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We have calculated the exchange and correlation corrections to the free energy (F,.) and the
chemical potential (i) of an electron system at arbitrary degeneracies and temperatures. These are
needed for density-functional, average-atom-type calculations of properties of plasmas and liquid
metals. The problem of inverting the parametric relation between p,. and the density correction n,
is considered. We present easy-to-use analytic fits to F,, and p,. as functions of the temperature
and density. We also consider the effect of a linearly responding ion background on the electron
chemical potential as well as the ion chemical potential, as these are needed in calculations of ion-
electron systems at arbitrary degeneracies and densities.

1. INTRODUCTION

The objective of this paper is to provide some of the
basic information on the exchange and correlation poten-
tials and thermodynamic functions of an electron fluid,
for densities and temperatures of the sort encountered in
the study of strongly coupled plasmas and liquid metals.

Many problems in plasmas and liquid metals can be re-
duced to a theory! of an inhomogeneous electron fluid?
coupled to an ion subsystem which can be described by a
Gibbs-Boltzmann formulation. In the simpler ap-
proaches>* the ionic system is replaced by a uniform
background® or taken to be in its zero-temperature config-
uration defined by Wigner cells.® The electron subsystem
is then treated using an effective single-particle
Schrodinger equation or Thomas-Fermi-type equation.
These equations contain an effective one-electron potential
V.(r) made up of the usual one-body terms, the self-
consistent Hartree potential, and also an effective poten-
tial V,.(r) which simulates the effects of exchange and
correlation arising from the rest of the electrons. The
rigorous formulation of this approach is found in
density-functional theory?> (DFT) which specifies V()
to be a unique but unknown functional of the one-electron
distribution n(r). Similarly, exchange-correlation correc-
tions to other thermodynamic functions can be intro-
duced. As the exact functionals are unknown, they are
usually evaluated in the local density approximation
(LDA) where, for example, the exchange and correlation
correction to the free energy F,. is taken to be

Fo= [ n(nflIn(®ldT,

where £ [n(r)] is the exchange-correlation correction per
“particle for the homogeneous electron system at a density
i=n(r). Thus we see that the properties of the homo-
geneous electron system are of basic importance in the
study of inhomogeneous systems.

The exchange-correlation potential V. at any tempera-
ture’ is found to be identical with pu,. for uniform sys-
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tems. The finite-temperature density-functional theory
uses the grand canonical ensemble. For a given tempera-
ture T, volume V, and chemical potential p, the thermo-
dynamic potential { is a minimum for the correct density
distribution # (r). In the homogeneous problem at density
i we have

O T; V’/J')=QO+'Qxc( T: V,p,) ’

where Q) is the value for the system without interactions.
Once Q, (T, V,u) is obtained, and then only, can we elim-
inate p in favor of the density 7 via the parametric rela-
tion

(1.2)
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If this inversion is not carried out and if Q, (T, V,u) is
simply treated as Q,.(T,¥,7), where u has been eliminat-
ed using zero-order theory, incorrect thermodynamic re-
sults will be obtained. Thus Gupta and Rajagopal® have
reported tabulations of Q. for the ring sum, viz., Q,,
which are negative in sign and incorrect in magnitude al-
though, as is well known, it should in the classical limit
lead to the positive Debye-Hiickel value of Q,/V
= —P,=e?7\/6, where A is the Debye screening con-
stant. From the detailed discussion of their calculations
given by Gupta and Rajagopal’ [see Eqs. (104) and (105)
of Ref. 9], it is clear that these authors!® treat Q(T,V,u)
as if it were Q(T,u, ), without going through the relation
(1.3). Panat and Amritkar'' have unfortunately followed
the work of Gupta and Rajagopal® and reported tabula-
tions of Q, which are really the Helmholtz free energy as
in the case of Gupta and Rajagopal. In view of these con-
fusions found in the recent literature, a reexamination of
the problem is necessary.

