code. In one dimension it
is standard practice to take a smooth transition between
the classical Spitzer-Harm (SH) flux qsH (Ref. 1) and the
limited flux fqF according to the equation

q '=qSH+(fqF) (2)

q= —~'VT . (4)

In two-dimensional hydrodynamic codes such as SAGE,
these same equations are used in the absence of magnetic
fields. This treatment ensures that the heat-flux vector q
is always directed down the temperature gradient. This
condition, while appearing physically plausible, will not
necessarily always apply; for example, in plasmas where
the electron mean free path is sufficiently long that the
heat flux at a point is not given in terms of locally defined
variables, q and V T need not be parallel.

The issue of the relative orientation of q and V T is of
particular importance for the coronas of spherical targets
irradiated by short-wavelength laser radiation, where the
fraction of energy carried by long-mean-free-path elec-
trons is believed to be small and where lateral heat fluxes
may help to smooth out nonuniformities in the laser ener-

gy deposition. For experiments with a high degree of irra-
diation uniformity it is reasonable to neglect magnetic
fields, although the level of uniformity necessary for this
simplification has not been quantitatively determined.
Even in the absence of magnetic fields, care must be taken
with the numerical implementation of Eqs. (2)—(4) in a
two-dimensional calculation. A large temperature gra-
dient in the radial direction implies a large value of qsH, a
small value of a' [from Eq. (3)], and therefore a reduction
of the heat flux in the lateral direction, even if the lateral
component of the temperature gradient is small. It may
appear that radial inhibition implies lateral inhibition, but
the radial and lateral directions (unlike the direction of
the temperature gradient) have no intrinsic physical sig-

this is normally implemented by decreasing the classical
conductivity ~sH to ~' where

+SH[1+(
l qSH l ~fqF )]

and solving the thermal diffusion equation using

nificance. As an illustration, consider what would result
in a two-dimensional code from introducing separate flux
limiters for the two coordinate directions, limiting q„ to
f„qF and qs to fsqF in spherical (r, 8) geometry, for ex-

ample. In the strongly flux-limited case the heat-flow
vector would always be directed at an angle of
+tan '(f„lfs) to the computational grid, regardless of
the direction of the temperature gradient. An alternative
approach might be, for example, to seek a theory which
includes an additional component of heat flow propor-
tional to the density gradient.

In the presence of magnetic fields the situation appears
to be more complicated, as a result of at least three ef-
fects: (a) the heat flow in the plane perpendicular to the
magnetic field is no longer directed parallel to the tem-
perature gradient; (b) diffusive (i.e., collisional) transport
is inhibited; and (c) lateral transport at low densities is
dominated by the (collisionless) convection associated
with a lateral current. This third effect may not
enhance symmetry of drive, since the convected energy is
redeposited in the plasma in localized. regions near
magnetic-field nulls. In some respects, however, the
transport problem becomes more tractable in the presence
of magnetic fields, since long-mean-free-path electrons are
better confined.

A fundamental treatment of the two-dimensional trans-
port problem in the presence of moderately steep tempera-
ture gradients, including both strong and weak magnetic
field limits, would require, for example, a two-
dimensional Fokker-Planck treatment. Ideally, self-
consistent models for the source of heated electrons, ' the
generation of the magnetic field, and the energy loss to
hydrodynamic motion would also be included. To date,
such treatments have been computationally prohibitive.
However, it was shown by Shvarts et al. ' that, in one di-
mension, a simple local treatment, in which the anisotro-
pic portion of the distribution function (f&) is bounded
from above by the isotropic Maxwellian distribution func-
tion (fo), leads to results similar in many respects to those
obtained by Bell et al. ' from Fokker-Planck simulations.
This correspondence encourages us to extend this simple
local model to two and three dimensions, including mag-
netic fields. While some questions will remain unan-
swered in the absence of a full Fokker-Planck treatment,
this approach provides some insight into the respective
roles of magnetic fields and kinetic effects in "inhibiting"
thermal conduction.

