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A modified mode-coupling theory is presented to explain discrepancies between measured values

and theoretical predictions for the long-time tail of the velocity-autocorrelation function of diffusing

particles. The measurements of Paul and Pusey and of Ohbayashi et al. are analyzed and shown to

be in much better agreement with theory than previously supposed, provided that the new, modified

theory is used. The new theory regularizes spatial singularities in order to remove temporal singu-

larities. In doing so, it provides a natural explanation of both the diffusion constant and the ampli-

tude of the long-time tail of a multiplicative stochastic process.

I. INTRODUCTION

Langevin's description' of Brownian motion predicts
that the velocity-autocorrelation function for R Brownian

particle decays exponentially in time. Suc11 a decay is
consistent with thc Bogoliubov view that thc transition
from Liouville's equation to transport equations, such as
hydrodynamics, is a consequence of sharply separated
time scales. In the present context, the transport process
of interest is diffusion. The decay time in I.angevin's
description is short compared to the time scale for dif-
fusion in a macroscopic volun1c.

The idea of sharply separated time scales received a
severe blow when Alder and Wainwright published their
computer-simulation results for the hard-sphere velocity-
autocorrelation function. These simulations showed a
slow, power-law decay, i.e., a "long-time tail, " A variety
of theoretical arguments have been advanced which
make this observation plausible, and additional computer
simulations' have confixmed and refined the original
findings. Nevertheless, direct observations of the long-
time tail in physical measurements had to wait 10 years.
The first sufficiently accurate measurements for diffusion
were published in 1981 by Paul and Pusey. " They used
light scattering off of aqueous solutions of polystyrene
spheres. Recently, Ohbayashi et al, ' confirmed these
measurements by repeating them under slightly different
conditions.

The long-time-tail measuremcnts n1ust determine two
physical parameters. The first is ihe diffusion constant,
the only parameter required by the Langevin theory. The
second is the amp1itude of the long-time tail. The dif-
fusion constant is determined by the kinematic viscosity v
of the Quid in which the spheres are immersed, by the
temperature T, and by the radius R of the spheres. The
amplitude of the long-time tail, on the other hand, de-
pends on the viscosity and temperature only.

The standard theoretical approaches determine these
two parameters uniquely. No additionaj. , free parameters
are available for fitting data. Whereas Paul and Pusey
found diffusion constants about 95% as large as required
by theory, they were very disconcerted to find the long-
time tail amplitude to be only 74% as large as predicted.
The work of Ohbayashi yielded diffusion constants 97%

as large as requix'ed and long-time-tail amplitudes between
91% and 97% as large as predicted. These latter results
are nearly within the experimental error of the measuring
technique. Indeed, Ohbayashi et al. concluded that they
had confirmed the theory. Ond was forced to the con-
clusion that Paul and Pusey's results suffered from son1e
source of systematic error, for which Paul and Pusey care-
fully looked, but wcic unablc to flncl.

At about the time these measurements were being re-

ported, I was studying the theoretical basis for long-time
tails in diffusion and raised questions regarding the rigor
of thc arguITlcnts, I algUcd that thc long-time-tail obscl-
vations for polystyrene spheres were a macroscopic, hy-
drodynamic effect since the spheres were so large, and
that the behavior of molecular sized particles was still
open to question. However, the failure of Paul and Pusey
to see a sufficiently large long-time-tail amplitude was
truly perplexing. Recently, I have focused attention on
this special case, where one expects to see a bona fide, hy-
drodynamic long-time tail. There are two different
theoretical approaches to this special case, the Stokes-
Boussinesq approach' ' and the mode-coupling"' ap-
proach. In the papers by Paul and Pusey and by
Qhbayashi et al. the Stokes-Boussinesq theory is invoked,
whereas in much of the theoretical work the mode-
coupling argun1ent is preferred. I have argued earlier'
against ihe Stokes-Boussinesq approach, and in this paper
will present a modified mode-coupling argument. This
modified mode-coupling argument explains the Paul and
Pusey discrepancies, and it explains why Ohbayashi et al.
observed noticeably smaller discrepancies. The main
point of this paper is that the results of Paul and Pusey
are potentially in much better agxeement with theory than
has previously been supposed.