In Sec. II we will briefly state the necessary theory for
the calculation of F,, and u,., where the correlations will
be treated via the random-phase approximation (RPA),
also called the ring sum (or Montroll-Ward graphs). The
passage from the grand canonical ensemble variable p to

N=faV=— (1.3)
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the canonical ensemble variables 7, i.e., the density, will

be restated. In Sec. III we present results for f . =F,./7.

and p,. for a range of densities and temperatures in a con-
venient parametrized form. Here we make contact with
some of the work of the East German group'?~—'° and the
earlier work of Pokrant!'® where alternative methods and
approximations have been used. Finally, in Sec. IV we
consider the effect of a responding ion background to
linearly screen the electron-electron interactions and
present results for these.

II. REVIEW OF THE THEORY

A detailed discussion of the theory, both from the point
of view of the self-energy and the grand potential
Q(T,V,u) is given in Ref. 7. Only a brief review is given
here for completeness and to define the notation.

We define

UT,V,u)=—TInZ
ZQ()(T, V;ﬂ)+QXC(T,I/y#) ’

where Z is the partition function and T the temperature
in energy units. Qo(7,¥,u) characterizes the noninteract-
ing system. Its chemical potential u =y, is obtained from
the equation (atomic units)

=23 e, me=1/(14"%74),

(2.1

(2.2)
where
a=N/V, B=1/T, e=Kk%/2.
This implicit relation for u, can be written as
a=(V2/7)B3"1, ;,(Buo)
and then, using the resulting uo, we have

Qo/V=—P=—2T 3 In(1+e"*7%)

(2.3)

=(V2/m)B 321, 1, (Bus) . 2.4)

Here I,,(z) is the Fermi integral defined by
o dxx"
I(z)= [ iy

For future use we also define the electron sphere radius
rs and the zero-temperature Fermi energy Ep (atomic
units) as

1
y V2 —7 .

1/3 1/3
2Ep ki —)
» 2Ep=ki=—~
a

a=
20
rS

4
97

(2.5)

Interacting system. When we switch on the interac-
tions, the change in Q, denoted by Q, (7, ¥,u), can be cal-
culated by diagrammatic perturbation theory. ), consists
of Q,, which is the first-order term and is linear in the
bare potential. (), is the correlation term which by defini-
tion includes all other terms. If we consider the perturba-
tion series as an expansion in powers of the screened
Coulomb potential #, then the procedure used here may
be regarded as a first-order calculation in the RPA-
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screened potential.
Thus we write

Q=)+ Q) +(-+-),

where the ellipsis represents higher order in #.

As seen from the work of Mermin (see Ref. 2), the
exchange-correlation potential V,. is the functional
derivative of Q,. with respect to the density. Hence, and
for other purposes, it is desirable to eliminate x in favor
of the density 7, thus passing from the grand canonical
ensemble to the canonical ensemble. This is achieved by
the relation

(2.6)

1

A=——

V

20

W (2.7)

.V

noting that the physical density 7 is the density inclusive
of corrections, viz.,

) =n%u)+ny(u), (2.8
while the inversion is of the form
(i) =p %) + el ) 2.9)

Now, given an (2, the inversion may be performed nu-
merically to obtain u,.(7), or alternatively, a linearized
version of (2.9) may be considered, as in Ref. 7 [see Egs.
(4.16)—(4.18)]. The two procedures will not in general
lead to equivalent results. We believe that the linearized
inversion is more in keeping with our evaluation of Q.. to
first order in the RPA-screened potential. Thus

p=po+u . (2.10)

o is determined from a numerical inversion of

V32

= 73_3/211/2(3,!‘0) .

Then, expanding Q(u) we have, as in Kohn and Lut-
tinger!” (see also Stolzmann and Kraeft!®),
(anm/am,,:,,o
(8%0Q0/3u%)um0
(005 /0 )y,
Rz

(1)
Hxec =

(2.11)

These results lead to the form
Qe 7, T) = Qe p, T) — Vituyd +( -+ ),

where the ellipsis represents higher-order terms.
the thermodynamic relation

Q=—PV=F—aVu

From

we have
Fyo(n,T)=Q(po, T)+(- - ), (2.12)

where the ellipsis represents higher terms,

aﬂxc(.u'm T)/a.uo 4o
dn(ug, T)/dug ’

which is consistent with

pn, 1= (2.13)
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8F,.(n,T)
on '

Equations (2.12) and (2.13) are the equations used in
this work. Equation (2.13) also defines the exchange-
correlation potential V. ——,uxc of DFT. The present
analysis also shows that the (), tabulated by Gupta and
Rajagopal is really the ring-sum correction: to the
Helmholtz free energy F,. Also, their V,., which is also a
calculation to first order in the screened potential, would
prove to be the required pi.

