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We consider the manifestations of Bose and Fermi statistics on the original quantum distribution
function. Initially, we consider some general symmetry properties of the density matrix. Next, we
convert these results into distribution-function language for the case of a system of spin-0 particles.
Finally, we consider a system of spin-% particles, for which we treat the combined effects of both

spin and statistics.

I. INTRODUCTION

Our purpose here is to consider some manifestations of
Bose and Fermi statistics on the original quantum distri-
bution function.! In our earlier work we also used this
distribution function to calculate quantum corrections to
the various properties of a Boltzmann gas. The first con-
sideration to the effects of Bose or Fermi statistics was
given by Uhlenbeck and Gropper,> who calculated the
equation of state of both a Bose and a Fermi nonideal gas.
Explicit spin effects were ignored in these considerations,
as they were also in the later work of Kirkwood.3

After a lapse of nearly 20 years, the subject was con-
sidered anew by Green,* who wrote a relation between the
density matrix determined on the basis of classical statis-
tics and the corresponding density matrices for particles
satisfying Bose and Fermi statistics. This relation made
use of symmetrization operators, which in turn were ex-
pressed as the product of a number of cyclic operators.
However, we wish to establish more explicit expressions
than are given by Green’s equation.

In their consideration of the quantum theory of trans-
port in gases, Ross and Kirkwood® wrote down the sym-
metrized pair distribution function in terms of singlet dis-
tribution functions by making use of symmetry operators.
The latter were discussed in detail in Appendix B of their
paper and they concluded that the symmetry operation on
the original quantum distribution function is represented
by an integral operator. A different approach to the sub-
ject was introduced by Schram and Nijboer,® who intro-
duced the symmetry requirements by means of a restricted
summation of states in Hilbert space. Finally, these au-
thors were able to express the symmetrized distribution
functions in terms of an integral involving the original un-
symmetrized distribution function, permutation operators,
and various 8 functions. They then went on to express the
partition function as a summation involving permutation
operators—but did not obtain a very explicit result.

A particularly important contribution to the subject
was the article of Stratonovich.” He recorded the distri-
bution function for particles of arbitrary spin and intro-
duced the concept of second quantization in the phase
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space by essentially replacing the wave functions appear-
ing in the distribution function by operators. The
second-quantization approach has been considered further
by other authors and used as a method for the incorpora-
tion of Fermi and Bose statistics.®~ 1

In a recent series of papers dealing with a one-
component plasma (also called “jellium”—a system of
identical particles embedded in a uniform neutralizing
background of opposite charge), Jancovici'® and Alastuey
and Jancovici'""!? calculated exchange quantum correc-
tions in the near-classical limit. They found, both for
three-dimensional'®!! and so-called two-dimensional sys-
tems,!! that the exchange free energy is negligibly
small—a conclusion not changed by the presence of a
strong magnetic field.!?

In this paper we wish to consider anew the general sub-
ject of the manifestations of Bose and Fermi statistics on
the quantum distribution function. In Sec. II we consider
some general properties of the density matrix describing a
mixture of several states. Then, in Sec. III we apply these
results to a calculation of the effect of statistics on a sys-
tem of spin-O particles. Finally, in Sec. IV we extend the
description to a system of spin- particles, for which we
treat the combined effects of both spin and statistics.
Apart from the obvious potential application of our re-
sults to a calculation of the equation of state of Bose and
Fermi gases, we also consider that they should prove use-
ful in the analysis of the spin-spin correlation experi-
ments'> which are of interest in connection with tests of
the Bell inequalities.'*

II. DENSITY MATRIX FOR A MIXTURE
OF STATES OF PARTICLES SUBJECT TO BOSE
OR FERMI STATISTICS

Consider a system of » identical particles (1,2,...,
i,...,n) and let x; and x; denote all the coordinates of
the ith particle, including its spin. Our starting point is
the density matrix p for a system of identical particles.
This represents, by definition, a system in which a variety
of wave functions ¢, is present with probabilities w,. We
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have, therefore, by the definition of p,

’

* 2
P=2 Wun(X1,X2 ooy Xiy o (X T,X5, ., x] )
n
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No matter to which permutation we subject both the x’
and the x, the value of p will remain unchanged. This is
evident if the particles are of Bose type—in this case both
¥ factors remain unchanged. It is also true if the particles
are of Fermi type since in this case either both ¢ factors
remain unchanged (if the permutation is “even”) or both
¥ factors are multiplied by —1 (if the permutation is
“odd”), so that p remains the same in this case also. It
will be assumed, therefore, that all p, representing only
identical particles, are unchanged if both sets of
variables—the x’ and the x of Eq. (1)—are subject to the
same permutations. Naturally, if the p refers to a system
of several types of particles, this remark is valid only for
permutations which interchange only variables referring
to identical particles.

