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Calculations of the photoionization of 5d and 4f subshells of a number of heavy elements have
been performed with use of relativistic Dirac-Slater wave functions. Cross sections, branching ra-
tios, and photoelectron angular distributions have been obtained and their systematics explored as a
function of Z. The extent of the relativistic splitting of the zeros in the 5d —¢f dipole matrix ele-
ments has been investigated and the implications have been discussed. Comparisons with existing
experiment and more sophisticated theory (Dirac-Fock, relativistic random-phase approximation)
have been made, and the agreement was generally good.

I. INTRODUCTION

Recent advances in experimental photoelectron spec-
troscopy have made it increasingly possible to make reli-
able measurements of the details of the photoionization
process. In particular, it is now possible to study the ef-
fects of relatively small interactions. In the light of this
development, we have undertaken a broad theoretical
study of photoionization within a relativistic framework.
In this paper we report the results of our studies of the 4f
and 5d subshells of the heavy elements. The photoioniza-
tion of the 5d subshell of mercury has been studied experi-
mentally! =* and the 4f of Hg has also been studied.” It
is, therefore, possible to gain some insight into the accura-
cy of our theoretical results via comparison with experi-
ment.

The heavy elements differ most markedly from the
light elements in the strength of the relativistic interac-
tions. The theoretical methods to perform realistic calcu-
lations have been described and tested in several recent pa-
pers.5~8 The framework for a systematic survey of the
heavy elements has thus been established. Among the ex-
perimentally measurable quantities which describe the
photoionization of a given subshell are photoionization
cross section (o), photoelectron angular distribution
asymmetry parameter (), and branching ratio (y). The
branching ratio arises from the relativistic splitting of a
given nl subshell into a j=/+ + component and j =/ — 5
component due to the spin-orbit interaction. In certain
cases, the splitting of thresholds alone explains the
behavior of the branching ratio. However, it has recently
been shown in the case of the 5d subshell of mercury’ that
the photoionization cross sections for the two components
have different shapes. The dynamical effects giving rise
to these differences are, of course, explicitly relativistic.
Hence the branching ratio in this case can be understood
only through an explicitly relativistic calculation.

The asymmetry parameter 3, on the other hand, can be
calculated in a relativistic as well as a nonrelativistic ap-
proximation. In the relativistic treatment the asymmetry
parameters corresponding to the two spin-orbit com-
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ponents of a given nl subshell differ from each other for a
number of reasons. Most important are the relativistic
dynamical effects that lead to differing matrix elements
and phase shifts for the two components. It is also known
that the presence of a Cooper minimum affects the shape
of the asymmetry parameter curve. Further, it has been
shown recently that the positions of these Cooper minima
can change greatly when relativistic interactions are in-
cluded in the calculation.*® Thus it seems reasonable to
expect significant effects of relativistic interactions. The
shift in the position of the Cooper minima also strongly
affects the cross sections.

In view of these results, we expect a systematic relativ-
istic study to reveal the features of the photoionization of
heavy elements. Another reason for restricting our study
to high-Z elements is that the j-j coupling scheme is
known to be valid for these elements. This coupling
scheme is implicit in the solution of Dirac equations. For
lower-Z elements this scheme begins to break down and
the agreement with experiment is no longer very good.’

In this paper we report our results for the 4f and 5d
subshells of a series of heavy elements. Of these we have
studied a few more extensively than others. These are
tungsten (Z =74), for which the 5d subshell is not com-
pletely filled, mercury (Z =80), which is a closed subshell
atom and which has also been studied experimentally,! >
and uranium (Z =92), which is a transition element in
which the 5f subshell is already bound which greatly af-
fects the nd —€f oscillator strengths.

The theoretical formulation used was discussed in Ref.
7 in some detail where relativistic calculations of the pho-
toionization of Hg and Cd were presented. In these calcu-
lations relativistic effects are explicitly included by using
the Dirac equation. The atomic potential used in these
equations is, however, approximate. In one standard ap-
proximation the exchange interaction is included via a
Slater-type central field. This approximation is referred
to as the Dirac-Slater (DS) approximation. The nonrela-
tivistic counterpart of this approximation is the Hartree-
Slater (HS) approximation.!® In a more accurate approxi-
mation, the exchange interaction is included explicitly
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self-consistently through a nonlocal exchange potential.
This leads to a much more complicated numerical prob-
lem. This approximation is the relativistic analog of the
Hartree-Fock (HF) approximation'® and hence it is gen-
erally referred to as the Dirac-Fock (DF) approximation.
Implicit in both of these formulations are one-particle or-
bitals. It was shown in Ref. 7 that the DS approximation
leads to satisfactory agreement between theory and experi-
ment for the 5d branching ratio of mercury. It also ex-
plained the qualitative features of the cross-section curves
quite well. However, the peak of the cross section is shift-
ed toward the threshold and the peak is higher than the
experimental value. Hence one must resort to the DF ap-
proximation to obtain reliable absolute cross sections. We
will discuss the validity of the DS approximation for the
asymmetry parameter at a later point in this paper. It
will be shown that the DS approximation leads to satis-
factory agreement with the experiment for the asymmetry
parameter also. In view of these results and the simplicity
of DS calculations as compared to DF calculations, the
DS approximation presents itself as an attractive ap-
proach for studying the systematics in the photoionization
of heavy elements.

II. THEORY AND METHOD OF CALCULATION

The wave functions of the bound orbitals and the po-
tential used in the calculation of continuum orbitals are
obtained from the computer code of Lieberman et al.!!
The continuum wave function is calculated by solving the
two coupled first-order equations® by using this same po-
tential. The continuum wave function consists of a major
(P) and a minor (Q) component normalized so that
E+c? cos
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where E is the total energy (E >mc?), &, is the relativistic
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Coulomb phase shift, and §;_
shift.