In the numerical calculation of Q,. it is more con-
venient to deal with the part linear in the bare potential,
viz., Q,, separately from Q. which is just the ring sum in
our approximation, as follows:

QuT)/V=-3 Sup_
CO'S

.uxc(ny =

_Hgh
g 9k

[I_,(x))dx , (2.14)

1
=5 .

The ring-sum contribution is

Q.~Q,(u,TV/V
1 1

22":_25(2 E

?]’{ln[l—uq'tro(qv,,)]

+u,m™gv,)} (2.15)

where v, =2n7/8 and 7%g,v,) is the Lindhard function.
For computational purposes we write this as

Q,(u,T)/V= ‘/_;Tz > [\ 0%Q(in[1-X,(Q)]
+X,(0)}
(2.16)
Xn(Q)-—@é Qm), Q=qVB/2
with
Fn(Q,ﬂ)=f0w x dx 1+ QX Q/2+x)*

14ex>=7 " n*m*+QXQ/2—x)?

These equations provide an approximation to the per-
turbation series for Q to first order in the screened
Coulomb potential #. The range of validity of such an
approximation is unknown but we believe that it captures
the most important part of the correlation corrections even
for large r,. To qualify this more carefully, we note from
the study of Vosko, Wilk, and Nusair'® (their Table 5)
that, for T =0, the maximum deviation of the RPA

correlation energy from the Ceperley-Alder®® Monte Carlo
calculations is 13%, occurring at r;=15. At r,=1 and
100 they give deviations of 6% and 8%.

At very large r;, one may consider the formation of a
Wigner lattice.?! In the simplest approximation the elec-
trons can be considered to define a set of harmonic oscil-
lators with vibration frequency cop/l/§ where o, is the
plasma frequency. Thus, at finite temperatures, this pic-
ture is unlikely to hold unless

(3/r,).

Also, for large r, since Ep«1/rl we note that the elec-
tron system will rapidly approach the classical limit for
which many results are available.??

T«<wp,=

III. RESULTS FOR THE HOMOGENEOUS
ELECTRON SYSTEM

In this section we present our results in the form of
convenient analytic fits and compare them with existing
calculations. It is convenient to parametrize f, =(F,/N)
and u, (.e., V,) separately from f,=(F,/N) and p. (ie.,
V.), and then form fxc and u,.. This is motivated by the
fact that f, and u,, being linear in the density, can be
represented by a simple form independent of 7, by a suit-
able choice of units, and also because f, and f, were cal-
culated by two separate formulas for Q, and Q. [Egs.
(2.14) and (2.16)] although their sum formally represents
the first-order dynamically screened exchange graph free
of logarithmic divergencies at T—0 limit.?>**

The calculation of f, and u, needs some care to ensure
that the Q integration and the sum over n given in Eq.
(2.16) have converged. For n <20 the sum was explicitly
evaluated. For 21<n <100 a Padé approximant to
f Q2%dQ[In(1—X,)+X,] based on the values for n <21
was used. For the range n> 100 an integral was per-
formed with an approximation of the form
Fy,—41 n(mQ°/(Q*+aQ%+40).

A strong test of the quality of the numerical calculation
can be obtained by noting that?>?* the logarithmic diver-
gence in Q, for T—O0 (i.e.,, 7— ) is exactly canceled by
a similar term in Q,, so that Q,. is completely well
behaved. Horowitz and Thieberger® give

Qx/V=— > 27 ——lnn+ - 401 /7Y

SB 3

N— o

where the ellipsis represents a constant.

Hence, by adding Inn/(678%) to Q,/V we should find
that the result is proportional to T2 for small 7. This
was found to hold very accurately for sufficiently large 7,
(e.g., 7>10 for u=0.5 a.u) in all the cases examined.
Calculations were carried out for 7;=0.1 to r,=35 and the
results have been parametrized as follows.

