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Metastable states in a nonlinear stochastic model
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A type of metastable state is found and analyzed for a nonlinear model of self-replicating
biomolecules under constraint. This state, described by the deterministic theory as one of the stable
steady states, is studied stochastically by using various approximation schemes. The time-dependent
behavior is derived so that the lifetime can be estimated numerically. The possible transitions in-
duced by the fluctuation perturbations are also discussed.

I. INTRODUCTION

Many physical, chemical, and biological processes are
found to be governed by similar equations which are usu-
ally nonlinear and coupled. ' While most of the studies
of nonlinear problems are deterministic, stochastic
behaviors can be quite different from the deterministic
ones.

Our nonlinear rate equations can be expressed as '

d8k
=Wknk —g W~nfnk/Q, k =1,2, . . . , N . (1)

J

These describe the time evolutions of the molecular num-
bers for the kth species of biological macromolecules
which are self-replicating with the net increasing rate
8'k ——Ak —Dk. Ak and Dk are, respectively, the synthesis
and degradation rate constants. The nonlinearity in Eqs.
(1) is due to the external constraints imposed on the sys-
tern consisting of X species of biomolecules to have an ul-
timate total population Q. We note that Eqs. (1) resetnble
the Lotka-Volterra equations for interacting popula-
tions' and the equations for the multimode operation of
a laser. ' The stochastic analysis of our model system will
also provide deeper insight into these other nonlinear sys-
tems.

In the present studies we assume all possible combina-
tions of the initial molecular numbers nk(0) but consider
only the special case of 8'k ——W for all k. The deter-
ministic Eqs. (1) predict a steady state (SS) in which all
species coexist with their relative populations defined by

the initial values. This SS, which will last forever with in-
finite lifetime, can be achieved immediately from the be-
ginning or in a short time, depending on the initial condi-
tions. This coexisting SS will be shown to be metastable
in a stochastic sense that all the average molecular nuxn-

bers nk achieve their respective SS values, in a more or
less deterministic way, while the variances diverge with
time. Though the fluctuations are small and increasing
very slowly, they will eventually perturb this
deterministic-type coexistence and induce a stochastic
transition. This metastable state is found to have a life-
time which is much larger than the time needed to
develop the SS in nk. The metastability is purely stochas-
tic in nature. This distinct state is neither the unstable
SS, nor the usual stochastic SS which according to Op-
penhiem et aI. are quasistationary. '

In Sec. II, a stochastic model will be formulated. In
Sec. III, we present the existence of the metastable state in
the framework of the system-size expansion approxima-
tion. '" In Sec. IV, this state is studied by using the mo-
ment expansion technique ' to reveal its stochastic
features in a more precise way. Numerical estimations
and discussions are presented in Sec. V.

II. STOCHASTIC DIFFERENTIAL EQUATIONS

A system consisting of N species of bimolecules having
populations {n] at time t can be described by the proba-
bility function P({n];t) By consi. dering the synthesis
and degradation processes as the one-step Markovian pro-
cesses, the master equation associated with the determinis-
tic Eqs. (1) can be expressed as

aS'( {n];t) = g {(nk —1)AkP(n~, . . . , nk —1, . . . , nz, t)

+(nk+1)[Dk+E(n~, . . . , nk+1, . . . , n~)]P(n~, . . . , nk+1, . . . , ntt,'t)

nk[Ak+Dh+E({n ]
—)]P({n];t)], (2)

30 2609 1984 The American Physical Society



2610 H. K. LEUNG 30

E([n j)= g Wjnj/Q .

Due to the inherent nonlinearity of the system, the master
equation (2) is practically unsolvable. Approximation
schemes must be employed in order to solve for P( [n j;t).
Thc standald system-size cxpans1on tcchn1quc ' can bc
used to obtain the multivariate Gaussian form for
P( [n j;t), which peaks at points where the average popu-
lations nk equal the deterministic values. The spread of
the Gaussian form depends on the variances of nk. In
fact, the first two moments play the decisive role in the
stochastic analysis with any approximation scheme.
Within the framework of the system-size expansion ap-
proxi'mation, the first moments, i.e., the average popula-
tions nk, satisfy the deterministic type of equation,

The variances can be defined in terms of the first and the
second moments ((n;nz), where we use both ( ) and the
overbar for the average) as

0'tt = (tttttj ) —8;5~

and are found to satisfy the following,

" —(W,. + W, 2E)tr,,—.g Wk(n;0', k+n, oak)/Q

+5;;(2A;n; dtT;/dt—) .

A solution of nk and o;J completes the stochastic analysis
for the system since P ( [ n j;t) can then be described by the
moments in an approximate way.