The relativistic cross section for photoionization of a
bound electron with angular momentum jg by electric di-
pole radiation is given by®

is the non-Coulomb phase

41c zjﬁ_ 2 1
D R; —1 —F— |R;_|?
ko | 1271 R~ 115,04 1Ris
2jp+3
—— |R; +1 2
12(J.Jrl)l jgt 1l )

with @ the photon energy and k =(E*—c*)!/? all in a.u.
The matrix elements R; are calculated in the Coulomb
gauge (which reduces to the velocity form in the nonrela-

tivistic limit). In this gauge
R, = %[(Ka—xﬂ)u; —IH)+2F +I5le ¢, 3)

where a and B refer to continuum and bound states and «

is —I—1for j=I++ and +1 for j =1 —+. The phase
involved in this expression is §; =§.+8; and
IE= fo‘” (PaQp+Q,Pp)jL(wr /c)dr , @)

where the j; are spherical Bessel functions.

The angular distribution of photoelectrons from unpo-
larized targets in an electric dipole photoionization pro-
cess is given by!?

%— = 4—[ 14+ BP,(cos0)] ,
where P, is the Legendre polynomial of second order and
0 is the angle between photon polarization and photoelec-
tron directions. For unpolarized photons S— — +3 and
is the angle between photon and photoelectron directions.
BB can vary between — 1 and 2 only which ensures that the
differential cross section is always positive.

;I‘he angular distribution asymmetry parameter is given
by

(5)
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where Re is real part, upper sign for j =/ ++ and lower
sign for j =1 —5

The third physical quantity of interest is the branching
ratio. This is the ratio of the photoionization cross sec-
tions for the j=I/++ and j =1/ —5 orbitals. This ratio
deviates from the ratio of the occupation numbers (i.e.,
the statistical ratio) for reasons discussed previously.

In an actual DS calculation for the dipole matrix ele-

|
ment one must also choose between a relaxed ion core

with an ionic bound state and an unrelaxed ion core with
an atomic bound state. Walker and Weber® have chosen
the former. The ionic bound state is more compact than
the atomic bound state. This results in the peak in the
cross section curve being higher and shifting closer to the
threshold. Keller and Combet Farnoux!® have pointed
out that the results of Ref. 6 can be improved through a
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HF calculation. It is shown in Ref. 7 that part of the
disagreement is due to the use of the ionic bound state and
better agreement with experiment can be obtained within
the DS framework by using an atomic bound state and the
potential corresponding to an unrelaxed ion core. The re-
sults can be improved further in a DF calculation which
used relaxed ion core potential and an atomic bound
state.” We restrict ourselves to a simpler DS calculation
using atomic bound states and an unrelaxed ion core. The
continuum orbital so obtained was used to calculate the
dipole matrix elements needed to calculate o, 3, and y.

III. RESULTS AND DISCUSSION

The validity of the DS approximation for calculating
cross sections and branching ratios has been discussed in
Ref. 7. The conclusion drawn from this discussion has
been mentioned in the first two sections. So far we have
not discussed the results obtained for 8 from a DS calcu-
lation. In Fig. 1 a comparison of 8 obtained from a DS
and a DF calculation for 5d;,, subshell of Hg is shown.
Our DF calculation yields excellent agreement with exper-
iment for cross sections and branching ratios.” It is
shown in Ref. 7 that there is some disagreement between
the values of o obtained in the two calculations but the
agreement in the values of B in the two calculations is
quite good.* This can be understood quite easily. While o
depends upon the absolute magnitudes of the dipole ma-
trix elements, S is determined by the relative magnitudes
of these elements and the phase shifts associated with the
continuum wave functions. Since the DS approximation
yields good results for the branching ratio y, the relative
magnitudes of the various matrix elements and their ener-
gy dependence can be expected to be accurate in this cal-
culation. In Fig. 2 calculated phase shifts for the continu-
um functions obtained from these two approximations
relevant to the photoionization of Hg 5d are given. The
overall agreement between the DS and DF approxima-
tions is seen to be good. The phase shifts in the DF calcu-
lation are somewhat larger at low energy and slightly
lower at higher energy. The differences are not great,
however, which gives us confidence in the DS results. As
a further test of the DS calculation we compare our

2.0 T T L

€(a.u.)

FIG. 1. Photoelectron angular distribution asymmetry pa-
rameter 3 for Hg 5d;,, in the threshold region; comparison be-

tween the present DS results and the DF results of Ref. 7.
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FIG. 2. Phase shifts of the p,,, and fs,, continuum arising
from 5d;,, photoionization in Hg; comparison of the present
DS results and the DF results of Ref. 7.

theoretical results with experimental data. Fortunately, a
considerable amount of experimental data is now available
for the asymmetry parameter of the 5d subshell of mercu-
ry. In Figs. 3 and 4 we compare this experimental
data #>1%15 with our theoretical DS results. The agree-
ment in the threshold region shown in Fig. 3 between
theory and experiment is quite good for both 5d;,, and
5ds;. In Fig. 4, which shows higher energies where the
spin-orbit doublet is not resolved, we find excellent agree-
ment. Note that, surprisingly, our DS calculation does
better than the relativistic random-phase approximation'®
(RRPA) (not shown) near the Cooper minimum, but this
must be considered fortuitous. This is a good test not
only for our asymmetry parameter but also for the loca-
tion of the Cooper minimum.

We conclude that the DS approximation may be ap-
plied to gain an understanding of the various features of
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FIG. 3. Photoelectron angular distribution asymmetry pa-
rameter for Hg 5d;,, and 5d;s,, in the threshold region; compar-
ison of the theoretical DS results with the experimental results
of Ref. 4 (circles), Ref. 5, (squares), and Ref. 14 (triangles).
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FIG. 4. Photoelectron angular distribution asymmetry pa-
rameter for Hg 5d3,, and 5ds/,; comparison of the present DS
results with the unresolved 5d results of Ref. 5.

photoionization of heavy elements. In what follows we
discuss the photoionization of 4f and 5d subshells of
heavy elements.

A. Phase shifts

The various physical quantities which characterize pho-
toionization are determined by the dipole matrix element
and the phase shifts of the continuum functions. The di-
pole matrix element itself is also indirectly dependent
upon the phase shifts. It is, therefore, instructive to dis-
cuss the phase shifts of the continuum functions before
proceeding to a discussion of cross sections, asymmetry
parameters, and branching ratios.