A. Exchange contributions

We give the zero-temperature and high-temperature
limits, viz.,
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kp

Hx(0)= =5 = —0.6109/r, (3.1)

in a.u. Using the letter 4 to imply the high-temperature
limit,
L (h)=p,(0)(2/3t),

where t=T/Er. The following forms were found to
reproduce the numerical data for 0.1<T/Ep <12 quite
accurately:

Sx(rst) /py(0)

_ 0.75+3.043 63t>—0.092 270¢>+1.703 50¢*
1+8.31051¢24-5.1105¢*

X tanh(1/¢) (3.2)

and

px (rst) / (0)

_ 1.042.83431¢—0.215 120¢3 4 5.275 86¢*
1+4+3.94309¢24+7.91379¢*

Xtanh(1/t) . (3.3)

Note that we have used u,(0) as the unit of energy in
both (3.2) and (3.3). Although u,(rs¢) can be obtained
from (3.2) by differentiation, the independent parametri-
zation given in (3.3) is more convenient.

Note that these parametrizations also provide a repre-
sentation for Q) and the pressure p,(=—Q,/¥) via the
standard thermodynamic relations

—Px /’T=fx —Mx - (3.4)

The analytic forms given by Egs. (3.2) and (3.3) deviate
from the original tables by not more than 0.5%
throughout the range of ¢ considered (see Table I).

B. Ring contributions

At the zero-temperature limit, f,(r;,0) becomes identi-
cal with the energy per particle, viz., €.(r,0). Vosko,

Wilk, and Nusair'® have given parametrization for
. (rs,0) and €,(r,,0) for r; up to 100. Thus

€.(rs,0)
X2 2% L1 bxg In(x —xq)?
=A |1 ——tan~ —
Y@ T mtb X(xg) X
2(b +2x
+ o)tan‘l Q s
0 2%+ G
where

x=\/75 , X(x)=x24+bx+c, Q=(4c—b)"? (3.5)
with

xo=—0.409286 , b=13.0720,

¢c=42.7198 , 4=0.031907

in atomic units for RPA. The case including correlation
beyond RPA is given as xo=—0.10498, b=3.72744,
¢=12.9352, with the same value of A as before. The
chemical potential is obtained from

A 1+b1x

3 1+b1x +b2x2+b3x3
where, for RPA, b;=2.749273, b,=0.771037, and
b3=0.057193. However, for O0<r; <6 we can use the

simpler form (for several parametrizations see Mac-
Donald, Dharma-wardana, and Geldart?®)

pe(r,0)=Cln(14+1/y) ,

He=€ ’ (3.6)

(3.7)
£elr,0)=C |(14+y* (1 +1/p)+ 5 =y =
with

C=0.02545, y=r;/19

for the correlation corrections in atomic units.

TABLE 1. f,(t) and p,(t) are the first-order exchange contributions to the free energy per particle and the chemical potential.
t=T/EF, ux(0)=0.61089/r; (a.u.). The ring-sum contributions to f.(#:¢) and u,(rst) at r;=1 a.u. are also given, together with the

values calculated from the analytic fitting formulas.

t=T/Ep 0.1100 0.4973 0.9887
F (1) /p,(0) 0.7106 0.4587 0.2873
Eq. (3.2) 0.7145 0.4571 0.2880
1x(t)/1x(0) '0.9899 0.7812 0.5331
Eq. (3.3) 0.9866 0.7835 0.5310
Se(t)/ux(0) 0.1663 0.3474 0.4042
Egs. (3.9) 0.1657 0.3482 ~0.4059
and (3.10)

1e(1)/px(0) 0.1524 0.3272 0.4685
Egs. (3.9— 0.1511 0.3248 0.4688

(3.11)

1.501 2.361 4.462 8.590 11.96

0.2031 0.1349 0.0733 0.0385 0.0278
0.2034 0.1347 0.0732 0.0385 0.0277
0.3888 0.2633 0.1454 0.0769 0.0555
0.3891 0.2646 0.1459 0.0769 0.0555
0.3984 0.3649 0.2968 0.2267 0.1955
0.3979 0.3658 0.2980 0.2264 0.1947
0.5060 0.4952 0.4236 0.3325 0.2888
0.5056 0.4955 0.4237 0.3303 0.2863
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The classical-limit results at high temperatures
(DeWitt,?? also Ref. 12) have the form (atomic units)

fom—thp+ AT
(3.8)
MERTYRR’ P S
where

Ap=(4mit/T)V*.
Hence in the Debye-Hiickel limit,
Lpa=—0.638 168(tr;) "'/

in a.u.