In Sec. II the modified mode-coupling theory is
presented and discussed. The light-scattering measure-
ments are analyzed in Sec. III. Section IV contains a re-
view of thc criticism of thc Stokes-Boussincsq Rpproach.
In Sec. V conclusions and recommendations are pxescnted.

II. A MODIFIED MODE-COUPLING THEORY

Let C(r, t) denote the density of spheres in the fluid
and let the vdocity field of the mixture be given by
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v ( r, t}. The conservation law for the evolution of C ( r, t},
if there is no diffusion, ' is given by

a, i a—v~ =VV U~ — p,
Bt p Bx

(2)

in which v is the kinematic viscosity, p is the mass densi-

ty, and p is the pressure. Since the measurements"' are
done with polystyrene spheres in H20, the equation for an
incompressible fluid has been used. Now it is observed
that the concentration C is also subject to diffusion and

that the velocity field v is subject to fluctuations. This
leads to the equations

and

—C+ u. VC=DpV C
at

(3)

—C+v VC=O.
at

In the standard mode-coupling theory, it is assumed that
the spheres are sufficiently dilute that v can be taken to
be the velocity field of the solvent fluid alone, and that it
satisfies the Navier-Stokes equation

tion a multiplicative stochastic process. '

The average behavior of C, i.e., (C), is obtained by

averaging Eq. (3) with respect to the influence of u. This
is most easily achieved by use of spatial Fourier
transforms. The nonlinearity of the u VC term produces
coupling between the different Fourier modes, i.e., "mode
coupling. " In the limit of small Fourier-space k vectors,
a cumulant expansion' may be used and yields

2 k~T
(C—)=D V (C)+-

Bt 3 p

X f ds[4n(DO+v)(t s)] —~ V' (C),

(6)

wherein the first two cumulants have been retained be-
cause all higher-order cumulants are of order 10 times
smaller or more.

Several points regarding this result must be noticed.

Define u by

u (t}=exp( —tDOV )u V exp(tDoV )a, l a 1 a—
Q ~ =VV Q~ — p + S~p,

Bt p Bx p Bxp
(4) and observe the noncommutativity of DpV and u V.

The analysis produces the correlation

in which Dp is the "bare" diffusion constant and S ~ is
the fluctuating stress tensor. The standard theory' for
the hydrodynamic fluctuations of an incompressible fluid

treat S~p as Gaussian white noise of zero mean and with

correlation

( S p( r, t)S&„(r ', t ') ) =2k' Tpv(5~&5 p„+5~+p& )

x5(r —r')Sir —r '),
in which kz is Boltzmann's constant. This correlation is
valid for the infinite free fluid, and ignores any influence

of the presence of the dilute concentration of spheres.
The fluctuating velocity field in Eq. (3) makes that equa-

(u~(t)u p(s))= — [4m(Do+v) ~t —s ~] ~25 p, (8)
3 p

which is the integrand on the right-hand side of Eq. (6).
The integral may be recognized as Green-Kubo transport
coefficient' integral "renormalization" of the bare dif-
fusion coefficient. The correlation in (8) is evaluated at a
single point r after initially finding the correlation at two
points, r and r'. It contains Dp+v because DpV and

u V do not commute. However, for the measurements
v»Do. All instances of (C) in Eq. (6) are evaluated at
the same point r and time t. The time integral is trivial
and yields

f ds [4m(DO+ v)(t —s}].2 k~T —3/2

3 p 0

AT
[ [~(Do+v)0] '~ —[m(Do+ v)t]

6np(Do+v)

which has the units of a diffusion constant, exhibits the
effect of the long-time-tail power law of (8) in its last
term, and also exhibits an embarrassing singularity at
t =0. The usual treatment ' includes the heuristic argu-
ment that the lower time limit, t =0, is not to be taken
seriously and that t =0 should be replaced by t =tp for
some appropriate to for which [~(Do+v)to] '~ is negli-
gible. Often, one says tp is on the scale of the mean free
time of the fluid. In the Stokes-Boussinesq approach, ' '
this singularity does not occur, which is one reason why
some researchers prefer it. In either approach, it is the
asymptotic time behavior which is sought, and each yields