Phase shifts for the g and d continuum functions aris-
ing in 4f photoionization are shown in Figs. 5 and 6,
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FIG. 5. Phase shifts, in units of 7 radians, of g7,, continua
for W (Z =74) and U (Z =92) which arise in 4f photoioniza-
tion. The solid curves are the present DS results and the dashed
curves are the HS results for the nonrelativistic g continua.
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FIG. 6. Phase shifts, in units of 7 radians, of ds,, continua
for W (Z =74) and U (Z =92) which arise in 4f photoioniza-
tion. The solid curves are the present DS results and the dashed
curves are the HS results for the nonrelativistic d continua.

Hartree-Slater!” (HS) and our DS results are shown. It is
seen in Fig. 5 for tungsten (Z =76) and uranium
(Z =92) that §, is virtually zero at threshold in both ap-
proximations. This is a result of the huge angular
momentum (centrifugal) barrier seen by g waves which
keeps the wave function from having any appreciable am-
plitude in the inner region where the potential is nonhy-
drogenic. With increasing energy, however, the g wave
can penetrate and a broad shape resonance ensues. That
the shape resonance gets narrower, with increasing Z, is a
consequence of the increasing strength of the electrostatic
attraction.

Only 837/2 is shown in Fig. 5 but 639/2 lies slightly below

8, and is almost parallel to it, in all cases. The fact that

63 12 85’ 9/2
due to the fact that the spin-orbit interaction is attractive
for j =1 — 7 states and repulsive for j = + 5 states. The
difference between the phase shifts of the spin-orbit dou-
blets increases with Z owing to the increase of the
strength of the spin-orbit interaction with Z.

Note further, from Fig. 5, that the nonrelativistic 5, is

always greater than either of the relativistic, dg,,, being

the larger of the relativistic as discussed above. They can
be compared directly because the low-energy Coulomb
phase shifts differ by a negligible amount, of order o?,
since we are dealing with continuum electrons in an
asymptotic field of unit charge.!®* Thus the net nonrela-
tivistic potential is more attractive for g waves than either
of the relativistic potentials. The effect of relativistic in-
teractions is, therefore, to expand the relativistic g-wave
function; this is in contrast to the result for the hydrogen
atom where all wave functions, discrete and continuum,
contract under the influence of relativistic interactions.'®
Relativistic interactions are largest near the nucleus; thus
the contraction effect is greatest for s states, which have
the largest amplitude near the nucleus, and gets succes-
sively smaller with increasing angular momentum. For
multielectron atoms the contraction occurs for the orbital

81,2
is a special case of a general phenomenon; it is
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FIG. 7. Phase shifts, in units of 7 radians, of f5,, continua
for Hg (Z =80), Rn (Z =86), Ra (Z =88), and Fm (Z =100)
which arise in 5d photoionization. The solid curves are the
present DS results and the dashed curves are the HS results for
the nonrelativistic f continuum.

1s through 3d. This causes the nucleus to be screened
more effectively by the inner subshells making the net
electrostatic field less attractive in the outer part of the
atom. The outer subshells, and continuum orbitals,
respond to this combination of effects which act in oppo-
site directions. The higher s and p orbitals, which have
significant amplitude near the nucleus still contract, while
the higher / > 2 orbitals, which are small near the nucleus,
expand. This is the reason for the expansion of the rela-
tivistic continuum g-wave functions compared to nonrela-
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FIG. 8. Phase shifts, in units of 7 radians, of p,,, continua
for Hg (Z =80) Rn (Z =86), and Fm (Z =100) which arise in
5d photoionization. The solid curves are the present DS results
and the dashed curves are the HS results for the nonrelativistic
p relativistic p continuum.

tivisltgic. This matter is discussed in detail elsewhere for
Hg.

These ideas are confirmed further in Fig. 6 for the d-
wave phase shifts where it is seen that the nonrelativistic
phase shift is greater than the relativistic. The systemat-
ics of the relativistic d-wave phase shifts are the same as
the nonrelativistic which are discussed elsewhere.?’

The phase shifts for continuum f- and p-waves, which
result from 5d photoionization, are shown in Figs. 7 and
8, respectively. The results for 6, (Fig. 7) shows threshold
values of about 1 (in units of 7) for Z <86 and about 2
for Z >88, indicating that the potential is sufficiently
strong to bind a second f state in the ground state for the
higher Z’s; the effective f-wave potential is a double-
welled potential separated by a barrier and the 5f is now
bound in the inner well. There is also a shape resonance
for Z =86 which is broader in the relativistic calculation
indicating that the barrier separating the two potential
wells broadens relativistically. The systematics of the
nonrelativistic 6 and the relativistic 8y, ,, (the larger of

the relativistic 8;’s) are quite similar.? In all the cases,
the nonrelativistic 87 is greater than either of the relativis-
tic for reasons discussed above. The p-wave phase shifts
(Fig. 8) all drop off from threshold just as in the nonrela-
tivistic case.’’ For p waves, however, the relativistic in-
teractions contract the wave functions with the result that
the relativistic phase shifts are all larger than the nonrela-
tivistic as discussed above.

B. Photoionization cross sections

The photoionization cross section for a given subshell is
the sum of partial cross sections corresponding to alter-
nate continuum waves. The relative contribution of alter-
nate partial waves differ in the various energy ranges.
Thus for a full understanding of photoionization cross
sections, we start our discussion with partial cross sec-
tions.

In Fig. 9 the partial cross sections corresponding to
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FIG. 9. Photoionization cross section per electron for the
4fs,,—€g,, transition in W (Z =74) and U (Z =92). The
solid curves are the present DS results and the dashed curves are
the nonrelativistic HS 4/ — g results.
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FIG. 10. Photoionization cross section per electron for the
4fs,,—€ds,, transition in W (Z =74) and U (Z =92). The
solid curves are the present DS results and the dashed curves are

the nonrelativistic HS 4f — ed results.