The numerical results for 0.1<r, <6 and 0.1<t<12
were found to be accurately representable by the following
form (atomic units):

—c3/t

Ge(rst) =, (r,,0)(14c it +cot1*)e
—cy/t

+c(rs,h)e s

where, when ¢, (r;t)=f(r,,t) we have f,.(r;,0) as given by
Egs. (3.7) or (3.5) and

folrg,h)=—0.425437( /r;)/*tanh(1/1) .

(3.9)

(3.10)

Here (ry,h) implies the high-temperature representation

o, 10.900
1 140.00472r, °

39.5422—52.2381r} /41 8.485 54,3/
2= 1417.09997174
__3.88860
"~ 1+0.1336207, 7%’

c4=0.122285+0.254 281772 .

’

C3

When ¢ (7,,t)=p.(r,,t) we have u (r,,0) as given by (3.7)
and (3.6) and

pe(rg,h)=—0.638 168(t /r;)!*tanh(1/1) (3.11)

and

o 955432
1™ 140.066 66r, ’

3.57912—5.990 65r1/*+1.297 227374
2= ' 174
1+1.611267,
480217
140.4233877}2 °

¢4=0.2933540.322 5657, .

)

C3

Illustrative results from these fitting formulas are given
for the case rg=1 in Table I. The fitting formulas are
sufficiently accurate for most calculations, but the origi-
nal tabulations are available from the authors on request.

Richert and Ebeling!® have recently proposed a Padé
approximation form for f,. and u,. by making use of the

2623

analytic forms of f,. and u,. at the high-T and low-T
limits. Their form has not been optimized by fitting to
numerical calculations but is supported by having the
correct limiting behaviors at high and low 7. However,
numerical tests at 7,=0.5 using their form for RPA gave
errors in excess of 25% for several temperatures.

It is of interest to compare our results with those of
Pokrant'® who has used completely different methods and
given tabulations (r;=0.5—3.39) for p,./# and f,., and
hence i, =fxc+Pxc /. Pokrant proceeds by evaluating
the Slater sum using a finite temperature variational prin-
ciple, together with a number of approximations typical
of the statistical theory of fluids. His results for T=0 are
significantly different from those favored by Vosko et al.
in their reevaluation of the available' data inclusive of
correlations beyond RPA. Figure 1 provides a compar-
ison of our RPA data for u, and those of Pokrant which
is presumed to contain correlation corrections beyond
RPA.

IV. EFFECT OF A RESPONDING ION BACKGROUND

In this section we examine the effect of ion-screening
effects on V,. (=pu,.) and f,. as this is of importance in
density-functional calculations! of two-component (i..,
ions and electrons) systems. In this case we have to con-
sider two correlation potentials, viz., ui and u,, where the
superscripts e and i denote electrons and ions.

Instead of (2.6) and (2.11) we have

Q(/‘e’.ui9 T)=Q4(u.,T)+ ‘Qé)(ﬂfi’ )+ Q. (pT)

+ Q. (pf,u',T) 4.1)
and writing s =i or e we have
AN uo, T) e i

oo SRt Hmn D 4.2)

duo duo

30, (u,us,T) 7 dn
s = c\Ho :"0 ___Z_ ) @.3)
duo duo

FIG. 1. Plots of p,(7;,T)/1u,(0) for r,=0.5, 3.39, and 5.0.
The triangles are from Pokrant’s variational calculations (Ref.
16).
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TABLE II. Comparison of calculations for a hydrogen plasma (z=1,M =1848) at T=22.8 eV.
Ionic contributions to the ring sum are calculated using (a) the full Dawson function D(Q/2V' M ), (b)

the small-Q limit Q/V' M.