III. THE METASTABLE STATE

Wc define the stochastic SS as the one with time-
independent averages and variances. A set of SS exists for
the stochastic model of molecular self-replications, and is
found to be not necessarily overlapping with the deter-
ministic set. Strictly speaking, there is no real SS in the
stochastic sense. The usual stable SS can be reached in a
relative short time 0 (Q ) and are all subjected to the fluc-
tuation catastrophe that the system eventually relaxes
into the absorbing state with [ n j =0 after a much longer
time 0(Q ' e ). ' We present in the following a dis-
tinct stochastic state which is neither the unstable SS, nor
the quasistationary state described by Oppcnheim es al. '2

Consider a special case in which all molecular species
have identical rate constants, 8'k ——8'. From the general
solutions of Eqs. (4),

nk(t) =Qnk(0)exp( Wkt) Q —g nj(0)
J

+ g nl(0)exp(Wit)

in time. The SS values of the averages (n 't, ) and the rela-
tive populations (p'I, ) are related to the initial values by

pk =& k g tT'=Pk(0) =Pk(t) .
J

The behaviors of constant relative populations
pk(t)=pk(0) are the distinct characteristics of the degen-
c1Rtc case. In order to avo1d confus1on 1n d1scuss1ng thc
metastability, it should be emphasized that these
behaviors are different from those of constant tota/ popu-
lations gk trk =Q which may happen either at the SS, or
at all the time if a special initial condition gk nk(0) =Q
ls assumed.

%c note that this SS in nk is purely deterministic and is
thus independent of the development of o;~(t). It can be
shown from Eq. (6) that the SS solution for o;J is not al-
lowed after n~ ——n k. A standard though tedious matrix
method can be used to solve for cr~ from the N (X+1)/2
linearly-coupled differential Eqs. (6). For the case of
Ã=2, the leading time-dependences of o; are found to bc
given by

f
otj(t) o,j(t, ) [—

=2pi(0)P2(0)[@|pl(0)+@@~(0)]QW(t t, ), —(9)

~here t, is the time when nk attain the SS values, and

(10)

is the metabolism factor which is found to be of profound
importance in the stochastic properties and the stability
analysis of the SS. This conclusion is reliable so far as
the approximation scheme remains valid, i.e., the relative
fluctuations

are small over a reasonably long time. %C shall elaborate
this point in Sec. V.

The metastable state is also characterized by the Gauss-
ian probability function P( [n j;t) which has its peak fixed
at a point while its width is narrow but spreading with
time slowly. This state will eventually shift away sto-
chastically as P([n j;t) spreads significantly to the ab-
sorbing state where [ n j =0, or as [R j becomes close to
the order of unity.

IV. THE MOMENT EXPANSION TRPATMENT

TIlc systcQl-size expansion treatment has Rn 1nhcI'cnt
disadvantage in describing the stochastic metastable state
because the averages nk are solved only from the deter-
ministic type of equations, independent of the variances
o,j(t). The stochastic behaviors of a system in which all
the stationary n~ are coupled to the time-varying cr,z(t)
can be analyzed by using another approximation scheme.

Directly from the master equation (2), the first mo-
ments are found to satisfy the following equations,

we find a deterministic type of coexistence among all
species, with their relative populations remaining constant

dna = W„nk Enk —g W, gorki/Q- ,
J

(12)
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1n which thc rclcvant varlanccs arc coupled to lip cxpllc1t-
ly. Similarly, the second moments are coupled to the
third ones by

d(n;n, ) =(8';+ W~)(n;nj ) 2(—Encnj )

. +6;j 2A;n;— (13)

The moment expansion treatment can be used to approxi-
mate the average of a triplet product by the first two mo-
ments. %'e finally find that all o,J satisfy exactly the
same mathematical form of Eqs. (6) provided that the
term involving dna/dt is now given by the new equation
(12).

For the present approximation scheme, just because O,J
are coupled to nk, we can combine the two sets of Eqs. (6)
and (12) into a simple one,

mation the metastability that nk =0 even though crJ(t) is
varying can bc described in a morc precise way through
Eqs. (15)—(20). From Eq. (16) if p/Q « 1 is assumed (as
is always satisfied), we have

crj(r) =SJ+ [oIJ(t, ) S—J ]exp[2'(r r,—)p/Q] . (21)

Thc time-dependence of 0 -. Is therefore extremely weak
and there ls practically no difference between this ex-
ponential dependence and the linear dependence given by
Eq. (9).

While Eqs. (18) are valid all the time, we have the less
restricted relationships after t & t„

n k ——pk(0)n ', g o,j(t)=p;(0)o (22)

All these results are supported by numerical results, some
of which are discussed in Sec. V.