—(c)= D, — k~T v'(c),
Bt 6mpvV nvt

wherein Dp+v has been accurately replaced by just v.
For spheres, Dp is given by the Stokes-Einstein formula'

(l0)

k~T
Dp —— (II)

6vrpvR

in which R is the radius of a sphere (on the order of 10
cm in the measurements to be discussed). In fact, as will
be discussed in the next section of this paper, the measure-
ments do not directly yield the diffusion constant and its
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long-time-tail renormalization, but instead provide the

asymptotic time dependence of the mean-square spatial
displacement of a sphere. Both approaches yield the same
result for this quantity:

r

(
I
~r I') =»ot— k~T

3mpv i

It is precisely this quantity which was used to fit data by
Paul and Pusey and by Ohbayashi et,al.

This mode-coupling argument may be criticized (as

may the Stokes-Boussinesq approach; see Sec. IV). While

doing so, a modified mode-coupling argument will be
presented which leads to physically and mathematically
more acceptable results. Obviously, the singularity at
t =0 in (9) is more serious than the argument aimed at ig-
noring it suggests. Indeed, it is easy to show that

ks T /6n pv( m vto )
'

is a quantity which is larger than Dp for all
tp (R 2 /m v —10 sec for the conditions of Paul and
Pusey's measurements. For tp on the scale of a mean free
time, which is less than a picosecond, this quantity dwarfs
Dp by orders of magnitude. Another perspective leads to
the objection that so far the presence of the spheres in the
fluid in no way affects the fluctuating Navier-Stokes
equation or the stress tensor correlations. The stress ten-
sor correlations contain the factor 5( r —r ') which
represents the idea on the hydrodynamic level of descrip-
tion' that these correlations are local in space. In Eqs.
(1), (3), and (6), the spheres are represented by a local con-
centration. Can this idea of locality be imputed to a spa-
tial scale set by the sphere's radius R? As a final objec-

tion, the simultaneous presence of u and Do in Eq. (3) is

disturbing. If u is the cause of the diffusive behavior of
( C), then the Do should emerge from the averaging and
not have to be inserted by hand.

The preceding criticisms suggest the following, modi-
fied mode-coupling approach. The basic equations are

(F(r, t)F~(r ', t')) =2QJ(r —r ')5(t t') . —(20)

E;J(r —r ') is called the entropy matrix and G;, (r —r ') is
called the relaxation matrix. The correlation matrix

Q;~( r —r ') is fixed by the fluctuation dissipation relation:

2QJ(r —r ')= f d'r"[Gt(r r")Etj '(r" —r')—
+E;( '(r r")G~t(r" —r')] . —

(21)

As will be shown below, the softening of the spatially
singular function 5(r —r ') by h(r —r ') removes the tem-
poral singularity in Eq. (9). An analogous nonlocality in
time is not introduced because it is determined by the ra-
tio R/c where c is the sound velocity in polystyrene. This
works out to less than 1 nsec, which is between 10 and
10 times shorter than the natural time scale in this
problem, R /~v, as is discussed in Sec. III.

Before proceeding with the consequences of Eqs.
(13)—(16), a more detailed account of their significance
will be presented. Two features of this formalism need to
be explained with greater clarity. The incompressibility

requirement, V u=0, may be used to eliminate the pres-
sure p from the equations. The choice of correlation for-
mula for the stress tensor fluctuations cannot be made
without checking for consistency with the fluctuation-
dissipation relation. ' Both of these issues can be dealt
with by invoking the theory of irreversible thermodynam-
ics in its hydrodynamic context. ' '

The requirements for the application of irreversible
thermodynamics' ' are an entropy expression,

S=S,——,
'

k~ f d r d r'a; ( r )E; (r —r ')aj( r '), (18)

a relaxation equation,

at 'a;(r,—t) = —f d r'G~(r r')a~(r ')+—F;(r,t), (19)

and a correlation formula for the fluctuating forces:

—C+u VC=O,
at

a-= — 1a 1a-
u~ =vV u~ — p + S~p y

Bt p ~& p ~&p

(S ~(r, t)S& (r ', t') ) =2k' Tpv(5 &5t3 +5 Pp&)

&& 5(t —t')A(r —r '),

6( r —r ) =(2mcr~ ) exp —
z

2 —3/2 /

r —r'['
20'

(13)

(14)

(15)

(16) f(k)—=
3 f d re '"''f(r) .