In Sec. II we start from the Boltzmann equation for a
Lorentz plasma, with the collision operator including just
electron-ion collisions, and use a moment expansion in
which the distribution function f (v ) is expressed as the
sum of isotropic and anisotropic components, fo(U) and
f ~(U), respectively. The conventional treatment, which

gives f &(U) as a linear response to the temperature and

density gradients ( V'T, V n, ) and the electric field (E), is
modified by requiring in addition that the components of
f

~ parallel and perpendicular to the temperature gradient
should be bounded by some number of order unity times

fo. The current ( J ) and heat flux (q) are then obtained
from the bounded f ~(U).
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In one-dimensional calculations a zero-current condi-
tion is usually used to determine q as a function of V T.
In two dimensions, solutions may also be determined for
J =0, but this is an unnecessarily restrictive condition.
In typical laser-produced plasmas, where the displacement
current is neglected, the magnetic field is given from
Faraday's law as the time integral of V)&E, and the
current is obtained from Ampere's law as (4n)'. V XB.
The magnetic field and current generally change on hy-
drodynamic time scales which are long in comparison
with the time scales associated with electron thermal
transport. For the transport calculation, therefore, the
current should be treated as given, with q to be deter-

mined as a function of V T and J. Ohm's law, instead of
giving J as a function of E and VT, gives E as a func-

tion of J and VT.
Typical solutions for various cases are given in Sec. III.

The main result is that the transition between flux limita-
tion and magnetic-field inhibition occurs at modest values
of Pp, of the order of 0.1, even for large temperature gra-
dients.

II. CALCULATIONAL METHOD

We start with the Boltzmann equation for the electron
distribution function f (r, v, t):

af e 1 - af+v Vf —E+——vXB ~ =C.
3t m c Bv

E and 8 are the electric and magnetic fields, —e and m
the electron charge and mass, respectively, c the speed of
light, and C the collision operator. We consider for sim-
plicity a coordinate system (x,y, z) with the z axis locally
aligned along the magnetic field, as indicated in Fig. 1,
and we use spherical polar coordinates ( v, 8,$) in velocity
space: v:—u Q. (In single-beam laser-plasma interactions,
the magnetic field is of course oriented azimuthally about
the laser beam effects associated with the curvature of
this magnetic field are outside the scope of this paper. )

The normalization of f is chosen such that the total elec-
tron number density n, is given by

n, =(4ir) ' f f(v)u dudQ, dQ=sin8d8dg . (6)

In Fig. 1, the temperature gradient V'T is shown in the x
direction; this will apply to all of the illustrative calcula-
tions of Sec. III, but initially V T and the current J are
arbitrary.

We use the first two terms of a moment expansion for
f 29

and

afo v e 1 a+—V fl —— (u'E f i)=Cp
at 3 --3. a.

' (10)

e - afo
+VVfp —E ———co,zX f i ——Ci,

at m Bv

where co, =e8/mc is the electron gyrofrequency and z is a
unit vector in the z direction. The collision integrals are
defined by

Co ——(4ir) ' f CdQ, (12)

Ci ——(3/4n. ) f CQ dQ .

In obtaining Eqs. (10) and (11) use was made of the equa-
tion

(13)

af af, 1 1 af,=Q ——(Q fi)Q+ —fi+ Q Q .
jv Bv v v Bv

(14)

Here as in Refs. 1, 2, 14, and 29, it is assumed that fp is
known: Eq. (10) will therefore not concern us further, and

Eq. (11) will be used to calculate f i in terms offp.
We now assume that only electron-ion Coulomb scatter-

ing contributes to C~.

f( r, v, t)=fp(r, u, t)+ f i(r, u, t) Q,
where fp and f

&
will be referred to as the isotropic and

anisotropic components of f:
fp (4m) '——f fdQ, (&)

f,= (3/4m) f fQ d Q . (9)

Equations for fp and f& are obtained by substituting
Eq. (7) into Eq. (5) and integrating Eq. (5) over dQ and
0 dA, respectively. We find

Ci ———v(u) f i, (15)

y= vQ where the velocity-dependent collision frequency v(u) and
the mean free path of thermal electrons (A, r) are given
b 30

v( )u=4neZn, (lnA)./(m u ),
v( v) =v/A(v) =ret (v),

I,( u) =A, z (u/uz )",
up=a 3vp,

(16)

FIG. 1. Coordinate system. The z axis is taken along the
magnetic field, and spherical coordinates about this axis ( v, g, g }
are used to describe velocity space.