4f —eg transition are shown for W (Z=74) and U
(Z =92) in both the HS and DS approximations. The
cross sections are per electron in the subshell and only the
relativistic 4f5,,—€g7,, is shown. Note that the cross
sections show no major differences, as Z increases, due to
the absence of a bound g state in this range of Z. The de-
layed maximum is a result of the centrifugal barrier for
the g electrons. The small differences between DS and
HS cross sections are due to the combined effects of the
continuum wave function being “pushed out” by relativis-
tic effects, as discussed above, and the same happening to
the discrete 4f wave functions.
In Fig. 10 the partial cross sections for 4f —ed transi-
tions are shown. These cross sections are large at the
threshold compared to the f—g transitions, but small
away from threshold. Thus the g waves make a dominant
contribution at higher energy while the d waves predom-
inate near threshold. The difference between HS and DS
results is quite small for Z =74 but somewhat larger for
Z =92. This is to be expected for high-Z elements. In
going from ,4W to 4,U, the 4f—d cross section changes
by almost an order of magnitude, resulting from the 6d
becoming bound in the ground state, so that more and
more of the oscillator strength moves into the discrete
with increasing Z. It should be noted, however, that the
overall agreement between HS and DS calculations is
quite good for all of these cases.

Adding up all of the contributions to get the total 4f
photoionization cross sections, Fig. 11 shows a compar-
ison of the HS and DS results for uranium. It is now
straightforward to understand the various features of
these results based upon the discussion of the partial cross
sections above. The agreement of DS and HS cross sec-
tions is excellent, even for so high a Z. It is thus clear
that relativistic effects do not significantly alter 4f pho-

toionization cross sections; the differences are still smaller

for lower Z and only slightly larger for higher Z.

A comparison of the 4f;,, the 4f5,, cross sections is
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FIG. 11. Total 4f photoionization cross section for U
(Z =92). The solid curve is the DS result and the dashed curve

is the nonrelativistic HS result.

shown in Fig. 12 for uranium, an element sufficiently
heavy so that the effects of the spin-orbit interaction are
as large as they are going to be. The relative shapes of
these curves are very important in determining the
branching ratio for the 4f subshell. We see that the two
curves almost overlap each other (unlike the 5d subshell,
as we shall see) indicating that the relativistic interactions
do not alter the initial or final states significantly in 4f
photoionization.

In Fig. 13 the 4f5,, cross section for ;4W, g Hg, and
9oU is shown. It is seen that the cross sections do not
change a great deal in going from tungsten to uranium.
At threshold, where the f—d transition dominates, the
relative difference is much larger due to the large changes
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FIG. 12. Photoionization cross section per electron for 4f;,,
and 4f5,, in U (Z =92).
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FIG. 13. Total 4f photoionization cross sections for W
(Z=74), Hg (Z =80), and U (Z =92).

in the d-wave cross sections as we approach the next d
bound state. The higher-energy cross sections change
much less because there is no bound g state. An overall
trend of the maximum in the cross section becoming
lower and broader with increasing Z is seen. The sys-
tematics of the 4f,,, cross section are exactly the same.
The cross sections for the photoionization of 5d sub-
shells are much more complicated than for the 4f. To il-
lustrate, the 5d;,,—€f5, DS cross sections (per electron)
are shown in Fig. 14 in the threshold region along with
the HS results. For gyHg, the HS cross section has a max-
imum which is somewhat higher and at somewhat lower
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FIG. 14. Photoionization cross section per electron for the
5d;,;—€fs,, transition in Hg (Z =80), Rn (Z =86), Ra
(Z =88), and Fm (Z =100). The solid curves are the present
DS results and the dashed curves are the nonrelativistic HS
5d —€f results.

energy than the DS result; this is entirely consistent with
the fact that the f~-wave phase shifts are somewhat larger
in HS compared to DS as discussed above (Fig. 7). Going
up in Z to g¢Rn, the HS peak is at significantly lower en-
ergy, almost a factor of 2 larger, and considerably nar-
rower than the DS peak. This clearly indicates that the
barrier in the f-wave potential is lower and narrower for
HS than for DS, an indication borne out by the phase
shifts; it is seen from Fig. 7 that the rise in the HS phase
shift is much more rapid and at lower energy than the DS.

Going further up in Z to gRa, Fig. 14 shows that the
HS and DS cross sections are completely different near
threshold. The DS cross section is dropping from thresh-
old and its maximum value is about a factor of 2 smaller
than the gRn case; the HS cross section rises somewhat
from threshold and its maximum is smaller by a factor of
almost 20 than the ggRn case. Clearly something is going
on between Z =86 (Rn) and Z =88 (Ra). The something
is the potential now being sufficiently strong to come
close to binding a 5f electron in the ground state. This is
clearly indicated by the f-wave phase shifts in Fig. 7. In-
stead of the threshold values being about 7, as they are for
gsRn, they are close to 27 for ggRa. The difference in f-
wave phase shifts between HS and DS in this case is cru-
cial. For the HS result, the €f wave function has moved
in by one full node at threshold as compared to gRn, i.e.,
another lobe of the threshold €f wave function has moved
into the inner well of the effective f-wave HS potential.
Thus a large part of the oscillator strength moves into the
discrete, leaving the photoionization cross section much
smaller. For the DS, on the other hand, the smaller phase
shift indicates that the €fs,, wave function is not in quite
as far at threshold. Thus the maximum, seen in the gRn
case, moves just into the discrete and the high-energy tail
of the cross section maximum still appears in the continu-
um. It is the sensitivity in this Z region to the barrier be-
tween inner and outer wells in the f-wave potential, then,
that causes the striking difference between DS and HS re-
sults. Based on these arguments, the €f;,, in ggRa, whose
phase shift must be smaller than the €fs,, should have its
maximum in the continuum with substantially the same
strength as in ggRn. This will be demonstrated below.

Going further up in Z to ;ooFm, the DS and HS cross
sections are qualitatively similar with the DS result being
somewhat higher. This is due to the fact that we are now
above the very sensitive region, both phase shifts being 27
at threshold, and the fact that the HS phase shift is larger,
moving more of the oscillator strength into the discrete.