(2~)
(23)

In this equation, the inverse of the entropy matrix,
E;J (r —r '), appears, and it is defined by the requirement

f d3r"Et(r —r ")EIJ '(r "—r ') =5&5(r —r ') . (22)

In order to apply this formalism to the problem at hand,
it is necessary to identify the variables a;(r, t), the ma-
trices E;~ and G,z, and the fluctuating forces F;. These
identifications and the incompressibility condition are
most readily achieved by spatial Fourier transforms:

Equation (13) does not contain a bare diffusion coefficient
and is simply a multiplicatively stochastic' conservation
equation for C. In Eq. (15), b,(r —r ') replaces 5(r —r ')

of Eq. (5) and exhibits the desire to avoid locality on a
spatial scale smaller than the radius of a sphere. The
breadth of b,(r —r ') is determined by its variance oz,
which is related to the sphere's radius by the strictly
phenomenological requirement

~o.g ——2R

The Fourier transform of Eq. (14) is

—u = —vk u ——ik~+ —ikI3S p.a-= - 1 - 1-
Bt p p

(24)

k p =k~kpS~p (25)

or

The incompressibility condition is k u =0. Setting this
into (24) yields
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k~kpp= Sp.
k

This permits rewriting (24) as

(26)
It is easily seen that this yields

r

k~T ) kkjE, '(k") = 5;—
p (2~)' ' k' (35)

krak„—u = vk —u, + —k 5„~ k—" S„, , (27)

from which F~ &nay be identified by:

g k„k
kv~pa &a

p k

when u~ is taken to be a~.
In the entropy expression (18), only the transverse ve-

locity field should enter. From hydrodynamics, the entro-

py is given by

S=S,——,'k~ f d r u, u, ,
k~T

(29)

wherein u, satisfies V u, =0, the incompressibility condi-
tion. The Fourier transformed equivalent is

This Ineans that the inverse of the entropy matrix given in
(35) will become

kBT 1 ~jk' —02 k /2E,J '(k) = 5,J
— e

p (2m)' ' k' (36)

Combining (33), (36), and the Fourier transform of the
fluctuation-dissipation relation (21) gives

kqT k kJ2Qi(k)5(k+4')=2 vk2 5i — 5(k+k')

The factor 5(k+ k ') in (34) arises from the 5(r —r ') in
(22). It is just such 5 functions which are to be softened
into b,(r —r '). Thus, the right-hand side of (34) should
read

1 ki kJ' ~ ~ —02R k ~/&

57 — 5( k+ k ')e
(2n )6 k

S=S,—z(2a) ~ f d ku, (k} u, ( —k),

A
where u, satisfies k u, =0. This can be expressed as

(30)

—g&2 k2/2
&e

(2m )
(37)

S=S,——,ks(2~) f d kd k'u;(k)EJ(k)

&& 5( k+ k ')ttj ( k '),
where

(31)

The Fourier transform of (20) implies

(F(k, t)F, (k', t'))=2 vk' 5;, — ' 5(k+k')

E;7(k) = 5;J— (32}

2R p2 /2X,e
(2~}'

(38)

k
ur ——u

k 'u
k

or

U& = 5"—
lJ

k;kJ
k2 &J

and 5;1 —k;kj/k is idempotent. From (19) and (27), the
relaxation matrix is seen to be

This result is obtained by observing that u, is obtained

from u with the projection operator

(CIC)=(Texp —f dsulsl 7 CIOI, (39)

in which the time-ordered exponential of the streaming
operator appears. The average of this ordered exponential
may be expressed by ordered cumulants which leads to the
differential equation

This agrees exactly with the Fourier transform of (15) and
the identity (28), which was what was to be proved.