vp ——(k T/m )
'i

Here Z is the ionic charge number and lnA is the
Coulomb logari'thm. [Note that the A, r defined here, and
the A, of Ref. 12, are equal to ( —', ) times the A,o used in
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Ref. 14. The u,i, used in Ref. 14 is i/2uo. ] We also drop
the time derivative in Eq. (11), assuming a quasistatic
state. Then, substituting Eq. (15) into Eq. (11) we find

1 - e r)fo
fi —pzX fi ————uV'fo ——E

v m Bv
(17)

where

f,(v)= —
~ [1+(Pzz )+(Pz&&)]

v(1+P )

e -r)fo
uVfo ——E

pl Bv
(19)

which may be conveniently rewritten as

fi;(u) = — ~, ~ufo Pe ~;fo-
v(l+e;P )

e 1 ~fo
(F.; p—e;E;—)

goal v BU

(20)

where

i = {x,y, z I,
i'= {y,x,z I,
e;={1,—1,0] .

The use of this notation considerably simplifies the alge-
braic manipulations, Note that if Eq. (20) were substitut-
ed into Eq. (10), an equation would be obtained which (in
principle) would permit the determination of fo. Such a
treatment would be computationally prohibitive, as dis-
cussed above, and is outside the scope of this paper.

The importance of the parameter /3 is evident from the
high-velocity scaling of Eq. (20). In the absence of mag-
netic fields (/3=0), u/v-v, and f„(u) exceeds fo(u) at
large v. In the presence of magnetic fields, however,
(v/v)(1+e;p ) '-u, and the contribution to fi;(u)
from 7;fo becomes small at large v. The contribution to
f i;(u) from the 7; fo term scales as v.

So far, we have followed Braginskii's treatment. Now
we make use of the prescription of Shvarts et al. ' We as-
sume that the ith component of Eq, (20) is satisfied for
v(v,', and that

fi;(u)=5 fo(u) (v)ur*) . (22)

The cutoff velocities v;* are to be determined (by itera-
tion), and fi;(v) is required to be continuous at v =u,*.

The quantities 5; are arbitrary parameters in this
model. In one dimension, a single parameter 6 is used for
the ratio of f i to fo. Shvarts et al. ' presented results for
values of 5 in the range 0.75—1.0. Shkarofsky used

p( u) =co,r„(v)
=p, (u/v, )'

and the electron Hall Parameter Po is defined as P(uo).
The strong velocity dependence of p(u) should be noted.

Equation (17) may be inverted to yield

and

'g =v/vo (24)

Ao=n~/[V 2voI'( —', )] . (25)

Other possibilities could equally well be treated; for exam-
ple, Shkarofsky considered two-temperature distribution
functions, with one containing a term in exp( —ii ) to
represent a plasma heated by nonlinear inverse brems-
strahlung as suggested by Langdon. ' Our model will
break down in the limit where fo(v) is determined nonlo-

ca11y by long-mean-free-path electrons. If we consider f
&

to represent the response of a plasma, initially in equilibri-
um with fo Maxwellian, to the application of perturbative
forces ( V T and I ), we are assuming that these forces do
not significantly change fo.

Substituting Eq. (23) into Eq. (20), and introducing the
following dimensionless quantities (of obvious physical
significance):

DT ———kr(V T)/T,

D„=—A.r( V n, ) /n, ,

DE ——A, TeE /k T,
we obtain

6=1. In the one-dimensional Fokker-Planck calculations
of Bell er al. ' it was found that the ratio fi/fo was less
than but close to unity. Matte and Virmont' pointed out
that fi equals 3fo in the extreme case of a beam, and
1.5fo for a semi-isotropic distribution; in their Fokker-
Planck calculations, the ratio f, /fo was typically & 1.5
and always g 2. In the Fokker-Planck calculations of Al-
britton, ' the ratio fi/fo ranged from 0.70 to 1.4 (at the
point in space of maximum heat fIux and at the velocity
below which 90% of the heat is carried). In one dimen-
sion, the condition 5 &1 ensures that the truncated distri-

bution function (fo+ f i 0) is non-negative; in two di-
mensions this is guaranteed by taking 6&1/v 2=0.71.
In view of these considerations, we have chosen 6;=0.67
for each i in the illustrative calculations presented below;
it should be recognized, however, that there is an uncer-
tainty involved in this choice of 5;, and that other reason-
able choices might differ from this value, possibly by up
to a factor of 2. The sensitivity of the results to the
choice of 5; will be discussed quantitatively below.