If only the so-called “column variables”—those after
the semicolon (;) in the argument of p—are interchanged,

PUX Xy ooy Xy s Xy e e 3X X2y e s Xy o e ey Xjye )

=3p(X1,X%, ., Xi, ..
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p will remain unchanged if the particles are of Bose type
or if the permutation is even. In these cases all the ¢, of
Eq. (1) remain unchanged. If the particles are of Fermi
type and if the permutation is odd, the sign of p will be
changed. The same applies, of course, for the so-called
“row variables” of p—those before the semicolon (;) in the
argument of p.

We will demonstrate now that if p is symmetric in the
sense previously specified, i.e., invariant under the simul-
taneous and identical interchange of both row and column
variables, and if it has the right symmetry property with
respect to the interchange of one single pair of two
column variables (or any pair of two row variables), it
then has the right symmetry property with respect to any
interchange of variables.

What will be proved actually is that if p is invariant
with respect to any simultaneous and identical permuta-
tion of both row and column variables (which was demon-
strated for Bose- and Fermi-particle density matrices) and
if, in addition, it is symmetric or antisymmetric with
respect to the interchange of the first two column vari-
ables,

S RS 755 STRRR TN SRR I VY

then it has the same symmetry or antisymmetry with respect to the interchange of any pair of column variables, in par-
ticular the interchange of the ith and jth column variables, so that

’ ’ ’ .
PUXTX0, ey Xy e e ey Xy 3X 15Xy e e e s Xy o e e 3 Xy e e)

\

=1p(x],x3,...

’ ’ .
,xi,...,xj,...,xl,xg,...,xj,...,xi,...). (2b)

It follows then from the possibility of arranging any permutation of the x’s by a succession of the interchange of two of
them that any even permutation of the column indices will leave the density matrix unchanged and any odd permutation
will do so also for the case of Bose particles and change the sign for fermions. It further follows from the self-adjoint
nature of p, that is, p(x’;x)=[p(x;x')]*, that the same is true for the row variables. Hence the symmetry of p with
respect to any identical interchange of row and column variables, plus the validity of Eq. (2a), establishes the fact that p
represents a set of identical bosons or fermions, depending on whether Eq. (2a) is valid with the + or — sign. This
theorem facilitates the establishment of Bose or Fermi statistics in density matrices and hence also in distribution func-
tions derived from them.

In order to derive Eq. (2b) from Eq. (2a) we first notice that the interchange of both the x and the x’ sets of variables
at positions 1 and 7 and at positions 2 and j leaves p unchanged—as a result of the symmetry requirement. Hence

POX X0, ooy Xy Xy e 3 XXy e e e Xy v v e 5 Xy aas)

O T T S TRERE I T TR Ty I )|
We now interchange the first two column variables, which gives, according to the assumptions made,
PUX X0, e ey Xy ey Xy e e 3 XX e e v s Xy v v e 5 Xjs e s)

=X X, e Xy e X XX e Xy e, Xy ) (4)

If we now interchange again, in both row and column, the first and ith variables and also the second and jth variables,
the desired equation (2b) is obtained. This shows that if Eq. (2a) is valid—or a similar equation for another pair—and if
p is invariant under the identical permutation of both row and column indices, then the density matrix takes care of the
Bose or Fermi requirements of the state represented by it—Bose or Fermi depending on whether Eq. (2a) witha + or —
is valid. This will facilitate the derivation of the proper conditions for the distribution functions. Finally, we repeat that
if there are several systems of identical particles present, then Eq. (2b) is valid for each set of coordinates referring to the
same type of particles.
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III. SPIN-O PARTICLES

It should be observed that in the preceding argument the x’ and the x can stand for all coordinates of a particle, includ-
ing its spin. However, in the translation of Eq. (2a) into the language of the distribution function, which follows, we dis-
tinguish between position and spin coordinates. The effect of the spin can be treated separately.