It is now possible to return to Eqs. (13)—(16) in order to
obtain an equation for (C). Equation (13) is a linearly
multiplicative stochastic process' which is most easily
averaged by the method of ordered operator cumulants. '

The formal solution is

GJ(k)=, vk 5t .
(2~)'

(33)

The inverse of the entropy matrix must be defined on the
two-dimensional subspace of transverse velocity field
components, and not simply by (22). In fact, the direct
Fourier transform of (22), restricted to transverse com-
ponents only, should read

where the first two cumulants are given by

G"'(t)=(u(t) V)=0, (41)

Et(k)E tj (k ')5(k+ k '}= 5(k+ k ') 5 J-
(2n. ) k

(34)

G"'(t)= f ds(u(t) Vu(s) V) .
0

(42)

Each of these expressions is evaluated from the solution to
(27), which is
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—gvk2~
u (t)=e '"" u (0)+ dse " '"" —k„5„—k " S„„(s). (43)

The averaging implied in (39) and (40) is with respect to both S„and the initial data u~(0). The initial data is distribut-
ed by a Maxwell distribution for the transverse velocity field components. Consequently, the result given by (41) is ob-
tained. The evaluation of (42) leads to

2

(u(t) Vu(s) V)=(u (r, t)up(r', s))
Bx Bxp

Again using (43), one obtains

at r'=r . (44)

k T
(u (r, t)up(r', t'))=

P

a2 eik (r —r ')
—V5p+ 3 fdk

Bx~Bxp (2~)3
—vtc2

I
g —g'I +Rk /2

e e (45)

wherein (15) has been used. For r '= r, which is what is needed here, the quantity —V25~p+5 /Bx Bxp becomes a fac-
tor of (8'/3)k 5 p inside the integral, and the expression becomes

(u (r, t)up(r, t'))=
3 f dkk e "

5~p
——— (47rv

~

t t'~+2m—oz) ~ 5~p. (46)
p (2m)' o 3 p

Therefore, G' '(t) in (42) is explicitly

kp T
G' '(t)= f ds [4n—v(t s)+2ncr~—] / V

0 3 p

[(moz l2} ' (nvt +~—o~z ./2) '~ ]V
6npv

(47)

in which t is the correlation delay time. For light scat-
tered by a sufficiently large number of particles, the field
amplitude of the light is a complex Gaussian process and

g '(t) = 1+C(g' "(t}) (51)

in which C is an apparatus constant and g'"(t) is the
self-intermediate scattering function

This must be compared with (9). The phenomenological
choice for o~ given by (17) converts this into

G' '(t)=Do[1 —(1+mvt/R )
'~ ]V (48)

wherein the Einstein-Stokes formula' have been invoked.
It may be shown that the largest additional higher-order
cumulant is G' '(t) and that it is of order Dolv times
smaller than G' '(t). For the conditions of the measure-
ments, "' this is a factor around 10 . Thus, the average
equation for the sphere concentration is

—(C) =Do[1—(1+rrvt/R )
'~ ]V2(C),a

at
(49)

III. ANALYSIS OF THE MEASUREMENTS

The technique used in the light scattering measure-
ments" ' is photon-correlation dynamic light scattering.
It yields an estimate of the normalized temporal auto-
correlation function g' I(t) of the scattered light intensity
I:

in which both the diffusion constant and the long-time
tail are found. For times t long compared with R /m. v,
this equation is very well approximated by Eq. (10),
whereas for all shorter times it is also well behaved, in
contrast with (10).

Equation (49), in contrast with (10), will be the basis for
the ensuing analysis of the light scattering measurements.

g'"(k, t)=(exp[ik b, r(t)]), (52)

in which k is the scattering vector and Ar(t) is the dis-
placement of the scatterer in time t. For scatterers satis-
fying a diffusion dynamics, as is the case here, one obtains

g' "(k,t) =exp[ ——,
' k (

~

b r(t)
~

) ] . (53)

—(C) =D(t)V'(C) .
Bt

(54)

With initial condition (C(r,0)) =5(r —ro), the solution
is

(C(r, t))= 4m f dsD(s)

Therefore,

' -3n
I
r —ro

I

'
4 f dsD(s)

(55)

& I~r(t)l'&=2 f dsD(s).