(a) . (b) )
n° T/Ep rs —F. /7 —ue —He —F./m —We —He
—4.0 11.995 5.124 0.1459 0.1037 0.1108 0.1460 0.1037 0.1110
—3.0 6.183 3.685 0.2308 0.1579 0.1776 0.2310 0.1579 0.1780
—2.0 3.235 2.665 0.3542 0.2255 0.2792 0.3548 0.2256 0.2803
—1.0 1.740 1.955 0.5165 0.2892 0.4252 0.5178 0.2892 0.4279

0.0 0.989 1.474 0.7012 0.3199 0.6182 0.7043 0.3200 0.6244

1.0 0.611 1.158 0.8843 0.3091 0.8470 0.8908 0.3091 0.8598
2.0 0.414 0.953 1.0548 0.2794 1.0927 1.0663 0.2794 1.1155
4.0 0.237 0.722 1.3673 0.2332 1.5805 1.3936 0.2333 1.6323
7.0 0.140 0.555 1.7962 0.2085 2.2487 1.8529 0.2087 - 2.3605
10.0 0.099 0.467 2.1904 0.2012 2.8461 2.2847 0.2014 3.0318

In this paper we evaluate Q. (uéu’,T) in the ring-sum
(RPA) approximation. The new value of V¢ (i.e., ug) will
depend on the electron density 7 and the ion density
p=i/z, where z is the effective positive charge on the
ions. The ion-correlation potential p.(7,p,T) evaluated in
this manner would NOT be as good as the procedure
based on the hypernetted-chain (HNC) integral equation
given in Ref. 1 where nonlinear effects are also taken into
account. However, pué(77,p,T), i.e., the correlation poten-
tial for electrons, will be superior to the form used in Ref.
1 since ui(7,p,T) includes (in linear response) the effects
of the term denoted by F;'(n,p) which was neglected at
that time.

Since the ions are classical at all temperatures of in-
terest and much heavier than electrons, the RPA-response
function 7(g,v,) contributes only for the n =0 term. We
have

By’ M_z
Bq

where M is the ion mass and D(x) is the Dawson func-
tion defined so as to have the limit D(x —0)=2x. Thus,
when linear ion-screening effects are included in RPA in
Eq. (2.16), we replace the n =0 term by

V2B 1

q

D
372

m(g,ve) = — VB/2M |, (4.4)

Xo(Q)=—

Q3 FO(Qyne)

+VTM?z% 7”p

Q

|8 3/2\/5— o
em= |70 (7/z), n'=Pu".

The nonzero-frequency contributions (#40) come only
from the electrons. The small-Q limit of D(Q/2V'M )
corresponds to the Debye-Hiickel screening function. In
Table II we present results for a typical temperature
(T=22.8 eV) of a hydrogen plasma (z =1, M =1848) to
examine the effect of Q dispersion in the ion-response
function. Q dispersion is found to be relatively unimpor-
tant for ¢, but it has a significant effect on p'.

To study the effect of softening of the ion background
we define the ion-response factor &=(A% /A% )2, where Ap
is the corresponding Debye screening constant. The rigid
ion background corresponds to {=0, while a responding
proton gas corresponds to £=1. The results of this calcu-
lation which exploits the small-Q limit of the Dawson
function are shown in Fig. 2. )

In Table III we give results for f,, u¢, and u; for a hy-
drogen plasma at r;=1 with the ion-response factor
£=0.5 and 1.0, together with f, and u{ for the system
with a rigid-ionic background (£{=0). Figure 3 displays
ué for other values of #, and as a function of temperature.
Note that the effect of ion correlations is more important
at small r; and near the region where p changes sign
(T/Ep~1.0).

We have not' attempted to parametrize ué(#,§,7) or
equivalently the u.(7,p,T) data as was done for the case
of the uniform background. Tabulations are available
from the authors if needed. However, a convenient ap-

T =22.8 eV

-0. £ -0
0.5

—~ -0.2 1

S 2

o

v o 5

i -0.3f

FIG. 2. Variation of ug (a.u.) for an electron-ion plasma at
T=22.8 eV for different values of the ion-response factor
&£=(Ah /A%, calculated using the small-Q limit of the Dawson
function. Here 1, =pus.
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TABLE III. Correlation correction f,, ué, and ,uf, in atomic units for a hydrogen plasma at r;=1
with the ion-response factor £{=0, 0.5, and 1, with § =(Abu/Abn)%. The case £=0 corresponds to a
rigid-ion background for which yu, =0.