We now consider the corresponding distribution functions P(qy,py, . . . , G;>Pi> - - - » GnsPs)» Which are functions of posi-
tion and momentum coordinates gy, ...,q;, ...,q, and py, ..., p;, . . . , Dy, respectively. In the classical limit,P(q,p) is
the phase-space distribution function which gives the probability that the coordinates and momenta have the values ¢
and p. Specifically,’

P(ql:Pl’ ce s qisPis - . :qmpn)
=(,n..ﬁ)—3nf fdyl...dyi...dyn
XP(‘II—'}’D s Gi=Vis e =V 1V -G Y :qn+yn)
Xexp[2i (py1+ -+ +pi+ - +Puya)/H] . )

In Eq. (5), g;, p;, and y; are considered to be three-dimensional vectors, py is the scalar product of p and y, and dy;
means integration over all three vector components. All integrations in this paper are from — o t0 oo.
From Eq. (5) it follows that

f e f dpy--dp;-dpy P(qsp1s -« - 5 GisDis - - - s GnsPn) €XPL =20 (pry1+ - +pyi+ " +Pnya)/H]
=p(q1 =Y Gi—Vir - G —Vn3q1HV - Qi F Vi s Gn V) . (6)
Hence, changing variables to u; (=¢q; —y;) and v; (=¢;+y;) i =1,2, ..., n, we obtain
Pluy, oo Uy oo U3V, ey Ve, Uy)
:f - fdpl eedpy o dpy Py 4v0)py, o 3 40)Dss - s 3 Uy +vn)’Pn)
Xexp{+il[pi(uy—v)+ - +pilu;—v))+ -+ +palu,—v,)]/%} . )
At this stage we note that since Eq (3) refers only to two of the particles, we number these 1 and 2 and, in fact, omit
the coordinates of the other particles from the equations in order to make them more simple. We will therefore express
the equation [see Egs. (2a) and (2b); we omit the + sign since we are dealing here with spin-0 particles]
p(41,92;91,92)=p(91,92:92,91) (®)
in which the g stands for all three space coordinates, in terms of the corresponding distribution functions. We then have
[see Eq. (5)] ' ‘
P(q1,p1,92:00) =185 [ [ plg1—y1,92—y2:q1 +91,82+2) expl2i (p1y1 +pay) Aldy; dy, 9
and also [see Eq. (7)]
p(xi,xyx0,%5)= [ [ dpydpy P((x14+x1),p1, 7(xs+x5),p; )explip; (x —x 1) /it ipy (x5 —x,) /%] . (10

The condition (8) can therefore be written by equating the right side of (10) with the same expression in which, however,
x; and x, are interchanged.
In order to simplify the resulting equation, we introduce new variables instead of the x and the p:

%‘(x1+xll +x2+x’2 )=q) %(XI—XII +x2“'X'2 )=Y ,
(11)
T X1 —x—x))=q1, T(=x1+x]+x—x3)=0q,

and

T(p14+p2)=p, T(P1—p2)=P" . (12)
Since the interchange of x; and x, is represented by the interchange of g, and g,, this leads to the equation, instead of
(2a)i =1, j=2),

4i(p'qy—pY)/# 4i(p'q, —pY)/f

[ [dpdp'P(q+a1.p +p".a —q1.0 —p"e =[ [dpdp'P(q+42.p +P'\q —q2.p —P')e
(13)

Since Y appears only in the exponent, the integration with respect to p can be eliminated, leading to (after replacing the
dummy variable p' by p;)
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ip1q,/#i 4ip\q, /i

4
J dpiP(g+q1.p +P1,9 —4q1,p —p1)e = [ dpi P(g+42,p +P1,9 —q2.p —P1)e (142)

It must be admitted that this equation, for the distribution function, postulating the Bose statistics for a system of spin-0
particles, is much more complicated than the corresponding equation (2a) for the density matrix.

The essential equivalence of the position and momentum variables in this equation can be demonstrated by multiplying
it with exp[ —4i(p'q,+p''q,)/#] and integrating over q; and g,. The resulting equation is

—4ip'q, —4ip"q, /%

[ dg\ P(q+q1.p+p"q —aq1p —p")e P = [ dg, P(q+42,0 +P",q — 2.0 —p")e , (14b)
in the right-hand side of which, naturally, g, can be replaced by ¢;. The equation then becomes the analog of Eq. (14a)
with the roles of p and ¢q interchanged, but the signs in the exponentials reversed. Equally easy an equation can be ob-
tained in which g and p play essentially the same roles, but the two sides of the equation are quite different.