Before leaving this discussion two notes are in order.
First is that in the sensitive region, the results presented
above could be modified substantially in a more accurate
calculation, i.e., the results are sensitive to small potential
changes. Second is that we have shown only the DS
5d3,,—€f's results for simplicity but it is clear that the
same arguments apply to the other DS 5d — f transitions
and the cross sections for these other transitions are quali-
tatively similar to those presented above.

Turning our attention to the d-—p transitions, the
5d;,,—€py, cross sections (per electron) are shown in
Fig. 15 along with the HS results. Agreement is quite
good in all cases with the HS being larger than the DS in
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FIG. 15. Photoionization cross section per electron for the
5d;,,—€p,,, transition in Hg (Z =80), Rn (Z =86), Ra
(Z =88), and Fm (Z =100). The solid curves are the present
DS results and the dashed curves are the nonrelativistic HS
5d —e€p results.

all cases as well. This is because, as discussed previously
(Fig. 8), the DS phase shifts are larger than the HS for p
waves so that more of the DS oscillator strength is in the
discrete compared to HS. Further, with increasing Z,
more and more oscillator strength moves into the discrete
region.

The total 5d;,, photoionization cross sections (per elec-
tron), sums of the 5d;,, partial cross sections discussed
above, are shown in Fig. 16 for three cases. It is clear
from the preceding discussion that, with increasing Z, os-
cillator strength moves into the discrete for both d —f
and d—p transitions, thus resulting in a decrease of the
cross section with Z as is seen in Fig. 16. The peak of the
cross section, which generally occurs above threshold ow-
ing to the f-wave barrier, does not move monotonically
but in a complicated fashion reflecting the relative posi-
tions of the 5d;,, initial state and €f’5,, final state. Note
further that just at threshold, the total is virtually all
d —p, while near the maximum it is nearly all d —f.

The total 5d DS cross sections are shown in Fig. 17 for
three atoms along with a comparison with the HS result.
For g Hg, the agreement between the two is quite good
over the range shown, the largest differences occurring at
very low energies between the 5d5,, and 5d;/, thresholds.
The splitting of the thresholds is, however, small in this
case. Going up in Z, to ggRa, the situation is completely
different. Aside from the spin-orbit splitting of the
thresholds, the shape of the DS curve is quite different
from the HS. The 5d;,, cross section drops from thresh-
old, as discussed above; the 5ds,, has a major delayed
maximum which has not yet moved into the discrete.
This latter effect is due to the fact that the 5d5,,—€f7,,
transition is the major contributor to the 5d5,, cross sec-
tion and since ZSf7/2<8f5/2 (discussed above), the 5ds,,

maximum is moved out far enough to be above threshold.
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FIG. 16. Photoionization cross section per electron for the
5d,,, subshell of W (Z =74), Hg (Z =80), and U (Z =92).

Going further up in Z to ;ooFm, we again get signifi-
cant differences between DS and HS results, partially due
to the splitting of the thresholds and partially due to the
magnitude of the DS cross sections as discussed above in
connection with Fig. 14.

Up to this point, we have concentrated on the near
threshold behavior of the cross sections. At higher ener-
gies, well above the cross section maximum near thresh-
old, all of these cases exhibit a change of sign in the d — f
dipole matrix elements, i.e., each has a zero known as a
Cooper minimum.?? To illustrate this, the 5d3,, cross
section in W is shown in Fig. 18 along with the HS result.
Both cross sections are seen to have a Cooper minimum in
the range between 5 and 10 a.u. with the HS minimum
somewhat lower in energy than the DS. Note that the
minimum in the cross section is not exactly where the
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FIG. 17. Total 5d photoionization cross sections for Hg
(Z =80), Ra (Z =88), and Fm (Z =100). The solid curves are
the present DS results and the dashed curves are the nonrela-
tivistic HS results.
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FIG. 18. Photoionization cross section per electron for the
5d3,, subshell of W (Z =74) showing an enlargement of the
high-energy region (note change of both scales). The solid curve
is the DS result and the dashed curve is the nonrelativistic HS
result.

Cooper minimum occurs because the d —p cross sections
are decreasing in both cases thus causing the minima in
the total cross sections to lie at a somewhat higher energy
than the energy at which the d —f matrix elements van-
ish.

Note further that the agreement between the HS and
DS results is quite good in the low-energy region, well
below the Cooper minima, but at higher energies the
difference between the positions and shapes of the minima
causing significant (factor of 2) differences between the
two cross sections. The cross sections are thus seen to be
sensitive functions of the details of the Cooper minima.
Further discussion of the Cooper minima is given in the
next section.

It was seen in the discussion of the 4f subshell above
that the 4f5,, and 4f,,, cross sections per electron came
very close to overlapping when compared versus pho-
toelectron energy with the consequence that differences in
the shapes of the two were not important considerations
in the determination of the branching ratio. For 5d pho-
toionization, the situation is somewhat different. For 4,U,
the 5d;,, and 5ds,, cross sections per electron are com-
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FIG. 19. Photoionization cross section per electron for 5ds,,
and 5d3,, in U (Z =92).

pared in Fig. 19 in the low-energy region. From this
curve, it is seen that the shapes are very similar. At
higher energies, however, in the Cooper minimum region,
significant differences between the two are found to exist,
as shall be discussed in the next section. Further, looking
back at Fig. 17 for the total cross sections, it is seen that
good agreement in shape between 5d3,, and 5ds,, is in
evidence for both goHg and oFm in the low-energy re-
gion. The situation for gRa is radically different, for
reasons discussed previously, and the difference in these
shapes translates to significant dynamical effects in the
branching ratio.
C. Cooper minima

It is well known that the 5d orbital has a zero in the
5d —€f channel in the HS calculation.? In the neighbor-
hood of this minimum the cross section is much lower
since the f wave makes the dominant contribution to the
cross section in the high-energy region. The existence and
location of this minimum also has important conse-
quences for the angular distribution asymmetry parame-
ter.