The validity of separately limiting the three com-

ponents of f i in Eq. (22) may be questioned as being a
procedure dependent on the choice of coordinate system.
However, in the configuration considered in this paper
(Fig. 1), with the x direction taken along V T, the three
coordinate directions have clear physical significance. En

the presence of a strong magnetic field, heat fiow in the z
direction is unaffected, cross-field heat flow in the x
direction is strongly reduced, and the "Righi-Leduc" heat
flow perpendicular to both the magnetic field and the
temperature gradient is reduced by a smaller factor.

We now specialize to the case where fo(u) is a Maxwel-
lian:

fii(u) =&nexp( —rr'/2), (23)

where
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3f(g(r)) =
2 6 &

[D —ppr) e&D+ & + 2 (Dr
&

—pprI E&Dr &')(7/ —3)—(DE
&

—pprI E DE; )] (ri & rj';:vf—/vp )+ o'9 «'

f(;(g)=&~fp(g) (r) &7)*;) .

(27a)

(27b)

J=— J V fidV,
3 0

(28)

The current J and the heat flux q are determined from
integrating the appropriate moments of f

~
over velocity:

I

thermal electrons [Pp co,——/v(vp)=co, r„(vp)) Th. e col-
lision frequency for electrons with velocity Uo is

4me (lnA)(Z+1)n,
Vp=v(Vp ) =

m,
' (kT) i (36)

q= —J' "V'f, dv. (29) giving

It will be noted from the form of Eqs. (27)—(29) that J
and q are linear tensor functions of D„, D&, DE, and 5;
the last contribution arises from normalized velocities g
above g';, and depends on the other three quantities only
indirectly through the solutions obtained for g';.

From this point on, the algebra is straightforward but
tedious, and the details are relegated to the Appendix.
When the integrals for J and q are performed, the results
have the form

Pp=(5. 10&&10 ')BT /[n, (Z+1)], (37)

where n, is measured in cm, T in keV, and B in MG.
[If the average electron-ion momentum-transfer collision
time ~, given by Braginskii had been used in place of
'r (vp ) Pp would be higher by a factor of (9n /2)'~2 =3.8.]
The effect of electron-electron angular-scattering col-
lisions is approximated here by using (Z+ 1) in place of
Z, and the Coulomb logarithm is taken to be 10. For a
typical plasma of Z =4 and T = 1 keV, we obtain the use-
ful relationship

J = J ( g *;D„,Dz-, DE, 5 ), (30}
P p(10 '/n, )B, (38)

q=q(f*;D„,Dr, DE 5) . (31)

fi(rI)=fi(7) rl'»r J @ (ri&rI*) (33)

The density gradient D„disappears at this point as a
consequence of fp(v) being Maxwellian.

The iterative solution for r)'; and f&; is based on Eq.
(33). Given an iterate f""',an iterate for the distribution
function is obtained, for all g, as

(34)

The next iterate for g*;, namely g*;'"+", is set as the
lowest value of r) for which

~

f'~";+"
~
)5;fp(ri), and

f'~";+' (g) is then set to +5;fp(ri), depending on its sign,
for g)g*;'"+". For the first iteration, g';' '=(x). In
practice, convergence to g*; is very fast—typically eight
decimal places in four or five iterations.

Finally, the heat flux q is given from Eqs. (29) and (34)
as

q=q(Dr, J,6} . (35)

Since we are treating J as given, we may invert Eq. (30)
to give

DE =DE(ri *;D„,Dr, J,8) . (32)

Using Eq. (32) to eliminate DE from the right-hand side
of Eq. (27a), we obtain

or, at the cptical density for 1-pm Nd:glass laser radia-
tion, Pp-B.