With use of the explicit D(s) implied by (49), this yields

(56)

1/2

Therefore, a measurement of g' '(t) provides an indirect
measurement of the mean-square displacement of a
scatterer, (

~

b, r(t)
~

).
The mean-square displacement may be determined by

the diffusion equation given in (49). This equation may
be written in the form

(p) (I(0)I(t) )
(I)' (50)

mvt

R 2
—1, (57)

R
(

~

b, r(t)
~

') =2D, t 2—
7TV
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TABLE I. Results of Paul and Pusey (P, Ref. 1I) and Ohbayashi et al. (0, Ref. 12).

P1
P2
P3
P4
01
02
03

b /Do

0.96
0,95
0.96
0.96
0.98
0.98
0.97

a /dp

0.79
0.74
0.73
0.64
0.91
0.94
0.97

0 ('C)

19.5
19,5
19.5
19.5
23.5
28
32.8

T.
(@sec)

2
5

10
20
6
6
6

88
88
88
88

208
208
208

30
30
30
30

108
98
88

R /mv

(n sec)

830
830
830
830

56
62
68

ln(g' ' —1)=lnC —k'(
~

Ar(t) j ) . (58)

Thus, a semilog plot can be fitted by formula (12) in the
form bt —at' in order to determine b and a. A linear
least-squares fitting procedure was used such that a per-
fect fit would have meant that

kgT
b =Dp and a =dp = (59)

37jpv

The reader is referred to the original papers"' for all
pertinent details regarding these fits and measurements.
Only the results are reproduced below, in Table I.

In Table I the ratios b/Dp and a jdp are given, as well

as the temperature 0 at which the measurements were
made, the time delay T, of the correlator, the number of
channels X of the correlator, and the multiple M of the
intrinsic time R /m. v, which serves as the first time at
which data is taken. The Paul and Pusey" (P) measure-
ments involved polystyrene spheres of radius R =1.69
pm and the Ohbayashi et al. ' (0) measurements utilized
spheres of radius R =0.402 p.m. The kinematic viscosity
v is the ratio of the viscosity g and the mass density p
each of which is temperature dependent. These variations
are incorporated in the computation of the intrinsic time.
For Paul and Pusey, the intrinsic time R /m v is
8.3 )& 10 sec, whereas for Ohbayashi et al. it is
5.6X10 sec (23.5'C), 6.2X10 ' sec (28'C), and
6.8X 10 sec (32.8'C). Paul and Pusey's measurements
ran from MR /rrv to M(R /rrv)+1VT, as did Ohbayashi
et al. 's. In the former case, the first time is 2.5X10
sec, whereas in the latter case it is 6X 10 sec.

Formula (57) implies that it is not justified to fit the
measured data with the function bt —at' . Obviously, it
would be desirable to use the function

which is to be compared with (12), with which it agrees
identically for t &&R /mv.

In both the measurements of Paul and Pusey" and of
Ohbayashi et al. ' it was formula (12) which was used to
fit the measured data. By using (57) in (53) and then (53)
in (51), it is seen that

RDp. t —2
GATV

' 1/2

1+ R2

in which all quantities are already predetermined, as
though this expression faithfully represents the real data.
If b and a turn out to differ from Dp and dp as in Table
I, then this would be strong evidence for validity. Because
the short-time dependence is more important than the
long-time dependence, a fit of b —at ' to

' 1/2
R

Dp 1 —2 —1
mvt

b/Do a /dp

by linear least squares was used. This procedure can be
rendered in closed form, algebraically. The results are
given in Table II.

While there is a good deal of variation in the measured
data for similar conditions, this variation is not systemati-
cally explainable. Paul and Pusey did a weighted average
over all of their results and obtained the values

b/Dp ——95.5% and a/dp =74+3%. The fit to the formu-
la in (57) yields b/Do-99% and a/d-o28%which is
not quantitative agreement, but is qualitatively in the
right direction. Moreover, our results are sensitively
dependent on the weighting procedure used in the fits, and
one can obtain quantitative agreement without much ef-
fort. The comparison of our results for 01 with the mea-
sured 01 results is much better. 02 and 03 are not so
good, but again qualitatively in agreement. Ohbayashi
et al. also did fits which included an additional quadratic
term, i.e., bt —at' —ct . They stated that this did not
appreciably alter their results for b and a. This claim was
not supported by their published values, however, which
did show only &1% changes in b, but showed a 16%
change in a for 01, a l%%uo change in a for 02, and a 29%
change in a for 03. Thus, 03 is not reliable for compar-