The 5d—€f channel of a nonrelativistic calculation is
split into three separate channels in a relativistic treat-
ment. The 5d subshell is split into 5d;,, and 5ds,, com-
ponents due to the spin-orbit interaction and the €f con-
tinuum wave is split into €fs,, and €f7,, components. Of
these the transition 5d3,,—€f7,, is not allowed because
of the selection rule Aj=0,%1. Thus we have three possi-
bilities. These are 5d;,,—€fs;, 5ds,—€,5/2, and
5ds,,—€f7,,. As a result we can expect one Cooper
minimum in the cross section curve for 5d;,, and two
minima in the 5ds,, cross section, one for each of the
d — f transitions. Note that for 6p photoionization, it has
been found that relativistic interactions give rise to both a
significant splitting and shift of these zeros from the non-
relativistic location.®’

Of the two minima 5ds,,—€fs,,6f7,2, the €fsp
minimum will occur at a lower energy. This comes about
since the spin-orbit interaction is attractive for f5,, and
repulsive for f7,,, thus having the effect of increasing the
phase shifts for €fs,, and decreasing them for €f;,,. In-
creased phase shifts imply a wave function which is
pulled in toward the nucleus. Thus, since continuum
wave functions move in with increasing energy, the one
with the larger phase shift will reach the point of zero di-
pole matrix element at a lower energy. Further, it is clear
that 5d;,,— fs,, minimum will occur at a much higher
energy than 5ds,,—f5,,. The 5d;,, is a more compact
bound state and hence the f5,, must be “pulled in” more
than for the 5ds,, component, hence higher energy for
the 5d3,,—€fs;, minimum. Thus the 5ds,,—€f5,, will
occur at the lowest energy. The other two minima
(5d3,,—€fs,, Sds;,—€f7,,) present a more difficult
challenge. Both d3,, and fs,, are “pulled in” while ds,,
and f;,, are “pushed out.” If the increase in quantum de-
fect in going from 5ds,,—5d;,, overcomes the increase
in phase shift in going from €fs,, to €f;,,, then the
5d;3,,—€fs/; zero will occur at the highest energy. This
is what actually does happen because the spin-orbit effect
on d states is larger than on f states so that the shift of
the 5d states dominates. The nonrelativistic HS zero will
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be at the lowest energy, lower than any of the relativistic,
because the HS f-wave phase shift is larger than the rela-
tivistic.

The trajectories of these zeros, as a function of Z, are
shown in Fig. 20, where it is seen that the ordering of the
zeros is as discussed above, independent of Z. The strik-
ing things about these results are the sizes of the split-
tings, between the minima for a given Z, and the structure
as a function of Z. The splitting between the
5ds,,—¢€fs,, and 5d;,,—€fs5,, zeros in Hg is about 0.75
a.u. and in Fm about 1.5 a.u. as compared to the spin-
orbit splittings in the 5d states of about 0.09 and 0.25 a.u.,
respectively. Thus the splittings of the zeros is almost an
order of magnitude larger than the discrete energy split-
tings. This is exactly what was found for 6p photoioniza-
tion® and the reasons are discussed in detail in Ref. 8.

Briefly, a given amount of energy, the discrete spin-
orbit splitting, is required to pull the 5d5,, wave function
in to the 5d;,,. The same amount of energy is not
enough to move the €f wave function the same distance
in, in the same region of space, owing to the centrifugal
barrier. This barrier is much larger for f waves than for
d waves so that much more energy is required to move an
f wave in a certain distance than a d wave. This “mag-
nification” is, thus, due to the centrifugal barrier.

The splittings increase, as a function of Z, owing to the
increasing strength of the spin-orbit interaction. The
structure in the trajectories of the zeros, as a function of
Z, is yet to be explained. Basically, as discussed above,
the energy at which a zero occurs is dependent upon the
relative positions of the discrete d- and continuum f-wave
functions. Below Z =80, the 5d shell is still filling and
the 5d wave functions are contracting with increasing Z;
the €f wave function remains pretty much the same, its
phase shift at threshold staying at 7 and the slow increase
above threshold not changing very much with Z (cf. Fig.
7). Thus it takes more and more energy to move the €f
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FIG. 20. Trajectory (in photoelectron energy) of the Cooper
zeros in the 5d — f dipole matrix elements as a function of Z.

functions far enough in for the matrix element to vanish.
Above Z =80, the 5d functions are still contracting with
Z, but the €f’s undergo a dramatic contraction (a shape
resonance) just above threshold, as seen in Fig. 7 for
Z =86. This latter contraction intensifies with increasing
Z so that the zero moves to lower energies. In fact, above
Z =86, Fig. 7 shows that the f-wave phase shifts are 27
at threshold, thus demonstrating the further contraction
of the €f functions and results in the change of slope seen
in Fig. 20 just above Z = 86.

This behavior persists until Z =90, above which the
position of the zeros oscillates with increasing Z. The os-
cillation is small (~0.2 a.u.) but real and comes about be-
cause of the irregular filling of the 6d shell as compared
to the 5f. For example, the outer structure of Z =90 is
6d?, while for Z =92 it is 5f2%6d, for Z =94 it is 5f°, and
for Z =96 it is 5f76d. This nonmonotonic filling of the
shells leads to nonmonotonic potentials near the outer
edges of the atoms which in turn leads to the observed
structure in a complicated manner. We have confirmed
this by performing calculations assuming no 6d electrons
for any of the atoms; the result was the removal of the
structure in the Z =90—100 range.

D. Asymmetry parameter

The asymmetry parameter 3, describing the photoelec-
tron angular distribution, is given by Eq. (6). It is seen
that B depends not only upon the absolute squares of the
transition matrix elements, but also upon their phases.
The results for mercury 4f;,, are shown in Fig. 21, along
with the RRPA results!® and experiment.® The 4fs, re-
sult (not shown) is virtually exactly the same as the 41,
as is the nonrelativistic HS result?* (not shown). Our DS
result is seen to be in good agreement with RRPA and
both show excellent agreement with experiment in the
low-energy region but only fair agreement at higher ener-
gies. This disagreement is not understood.