Magnetic fields of the order of a megagauss have been
observed in the coronas of laser-fusion targets through
Faraday rotatiori, ' while fields of the order of 0.1 MG
are harder to detect and are often considered unimportant.
However, even values of Pp as low as 0.1 are sufficient to
modify the heat flux significantly, because the P corre-
sponding to the electrons which carry the bulk of the heat
is at least an order of magnitude higher. (For moderate
intensities ) 10' W/cm, T, -2 keV would also be a
reasonable estimate for the coronal temperature, and
B =0. 1 MG would then imply Pp ——0.3.) The region of
greatest importance for magnetic-field-induced transport
inhibition is found at electron densities just above critical,
between the absorption and ablation regions; the magnetic
field here is probably submegagauss, since the observed
magnetic fields appear to maximize in the subcritical re-
gion (around 0.2 times critical}.

We will restrict ourselves to the geometry of Fig. 1,
with B aligned in the z direction and V T in the x direc-
tion. The current, heat flux, and electric field wi11 all lie
in the x-y plane, and we will refer to their components
parallel to the x and y axes as longitudinal and transverse,
respectively. We will write the normalized temperature
gradient Dr„as the ratio of the (thermal) electron mean
free path to the temperature scale length,

It is, of course, not necessary to use Eq. (31) for q.

III. ILLUSTRATIVE RESULTS

Dr„A,r/L„= —A,rx (V——T)/T, (39)

The magnetic-field-induced modifications to the heat
flux are presented in terms of the Hall parameter Pp for

and we will restrict our attention to positive L„(tempera-
ture gradient in the negative x direction). In all cases the
heat flux q wi11 be expressed relative to the free-streaming
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flux qF [=n, mvo from Eqs. (1) and (16)]; the ratio q/qF
may be thought of as the effective flux limiter. Unless
otherwise stated, we will use 5; =0.67 to limit the fi;.

A. Zero current (J„=J~=O)

In general two-dimensional situations the current is to
be treated as a known quantity, as discussed above, and
contributions to the heat flux will arise from the current
as well as the temperature gradient. In order to isolate
these two contributions, we will commence by considering
the zero-current case; this also enables comparison to be

made with the one-dimensional case where J =0. The
case where a finite current is specified will be considered
in Sec. HIC below.

The normalized heat fluxes q /qF and q~/qF in the
current-free case are given in Fig. 2 as functions of Po for
k~/L„=0. 1. Here, as elsewhere, the solid lines denote

q, fqF and the dashed lines q~/qFp for bounded f I. For
the purposes of comparison, the thin lines denote the same

quantities for unbounded f, (Braginskii's results ). The
Braginskii result for Po

——0 (off scale) is q„/qF ——O. S7.
We note that for Po) 0.2, there is little difference be-

tween the bounded and unbounded results for either com-
ponent. Therefore, even for a relatively small magnetic
field, there is no need to invoke a flux limiter.

The asymptotic behavior of q at large Po is suggested
from the form of Eq. (20) or Eq. (27): q„-Po and

qz-f)o '. From Fig. 2, there is a strong reduction of
q„/qF (to 0.04) even for Po ——0.2. At higher values of Po
the transverse component exceeds the longitudinal com-
ponent. The transverse heat flux has a peak at very low

Po (0.03 in the Braginskii case, 0.1 in the bounded case); it

1.0
i

x component y component

C)
0.4—

should maximize when the g of heat-carrying electrons
[-Po(v/vo) ] is of the order of m, on the basis of a simple
physical picture where these electrons traverse half a Lar-
mor orbit between collisions. Indeed, taking 13o=0.1 and
v/vo-3. 2 (see Fig. 3), we find P=3.

Figure 3 shows, p1otted as functions of U/Uo, the x and

y components of fi/fo (upper graphs) and (v/vo) fi
(lower graphs), for various values of /3o. The same param-
eters of Fig. 2 apply: i.e., A, T/L, =0. I and I =0.

For f3o 0, a——limit of fi„/fo is needed to avoid large
values of this ratio. No limit is needed for the higher
values of Po shown, since the magnetic field introduces a
maximum for fi„/fo in the Braginskii theory and fi„ is
well behaved throughout the whole velocity range. This
maximum, and the minimum corresponding to the low-
velocity return current, both decrease in amplitude as Po
increases.