TABLE II. Closed-form rendition of a linear least-squares fit
for the expression b —at

bt atr~ [(1+a—/4b2t) ~2 a/2bt ~ ]—
instead, even though this would necessitate a nonlinear
least-squares fitting procedure. Since the raw data is not
at our disposal, the validity of the point of view developed
in this paper is tested as follows. The function bt —at'
is used ta fit

Pl
P2
P3
P4
01
02
03

0.98
0.985
0.99
0.99
0.995
0.995
0.995

0.79
0.82
0.84
0.85
0.90
0.89
0.89
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ison. It is the contention of the present analysis that for-
mula (57) is to be favored over (12) in data analysis.
Moreover, the comparison of the measurements with (57)
will show that the agreement between measurement and

theory is much better than was previously supposed. Fi-
nally, the better agreement of Ohbayashi et al. 's results
with (12) than Paul and Pusey's results is only a reflection
of the greater value of M. The larger M is, the more
nearly equal (57) and (12) become.

IV. THE STOKES-BOUSSINESQ FORMULA

6R V—vrrjp f ds
u(s)

(60)

A detailed account of the derivation of this formula can
be found in Landau and Lifshitz's I't'uid Mechanics. '

What the authors of the measurement papers, and many
others, have down is to use F(t) in a "self-forcing" equa-
tion

Mu(t)=F(t) . (61)

Elsewhere, ' I have argued against this equation except in
a very restricted context. The argument is based on the
observation that the derivation' of (60) is designed to
eliminate all transients in the solutions, Therefore, Eq.
(61) can only be valid on a time scale that is long com-
pared with the transient's relaxation time. In that sense,
(61) properly describes the asymptotic time domain, and
particularly the long-time regime. However, the tran-
sients do not decay rapidly. ' They do not decay exponen-
tially, but only by a power law which is only a factor of
1/t stronger than the long-time tail power law. Conse-
quently, (60) cannot be used to obtain corrections to the
asymptotic time dependence given by (12). One can ob-
tain the correction implied by (60) to (12), but it would

Both papers reporting measurements have chosen to in-

terpret their results in terms of the Stokes-Boussinesq for-
mula. ' ' This formula expresses the drag force experi-
enced by a sphere which is moved through a fluid with
some explicit time-dependent velocity u (t):

F(t) = 6nrI—Ru (.t) ——,
'

m.pR u(t)

not include an additional correction of the same order in t
which is in the transients. Consequently, the suggestion
that one use (60) to obtain an analog to (57) is not valid.

V. CONCLUSIONS AND RECOMMENDATIONS

A definitive test of the ideas presented in this paper re-
quires fitting the raw data to the formula (57). Such fits
would be better tests if the value of M were smaller. This
suggests that the measurements be attempted for shorter
times than previously done. It is interesting to note that
even for M =30, as in the Paul and Pusey measurements,
the two formulas, (12) and (57), differ, at the first time at
which data is taken, by 2DO(M —2VM) versus
2D& [M —2( v' I +M —1)], respectively, which is only
2D0(19.0) versus 2D0(20.9), i.e., 10%. For the Ohbayashi
et al. measurements for which M-100, these two quanti-
ties differ by 2DO(80) versus 2DO(81.9), i.e., 2%.
Nevertheless, large discrepancies in the a/do ratio arise
from these relatively small initial time differences. At
later times, of course, (12) and (57) are much more nearly
equal.

Measurements at shorter times would also provide an
indirect test of the assertions in this paper regarding the
Stokes-Boussinesq formula. Specifically, the claim that
only its asymptotic value is valid for long times, whereas
any corrections to this value omit equally important con-
tributions from ignored transients. The transient behavior
could be computed for the Stokes-Boussinesq formula and
then compared with formula (57).

The modified mode-coupling approach presented here
should be justified from a more microscopic point of
view. This could involve the approach of nonlocal hydro-
dynamics or kinetic theory. It would be of interest to
pursue the generality of the observed interplay here be-
tween a spatial 6 function and a temporal singularity.
The removal of the phenomenological character of the
theory presented here is also desirable.
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