The small difference between RRPA and DS is due
principally to the correct inclusion of exchange in the
RRPA calculation. This surmise is made on the basis of a
Hartree-Fock (HF) calculation®* which lies virtually on
top of the RRPA result. This is not surprising, as it is
known that photoionization channels with a great deal of

€(eV)

FIG. 21. Photoelectron angular distribution asymmetry pa-
rameter B for Hg 4f,,,. The present DS results (dashed curve)
are compared with the RRPA results of Ref. 16 (solid curve)
and the experimental points of Ref. 5.
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FIG. 22. Photoelectron angular distribution asymmetry pa-

rameter B for the 4fs,, subshell of W (Z=74), Hg
(Z =80), and U (Z =92).
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oscillator strength (such as the 4f in Hg) are not much af-
fected by interchannel coupling.

The general shape of the variation of B with energy can
be understood by recalling that the mercury 4f cross sec-
tion is dominated by the 4f-—>e€d transition near thresh-
old, while at higher energies the 4f—€g dominate; in the
intermediate region they are comparable. If we assume
the 4f —eg matrix elements vanish at threshold, then Eq.
(6) gives a B of about 0.29, which is very close to what is
seen in Fig. 21. In the higher-energy region, the flat pla-
teau of B of about 0.2 can be explained by looking at Eq.
(6). If we assume no relativistic differences among matrix
elements and phases for continuua of a given /, we get

B=3(1—"pcosA), )]
where p (<< 1) is the ratio of the 4f—ed to 4f —€g ma-
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FIG. 23. Photoelectron angular distribution asymmetry pa-
rameter S, for Hg 5ds,, and 5d;,,, also shown in the nonrela-
tivistic HS 5d result.
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FIG. 24. Photoelectron angular distribution asymmetry pa-
rameter 3 for Hg 5ds,, and 5d;,,, also shown in the nonrela-
tivistic HS 5d result. The arrows indicate the locations of the
various zeros in the 5d — f dipole matrix elements.

trix elements, A is the total g-d phase-shift difference, and
terms of order p? are neglected. Then, noting that
cosA~1 in this region and p~+, Eq. (7) yields a B of
about 0.2. The matrix elements and especially the phases
are slowly varying in this energy region, thus creating the
plateau seen. In the intermediate-energy region, near the
peak of the B curve, the matrix elements are about equal;
furthermore, the phase shifts are changing fairly rapidly.
Thus a fairly rapid change of B with energy is expected
and seen in Fig. 21. The fact that B rises, rather than
falls, between the two regions is a consequence of the
value of the phase difference between d and g waves.

The arguments presented above, which have been made
earlier in connection with the nonrelativistic calculation,?*
are not specific to mercury and should be generally true
for other 4f PB’s in high-Z elements. In Fig. 22 our
values for 4fs,, photoionization in W (Z =74), Hg
(Z =80), and U (Z =92) are shown and they are very
similar. At threshold they all go to about the same
values, in the intermediate region they all rise to a value
near 2, and at higher energies they all plateau at a low
value of S.

The situation for the 5d subshell is more complicated
and the 8 parameters have more structure as a function of
energy as was seen in Figs. 3 and 4 for mercury. It was
also seen that, in that case, excellent agreement with ex-
periment was obtained. In Fig. 23 a comparison of DS
and HS B’s are shown for mercury 5d in the low-energy
region. In the very low-energy region, the 5ds,, just
about coincides with the HS results while the 5d;,, is
shifted outward a bit. At somewhat higher energies, the
HS is shifted inward from the 5ds,,. At still higher ener-
gies, shown in Fig. 24, the curves show roughly the same
general shape, HS being the innermost and 5p;,, being
the outermost. That the HS is the innermost curve is a
consequence of the f-wave phase shift being the largest in
this case, as discussed earlier in connection with the cross
sections. The ordering of the 5d;,, and 5ds,, curves is a
consequence of the j=3 being more diffuse than the
j= —;— state, just as was seen for the cross sections.



30 PHOTOIONIZATION OF 5d AND 4f SUBSHELLS OF HIGH-Z ELEMENTS 267

2.0} — -

1.0p . ]
ol . A
Fm(Z=100) A
\ T
00 Sd i
L
-1.0 L1 L 1 1 1 1 1
0.20.40.60.81.0 2.0 3.0 40 50 60 7.0 8.0

€(a.u.)

FIG. 25. Photoelectron angular distribution asymmetry pa-
rameter B for the 5d;,, subshell of W (Z =74), Ra (Z =86),
and Fm (Z =100). Note the change of horizontal scale at 1 a.u.
The arrows indicate the locations of the various zeros in the
5d — f dipole matrix elements.

This splitting of the f’s increases with increasing ener-
gy as seen in Fig. 24. The splitting around 7 a.u. reflects
the splitting of the Cooper minima (cf. Fig. 20) which is
about 0.5 a.u. for mercury. From Fig. 20, it is clear that
the splitting of the Cooper minima increases with increas-
ing Z; thus for higher Z the splitting of the S’s for the
two spin-orbit components also increases.

The general shape of the 8 curves is typical of a d state
with a Cooper minimum.?> They are determined largely
by three factors. At the lowest energies the rapid drop
from the threshold value is caused by the rapid variation
in the Coulomb phase shifts. The following broad max-
imum is a result of the shape resonance in the d — f chan-
nels. The rapid drop at still higher energies is a conse-
quence of the change in sign of the d — f matrix elements,
i.e., the Cooper minima.

The results for several 5d;,, B’s are shown in Fig. 25
from which it is clear that all of the 5d ’s have this same
general shape. Of course there are differences in detail
owing to changing matrix element ratios, phase-shift
differences, and Cooper minima locations, with increasing
Z. These, however do not affect the overall systematics.
The 5ds,, B’s (not shown) have all of the same features as
the 5d;,, but the curves are compressed somewhat as dis-
cussed above.