This is achieved by multiplying Eq. (14a) with e ~HP201 /R ond integrating over ¢;. On the right side this gives a factor
(#/2)°8(p; —p,) (we must not forget that the g,p; in the exponent is a three-dimensional scalar product), hence one ob-
tains

4i( - )/H
P19,—91P2 (15)

3
f fP(q +41,p +P1,9 —q1,P —P1)e dpdq, ,

2
P(q+q2,p +P2,9 —q2.p —P2)= lﬁ—
T

which is essentially symmetric in position and momentum coordinates. Naturally, by another Fourier transformation,
this can be transformed into the analog of Eq. (14a), with the position- and momentum-coordinate roles interchanged.
As a check, we use Eq. (15) to replace the function P on the right side of Eq. (15), obtaining

P(q+q2,p +P2,9 —42,P —P2)
=@/mt) [ [ [ [ Pa+a5.p+p5:a—a5.p —p3)
X expl[4i(q,p1—q1p2)/%i+4i(q1p3 —q5p1)/#]dq, dp, dq, dp, . (16)

Carrying out the integrations over ¢, and p; we obtain factors (7%/2)38(p, —p5) and (7#/2)°8(g,—q5 ), as a result of
which we verify that the right side of Eq. (16) reduces to the left side, proving the self-consistency of Eq. (15).

IV. SYSTEM OF SPIN-% PARTICLES

In the case of a pure state ¥(g) we extend our previous definition of the single-particle quantum distribution function
as follows:

Pgp)=(mi) 3 o [ [¥lg+y,m)]*Pg —y,m" e dy (17a)
mm’'=1,—1
in the case of a pure state and
P(gp)=(mi)™> 3 O [ plg—p,m'iq +y,m)e?  dy (17b)

mm'=1,—1

in the case of a mixture of states, where k takes on the values 0, x, y, and z; the ¢ is the unit matrix and the others are
the Pauli matrices for the spin, the rows and columns being labeled 1 and — 1. Specifically,

10 0 —i
0'0= o1l = i 0 s
(18)
01 10
“=lio =0 1]
If Eq. (17a) is integrated over momentum p, one obtains
J P(g.p,0dp = | ¥(g,1) |+ | (g, — )| *=plq, 1;q,1)+plg,— 1;¢,— 1) , (192)
f P(q,P,y)dP = —I{W(q,l)*'ﬁ(%*— 1)—[¢(q7_1)]*¢(qa1)} ’ (190)
J Pla.p.2)dp =g, D) |2~ | gig,— D). (19d)

Thus Eq. (19a) gives the total probability of finding the particle at position g, irrespective of its spin state, whereas Egs.
(19b)—(19d) give the difference in the probabilities of finding the particle with spin up and spin down, referred to the x,
¥, and z directions, respectively—always at g. Hence, the normalization of P, though it involves integration over g and
D, restricts the value of «, actually to zero.
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In the case of a two-particle system, Eq. (17) generalizes to

P(g1,p1K1392:02:6) =7 3 3 o ml""] ,,,2,,,,2ff[¢¢11+)’1:m1,¢h+}’2,m2)]

mymy mym}

XY(q1—y1,m1;92—y2,m3)exp[2i (p1y; +p,y,) /#)dy, dy,

(20)
in the case of a pure state and to
P(q1,p1,K1;92:P2,K2)
=(m)¢ ¥ 3 0,,,1,,,1 ' ,,,2 f fdJHdJ’zeXP[Zl P1Y1+pay2)/f]
my,mymy,my .
Xplg1—y1,m1,q2—y2,m3;91+Y1,m 1,92 +y2,m3) , 21

in the case of a mixture of states. They follow from the fact that the 4 X4 matrix M., =2"'"%0%,, is unitary. One

has, therefore,

2 a’rcnm’(o'rknm')*= 2 a’r‘nm’o':‘n'm =28, . (22)

m,m'’ m,m'’

The second expression is equal to the first because all o* are self-adjoint. Similarly, we have
2 0",‘,,,,,,'(0';,,')* = 2 Uxmm’a’t:'n =28, 8m’n’ . (23)
K K

It then follows from Eq. (17b) that
p(x',n'sx,n) =+ 20,, " f dp P(5(x +x"),p,k)e? >’ —*/% (242)

or, with Eq. (10), for the two-particle situation,

' ] ' ’, _1 K 1 ' L1 '
plxy,my,x5,mysx ,myxy,my))=15 3, Umlmxa'"z'"z f fdpldsz( (X1 +x1),p 1,657 (X2 +X2),02,K2)
Kpky