In our model it is always necessary to limit fi~/fo at
some velocity. For low values of Po (e.g. , Po ——0.2), a
strong transverse flow of high-velocity electrons is partial-
ly limited. As Po increases (e.g. , Po ——0.6), the cutoff point
moves to higher velocities and the electrons which carry
the bulk of the energy flow are unaffected.

The areas under the lower graphs [of (v/vo) fi;(v)] are
proportional to the heat fluxes in the respective directions.

0.0

0.20 r)
I

0.15

Braginskii

1.2 i
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FIG. 2. Dependence af heat flux on Po ( =co,r„) for
A, T /L„=0. 1, J =0, and cutoff parameters 6„=6„=0.67. Solid
curves q„; dashed curves q„. Light curves: Braginskii theory.

FK)'. 3. Distribution functions corresponding to Fig. 2, for
XT/L„=0. 1, J =0, and cutoff parameters 6z =6y =0 67.
Upper plots f„/fo, lower plots normalized heat flow
Ao '(v/vo)'f &;, for i =x,y; vo —(kT/m)'~~.
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FIG. 4. Dependence of heat flux on A, T/L„ for J =0 and

5„=5»=0.67, for various Po. Solid curves q„; dashed curves q„.
Light curve: Braginskii (or Spitzer-Harm) theory for Po ——0.

straightforward modification of the algebra used to obtain
Eq. (32) from Eq. (30), since any two of the quantities

IJ„,J»,E„,E» I may be determined from the others. Here
we take the transverse electric field E~ to be zero, and cal-
culate the self-consistent current J». (The density gra-
dient is also assumed to be zero. )

Results are shown in Fig. 5 (case 8), for A,r/L„=0. 1,
and with Po the independent variable. Curves for the pre-
vious zero-current case A, taken from Fig. 2, are given for
comparison. The dotted line is the normalized current
( —J»/Jo where Jo n, e——vo) calculated in case B. Com-
parison with Braginskii's results (the thin curves) again
shows that above Pc-0.2 there is no need for a flux lim-
iter.

The increase of transverse heat flow in case 8 is clearly
due to the current contribution. The current maximizes at
-3% of the free-streaming current, at Pc-0. 1, and de-
creases to —1% at Po-1.0. The longitudinal heat flow is
slightly reduced, due to a small cross-coupling between
the current in the y direction and the heat flow in the x
direction. The curious features occurring on the graphs of
J» and q» at Pc-0.04 correspond to a minimum in the
cutoff velocity rl» (=3.0).

In each case, the maximum occurs at U/uo-3. The in-

tegrated transverse flux is clearly greater than the longitu-
dinal flux, and both decrease with increasing Po.

In Fig. 4, the heat fluxes q„/qF and qz/qF are shown as
functions of A, z /L„, for various values of leo. The classi-
cal Braginskii or Spitzer-Harm' result for Po ——0 is also
included, and would of course be a straight line on a
linear-linear plot. There is a region in the figure
(7I.T/L„-0. 1, 0. 1&P,&0.3) where both components of
the heat flux are of the order of a few percent (3—10%)
of the free-streaming value. This value of A, &/L is typi-
cal of what may occur in laser-produced plasmas at
moderately high intensities, and it is arguable that the in-
hibition commonly observed can be explained by very
modest values of magnetic field. It must, however, be
noted that the effective flux limiter implied by Fig. 4 is a
strong function of both A, T/L, and Po, both of which
quantities vary spatially; magnetic field inhibition might
therefore lead to a greater diversity of experimentally in-
ferred flux limiters than has to date been observed.

Figure 4 includes values of A, r/L„up to 1.0, but the re-
gime of validity of this theory probably does not extend
beyond A, T/L =0.1,' at least in the magnetic-field-free
case. Beyond this limit, the heat flux is dominated by
nonlocal contributions from electrons whose mean free
path exceeds the temperature-gradient scale length L .
Conversely, for smaller A, T/L„or for larger Po, the nonlo-
cal contribution decreases.