Before leaving the discussion of photoelectron angular
distributions it is important to mention that, for high-Z
elements particularly, contributions to the angular distri-
bution can come not only from the electric dipole term
(which we have considered) but from higher multipoles as
well.?627 Of course this is very important at high energies
(tens of kilo-electron-volts) but, even at low energies, if the
dipole cross section is small, e.g., in a Cooper minimum
region, the higher multipoles can give an effect of the or-
der of 10%. This can be important as measurements get
more and more precise.

E. Branching ratios

As discussed in the Introduction, the branching ratio
o(j=14+73)/0(j =1 —3) differs from the statistical value
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FIG. 26. 4f,,,:4fs,, branching ratios for W (Z =74), Hg
(Z =80), and U (Z =92). The solid line at 1.33 is the statisti-
cal ratio.

of (I+1)/] only because of relativistic interactions.
These manifest themselves in two distinct ways. The
spin-orbit splitting of the bound state energies means that
the photoelectrons will have different kinetic energies for
the same Av. Thus, even if each of the cross sections are
exactly the same as a function of photoelectron energy,
the spin-orbit splitting gives rise to a nonstatistical
branching ratio. This is known as the kinetic energy ef-
fect.® In addition, the shapes of the individual cross sec-
tions can differ owing to dynamical effects on the wave
functions, thus further causing deviations from the statis-
tical ratio.

It is, therefore, clear that branching ratios spotlight rel-
ativistic effects. In addition, comparison with experiment
is very useful because branching ratio measurements do
not require normalized cross sections, which removes a
possible source of error from the measurement.

A selection of our 4f branching ratios is given in Fig.
26 where we see, in each case, a drop from threshold fol-
lowed by a rise to a maximum, and then a tailoff to the
statistical value of 1.33 at high energy. Further, the max-
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FIG. 27. 4f;,2:4fs,, branching ratio for U (Z =92). The
solid curve is the present DS result and the dashed curve is de-
rived by applying the kinetic energy effect to the nonrelativistic
HS cross section. See text for details.
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imum is seen to become more pronounced with increasing
Z. This behavior can be understood by noting that there
are very few dynamical effects in the 4f shell as exempli-
fied in Fig. 12 for the 4f;,, and 4fs,, cross sections of
uranium. Thus the kinetic energy effect dominates and
increases with increasing Z where the discrete spin-orbit
splitting increases.

To show this more clearly, we have done an approxi-
mate calculation of the branching ratio in uranium assum-
ing that the cross sections per electron for 4f5,, and 4f;,,
were each the nonrelativistic HS result. The results are
given in Fig. 27 where it is seen that the approximate cal-
culation is in excellent agreement with the actual results.
The only real difference occurs around the maximum in
the curve, owing to a small amount of dynamical differ-
ences in the cross sections as seen in Fig. 12. This result
is indicative of all of the high-Z 4f cases which we have
investigated.

The situation for the 5d subshell is somewhat different
because of the significant dynamical effects on the cross
section, as discussed in Sec. IIIB, and because of the
Cooper minima. The results for a number of cases are
given in Fig. 28. The overall behavior of each of the
branching ratios is a drop from a large threshold value
followed by a broad region where the branching ratio is
below the statistical value, followed by a rise above the
statistical value. The behavior away from the threshold is
easy to understand. The zero in the ds,,— f dipole ma-
trix elements occurs at lower energies than the corre-
sponding d;,, —f matrix element. Thus at the energies in
the vicinity of the ds,, zeros, the 5ds/, cross section is
anomalously small. It follows then, that in this region the
branching ratio will also be smaller than the statistical
value. At higher energies where the 5d;,, has its zero,
the 5d3,, cross section is anomalously small and the re-
verse occurs; the branching ratio climbs above the statisti-
cal value. The behavior near threshold is largely due to
the kinetic energy effect, for the cases shown, although
dynamical effects do play a role in the details of the drop
off.
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FIG. 28. 5ds,,:5d;,, branching ratios for Os (Z =76), Hg
(Z =80), Rn (Z =86), and U (Z =92). The solid line at 1.5 is
the statistical ratio.
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FIG. 29. Total 4f photoionization cross section for Hg
(Z =80). The dashed curve is the present DS result, the solid
curve is the RRPA result of Ref. 16, and the experimental
points are from Ref. 5.

IV. FINAL REMARKS

The effects of relativistic interactions on 4f and 5d sub-
shells of high-Z elements have been examined. We have
found considerable splitting of the Cooper minima of the
5d —¢f transitions for a given element, similar to the
6p —ed case studied previously.»® This, in turn, affected
the photoelectron angular distributions and branching ra-
tios. Furthermore, significant dynamical differences in
the cross sections of 5ds,, and 5d;,, were found, apart
from the shift in thresholds. For 4f photoionization, on
the other hand, relativistic interactions were found to have
almost no effect on the cross sections, except for the split-
ting of 4f;,, and 4fs,, thresholds; the shapes of the 41,
and 4f5,, cross sections were found to be virtually the
same as each other and the nonrelativistic result. Thus
the variation of the branching ratio could be explained by
the “kinetic energy effect.”

One problem exists with 4f photoionization, however.
While the branching ratios and photoelectron angular dis-
tribution B parameters are in reasonable agreement with
experiment for mercury, the cross section is not.> The
comparison, shown in Fig. 29 along with the RRPA re-
sult'® shows discrepancies of more than a factor of 2 at
the highest energies measured; the experimental value is
below 1.5 Mb while both DS and RRPA are above 4 Mb.
This difference is quite surprising in view of the simplici-
ty of 4f photoionization. While there are many inadequa-
cies in the theory, it is hard to see how they could explain
so large a discrepancy. On the experimental side, it is
possible that there is some error in the normalization of
the cross section. In any case, this matter should be stud-
ied further.

Finally, we note that relativistic photoionization studies
exist where results are analyzed for the various subshells
of given elements,?6=28 rather than as a function of Z.
These studies provide complementary information to the
analysis presented in this paper; they show the evolution
of features as a function of a principal quantum number.
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