JJ l J 4 lJ
—(o" nn —+n 5. )=.2W"1—~&nk/Q (o"—n rT )EJ l J

k

+2AIn;5~J . (14)

err/(t) =S;~+ [cr;/(t, ) —S,j ]
T

Xexp 2 1 —ink/Q 8'(r r,)—
k

(16)

Though this set of equations allows SS solutions for cr,z as
well as nk, it can be shown that the solutions are unphysi-
cal since all o'kk &0. The expected metastability can be
solved from Eqs. (6) and (14). We find that after nk =n k,

g crrj ( r ) =IT; Q —Q n J. (15)
j J

V. NUMERICAL RESULTS AND DISCUSSIONS

For a system of S species of macromolccules, the coID-

piete time-dependences of nk and o,J can be solved nu-

merically from a set of totally E(%+3)/2 differential
equations which are nonlinear and coupled. Figure
shows the results for a two-species case. Both approxima-
tion schemes give almost the same results; the differences
are so small that they cannot be den1onstrated on the fig-
ure. The averages nk and their SS values are essentially
deterministic and thus are independent of the metabolism
factor IM. However, the relative fluctuations R~(t) depend
sensitively on this stochastically in1portant factor. For
p=1 we have A = 8' and D=O, i.e., the molecules are
self-replicating without degradation. For p=10, we have
a=0.9A; a process with such a high metabolism rate is

I I I I I Ill|

S)J Pg f Pg J 5gJPQ 0, 1 =

It is not easy to visualize the metastability through these
equations unless we proceed with the following analysis.
%'e can show that, for 8'k ——IY and Ak ——A, the two sums Q 001:

n= n~, O= OJ (18)

satisfy exactly the stochastic equations (6) and (12) for a
one-species case. The SS solution for this special case is
found to bc

0.001
100

II II

1000

and

n '=Q[3+(1—8p/Q)'~ ]/4,

cr'=n '[rT' pQ/(Q n')]—=n '(Q —n') . —(20)

With the help of Eq. (19), the two expressions of 0 can be
shown to be identical.

%'ithin the framework of moment expansion approxi-

FIG. 1. Two species of macromolecules with identical repli-
cation rate constants coexist in a system having carrying capaci-
ty A = 10 . Starting with initial numbers of molecules
nl(0)=0. 2A and n2(0)=0. 1Q, both the averages nk approach
the deterministic type SS values in a short time while the rela-
tive fluctuations Rk remain small and increase with time steadi-
ly. Two values of the metabolism factor are used: p=1 (solid
curves) and p = 10 (dashed curves).
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unlikely. The first set of data (p, = 1) in Fig. 1 is closer to
the practical cases in which p & 1. Both sets of results in
Fig. 1 show clearly the metastability.

The metastable behavior is purely stochastic in nature.
The deterministic theory predicts that all species with
identical rate constants will end up in a SS coexistence
and that this SS is a stable one. In our stochastic analysis,
the SS coexistence is only a metastable one because the
fluctuations will eventually destroy it. Care must be taken
in interpreting the results since both approximations are
valid so far as Rk are small. Our results cannot describe
the detail manner of the fluctuation catastrophe; instead,
they predict this tendency.

The destination of the metastable state after the sto-
chastic transition is believed to be either the absorbing
state with all nk ——0, or the one-speries SS in which all but
one species vanish. The 1ast conjecture is more likely and
is well justified since we have shown in Sec. IV that the
whole degenerate system behaves like a one-species sys-
tem. The constrained one-species self-replication is, in
fact, equivalent to the familiar process of logistic growth
in the population dynamics. ' This one-species surviving
SS is both stochastically and deterministically stable.

The stochastic selection process is possible as is evident
from Fig. 1 that the species with larger initial population
is subjected to smaller relative fluctuations and so will

have better chance to survive the fluctuation catastrophe.
For the case with all the species having the same rates and
the same nk(0), the selection will probably be carried out
by chance only. A special case with gk ni, (0)=A is

indeed trivial in the deterministic analysis but not so in
the metastable behaviors. The predicted metastabi1ity is
the same for various combinations of nk(0). The time t,
needed for the system to attain the SS values of nk de-

pends on the initial conditions. Since t, itself is small,
usually Wt, &15, its variations are unimportant as com-
pared with the lifetime of the metastable state. The life-
time of the metastable state may be defmed as ~=8'ht,
where ht is the time duration starting from t, to the time
when R =0.5. We find that both schemes give similar re-
sults which can be put down approximately as, for
ni(0)=n2(0),

r-0. 1Q/p .

For example, for (M =1 and 0= 10 as are used in Fig. 1,
we have ~-10, which is much larger than Wt, .

The metastability solution exists only for Wk ——W. As
the Wk are gradually changed away from equality, the
coexistence in nk breaks down and the species start to
compete for the finite resource. Both deterministic and
stochastic theory predict that the competition will end up
at a stable SS in which the species having the maximum
8' is selected to survive at the one-species SS with the ex-
pense of all others. Therefore, by adjusting the parame-
ters 8'k away from equality, the stochastic metastable
state is shifted to a stable SS, while the deterministic
stable SS is shifted to another one with different distribu-
tions in nk.
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