X explipy (x| —x1) /Aitipy(xy —x,) /%], (24b)

from whence it follows that the generalization of Eq. (14a), to the case of spin-5 particles, is

I3 K. /i
EEamlaml"»f;mz fP(‘I +q 1,0 +P1,K139 —41,P —P1,K2)e Haa dp,

K! Kz
4, /%
= =330 O, S PA+a20 +P1K15q —q2p —proke " dpy, 29)
Kl K2

with the minus sign arising from the fact that we are dealing with fermions. This equation will be simplified by express-
ing the product of the two o matrices on the left side,

*1 Ky

)

[a(Kl’KZ)]M'x"'&;ml'"z= mim Cmym, ? (26a)
by the product of the o matrices on the right side, ;
X1 *2

[Tk,63)] 0 =0, o’ . (26b)

myma;mymy mym, mym;
We can then write

T(K1,K)= >, BlKkikpAiA)o(Ay,Az), (27a)
Aph,

and since the o(ky,k,) as functions of the m are linearly independent of each other (in fact orthogonal), we can write, in-
stead of Eq. (25),

4ip g, /#
f P(q +4q1,p +p1,K1;,9 —q1,P —P1,K2)e 1920,

=— 3 B(AyAgkp,K7) f P(q 4420 +P1,A139 —q2,P —P1rA7)e
Aok,

s . (2Tb)
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Equation (27b) is the basic result sought, being a conse-
quence of the antisymmetry of the wave function for
spin-+ particles. The matrix B is much simplified by the
fact that the rotational transformation properties of the o
and T matrices are the same—they represent either scalars
or vectors or tensors. Hence, for example, the matrix ele-
ment of B which connects the scalar component of
o(Ay,A,) with the vector components of 7(k,k;) vanishes.
It may be stated additionally, that B is unitary and its
square is the unit matrix so that its characteristic values
are all 1 or —1. It is not difficult to calculate B—its ele-
ments are, of course, the same for the different com-
ponent parts of the vector (tensor) components of a(Ay,A;)
which are connected to the vector (tensor) components of
T{K1,K2).

As can be easily verified, the explicit form of the rela-
tion (27a) is

0,0)=30(0,0)+ 5 [a(x,x) +0(p,y) +0(z,2)]

=+[0(0,0)+0(7,7)] ; (28a)
T, T)=7(x,x)+7(y,y)+7(z,2)
=30(0,0)— +[o(x,x)+0(p,p) +0(z,2)] ; (28b)
T x,y)+7(y,x)=0(x,y) + 0y, x);7(p,2) +1(2,p)
=o(y,z)+o(z,p),...; (28c)
7(0,x)+7(x,0)=0(0,x)+0(x,0), . .., 70,z) +7(z,0)
=0(0,z)+0(z,0) ; (28d)
70,x)—7(x,0)= —i[o(y,2)—0o(z,p)],...; (28e)
(y,z)—7(z,y)=i[0(0,x) —0(x,0}], .. .; (28f)
27(x,x)—1(y,y)—7(2,2)
=20(x,x)—o(y,y)—o0(z,2),...; (28g)
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(x,x)=+5[o(x,x)—o(y,y) —0(z,2)] + %0(0,0)

=0(x,x)—50(T,T)+50(0,0) . (28h)

Clearly, these equations are not all independent of each
other—Eqs. (28b) and (28c) follow from Eq. (28h) and
show only the effects of the invariances more explicitly.

Evidently, the consequences of the wave functions an-
tisymmetry for spin-% particles are much more compli-
cated than for the density matrix even though the preced-
ing equations could be given a more simple form.
Nevertheless, it should not be truly difficult to give Eq.
(27b)—the basic equation—a more explicit form and also
a more simple one by introducing, instead of the indices
and A the indices referring to the left sides of the equa-
tions (28). Another possibility is to accept the matrix B as
a basic quantity. One way this could be done would be to
decompose B into three parts: those referring to scalar,
vector, and irreducible-tensor expressions in terms of the 7
appearing in Eq. (28). The first part of B would be two
dimensional, the second part would contain three separate
three-dimensional matrices [referring to 7(0,x), 7(x,0),
7(y,z)—7(2,p), and the other two similar triplets], and the
last one would be a five-dimensional unit matrix referring
to the five components of the five-dimensional representa-
tion of the rotation group [cf. Egs. (28c) and (28g)]. But
even if this is done, it must be admitted that the equations
will be more complicated than the equations postulating
Fermi statistics for the density matrix.
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