B. Zero longitudinal current and zero
transverse electric field ( J„=Ey=0)

Up to this point the electric field has not been treated
as an independent parameter. There are situations, how-
ever, where one might expect the electric field in the
direction of the current to be small. This is handled by a

C. Nonzero transverse current ( J 0 Jy+0)

Here the transverse current J~ is specified. We show in
Fig. 6 the two components of the heat flux as functions of
Pc, again for A, T/L„=0. 1, for three values of J»/Jc
(0, —0.01,—0.03). The curves for J» ——0 are taken from
Fig. 2. As in Fig. 5, the transverse heat flux is increased
due to the current contribution, the increase being almost
independent of f3c. The longitudinal flux is again slightly
decreased, and in one of the cases shown it changes sign.
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FIG. 5. Dependence of heat flux on Po for Ar/L„=0. 1, ,

5„=5y=0.67, and Jz:Ey 0 (case B). Curves for J =0 are
from Fig. 2 (case A). Dotted curve: ( —Jy/Jo) for case B.
Light curves: Braginskii theory for case B.
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APPENDIX eI'(m)= f g e "~dg. (A2)

We give here the algebraic details involved in obtaining
Eq. (35) from Eq. (27). All of the integrals with respect to
g may be written in terms of the following quantities:

8;(m)= J'
3 6 3d31, (A 1)

1+Pori e;

J =JpDJ

where

(A3)

Inserting Eq. (27) into Eq. (28) we find the current
J ( Tl;D„,DT, DE, 5):

Jp =n, eVp

DJ = —Al ( 9 [D„g (7)—ppe D& ig (10)]+ l8 [DT'S[8&(9)—38i(7)] DT 'f—lpe [8 (12')—38 (10)]]

9 [DE,r'gi(7) Poe;D~; 8;(10)]+5;8';(3)),

(A4)

(A5)

and

A, =3v 2r(-,') .

Inserting Eq. (A9) into Eq. (27a) we obtain f„(TI,TI',
DT, DJ, 5), for 31 (Ti. :

For notational consistency we have introduced the nor-

malized current Dz. Note that all the cross terms involv-

ing i' include the factor Ppe;, and that the arguments of 8;
in these terms are, higher by 3 because of the g depen-
dence of P.

Treated as an equation for DE, Eq. (A5) has the form

fo(TI)n'
li q

9(1+@(p]e;)

X [ 2 (g y3)DT ' —e'(POT) y4)D 'T
5

a, DE ]
—e;b;DE, ]

——e;

which when inverted yields

D~; =(a; c;+e;b;c; )/(a;a; +e;b;b; ) .

(A7)
—9y (A )DJ; —9e;y2A )DJ

—9y l5le;"(3)—9e;y35; 8;"(3)], (A 1 1)

The normalized electric field DE(TI;D„,DT, DJ, 5) is
therefore given as

3, i+[(5i.3 2 ) T, ei5i4DTi ]

where

y, =S;[8;.(7) ie;13 T) 8,,(10)),

where

+(A, 5; lDJ;+A l e;5; 3DJ i')

+[5; l5;8';(3)+e;5; 25; 8';(3)],

5;, i
——98; (7)S;,

5; 3=9ppg;(10)S;,

5i3 —S;[gi(9)8;(7)+ /3eg;o(10)8, (12)]/2,

(A9)

(A10)

y3 ——SiPO[8i(10) —vl 8;(7)],

'Y3 =gi (9)y l+ ei~Ppgi, (12)y3,

y4= gi'(9)y2+Ppgi(12) y 1 '

(A12)

5; 4 ——S;Po[g;(12)8; (7)—8;(10)g;.(9)]/2,
S;=[gi(7)8; (7)+e;Pog;(10)8; (10)]

Finally, inserting Eq. (All) into Eq. (29), we obtain the
heat flux q(DT, Dz, 5), normalized to the free-streaming
flux qF (= mn, up):

q;/qF A2( [ —,', [g——i(11)—$3]DT i —l8 e'[8;(14)PO iti4lDT i ] —(A lliDJ;+e;Aliti3DJ; )

+ j [8*,. (5)—pig";(3)]5;—e;$38; (3)5; j ), (A13)

where
iI'i =S;[8;,(7)8;(9)+e;P 8; (10)8;(12)],
$2=S Pp[8 (10)8;(9)—8;(12)g,(7)],
p3 —8;(9)itil+e,'ppg; (12)$3,

f4= —8; (9)f2+p,g;(12)p, ,

I

and

A, =1/[6v 2r(-,' )] . (A14)
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