—fe

—He —Be
T/Ep 0.0 0.5 1.0 0.0 0.5 1.0 0.5 1.0
0.110 0.1016  0.6078 14007 00931  0.1279  0.1438 03363  1.8012
04973 02122 05481 09965  0.1999 02613 03032  0.1985  0.9931
09887 02469 05246  0.8746 02862  0.3561  0.4086  0.1582  0.7639
1.5009  0.2434 04860 07852 03091 03797 04346  0.1364  0.6486
23607 02229 04285  0.6779 03025 03696 04231  0.1144  0.5381
32348 02030 03839  0.6019 02838 03463 03969  0.1003  0.4692
44623 01813 03392 05283 02588 03156 03621  0.0872  0.4064
6.1826  0.1595 02964 04596 02312 02817 03234 00754  0.3501
8.5899  0.1385 02564 03965 02031 02475 02843 00648  0.3003
11.955 0.1194 02205 03406  0.1764 02153 02476  0.0556  0.2572

2625

proximate analytic form which describes the effect of the
responding ion background on p¢ can be obtained by ex-
ploiting the fact that (i) only the n =0 term in the fre-
quency sum for €, is involved, (ii) the Q dispersion in the
Dawson function is not too important for p.

We separate out the n =0 term in the ring sum and
write

Q, (uo ', T)=Q,(n5#0)+Q,(n =0)
=0,(n£0)+Qi(n =0)
+[Q,(n =0)—Q(n=0)] .

Here Qf(n =0) is the static term in the electron-gas ring-
sum calculation with the rigid uniform ionic background.
Hence we rewrite (4.6) as

Q, (uop, D=7 (u*, T)+ AQ, (n =0)

(4.6)

4.7)

where Qf(ufT) is the fotal electron-gas ring sum while
AQ,(n =0) is the correction to the n =0 term arising

(a.u.)

v
c

0 2 4 6 8 10 12 14

FIG. 3. V¢ (e, ui) for £=1 (solid curves) at r,=0.5 and
5.0. The data for a rigid-ion background {=0 are also given
(dashed curves) for ,=0.5 and 5.0 (atomic units).

from the presence of ion screening. We evaluate
AQ,(n =0) in the ¢g—0 approximation as follows:

AQ,(n =0)=0Q,(n=0,uu’) —Qi(n =0,u°) ,

s ) 4.8)
e . i T ® }"T )\'T
T [~ AL A
0fn =075 [, l‘“ g | r e 49

Here A7 is the total (electron plus ion) screening constant,
while A, is the screening constant for the electrons only.

Doing the integrations in (4.8) and eliminating the p
variable in favor of the density, we have, in an obvious no-
tation,

__ T
AF,(n =o,n,p,T)=—TZ?(x}—x§), (4.10)
where
M= 2VITI_12(B)
and
Ak =aniifz + A2
since
p=n/z.
Hence
Aus(n :O,rT,ﬁ,T):—aQ_—AFC(n =0,7,p)
n
— L oza—an). @.11)
4

Equation (4.10) can be easily evaluated since it involves
only standard Fermi integrals and a derivative with
respect to the density 7 [denoted by primes on A in Eq.
(4.11)]. Once Ay is calculated, the total pg(,p,T) can be
written as

pe(i,p, T)=pi(7,T)+Aus(n =0,7,5,T) . (4.12)
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ué(,T) needed here may be calculated from the
parametrization given in Eq. (3.10). Hence pi(7,¢,T)
may be approximately evaluated by this procedure which
is computationally quite straightforward. The same cal-
culation can be adopted for f, via Eq. (4.10).

V. CONCLUSIONS

We have presented convenient and adequately accurate
parametrizations of the exchange and correlation correc-
tions to the free energy and the chemical potential needed
in density-functional calculations of strongly coupled
electron-ion systems at arbitrary degeneracies. In addition
to the detailed calculation, a simple method of calculating
the properties of electron-ion systems by an approxima-
tion to the zero-frequency term in the expression for the
ring sum is also presented. Although we have presented

correlation corrections to the ion chemical potential (u’),
it is not recommended that they be used in strong cou-
pling situations since the procedure given in Ref. 1, based
on the HNC equation, is superior to the present (linear-
response) approach. By contrast, ug(#,p,T) presented
here will be very useful in future DFT calculations of sys-
tems with electrons and ions.
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