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An amplitude equation is derived for thermal convection in a binary fluid mixture in a porous
medium and in bulk, in the vicinity of the intersection point of the lines of stationary and oscillatory
instabilities. Slow spatial modulations are included in the amplitude equation near this
codimension-2 bifurcation. The experimental realizability in binary fluid mixtures is discussed with

use of data for specific systems such as alcohol-water mixtures and normal-fluid 'He- He mixtures.
Analogies are drawn to other physical systems which are easily accessible to experiment, such as the
convective instability in nematic liquid crystals in an external magnetic field.

I. INTRODUCTION

Over the past few years the investigation of bifurcation
phenomena in various branches of nonequilibriurn phys-
ics, such as hydrodynamic instabilities, nonlinear quan-
tum optics, autocatalytic chemical reactions, and popula-
tion dynamics, has led to considerable progress in our
understanding of these areas. The phenomenon of
"codimension-2 bifurcations" has been investigated both
from a mathematical viewpoint' and on the basis of
simplified models of physical systems. A codi-
mension-2 bifurcation occurs at a point in parameter
space where two bifurcation lines intersect, thus leading to
a competition between two types of instabilities. These in-
stabilities might be oscillatory and stationary, but they
might also both be oscillatory or stationary. From the
mathematical investigations of this phenomenon it is
known that different types of dynamic behavior can occur
in the immediate vicinity of a single point in parameter
space. Most of the models which have been analyzed so
far have been highly idealized and thus not easily accessi-
ble to experiment. An example is the so-called thermoha-
line problem ' ' (with or without an external magnetic
field), in which a layer of fluid is subjected to vertical
temperature and salinity gradients. The analysis assumes
that one may vary concentration and temperature gra-
dients independently, a condition which is difficult to
meet in practice due to the cross coupling (thermodif-
fusion) between the gradients which exist in real fluids.

The goal of this paper is to give a detailed derivation of
the amplitude equation near the intersection point for the
stationary and oscillatory instabilities which occur in a
layer of a binary fluid mixture with and without a porous
medium and subject to a vertical temperature gradient. In
a previous paper we have given this amplitude equation

without any derivation. The advantage of the system in-
vestigated here is that it is both experimentally realizable
and amenable to a simple theoretical treatment. Indeed,
in contrast to the thermohaline system, one has two in-

dependently variable parameters, the applied temperature
gradient (or Rayleigh number) and the separation ratio lb.

This parameter contains the dissipative cross coupling be-
tween concentration and temperature gradients, the
thermal-expansion coefficient, and the derivative of the
density with respect to the concentration. The separation
ratio can assume either sign and it can be changed experi-
mentally, for instance by varying the relative concentra-
tions of the components of the mixture. Emphasis will
also be laid on the discussion of suitable boundary condi-
tions and on the presentation of data for some relevant ex-
perimental systems.

For the first time in the study of codimension-2 bifur-
cation problems we will include in our description slow
spatial modulations of the envelope function, albeit in one
dimension only, thus generalizing the equations of Segel,
and of Newell and Whitehead' (which were derived for
the onset of convection in a simple fluid). The new
feature which arises is a term containing a first derivative
in time and a second derivative in space, i.e., B,B„R',
where 8' is the envelope function.

Having treated convection in binary mixtures"' we
also discuss briefly convective instabilities in nematic
liquid crystals. ' This system is more complicated than a
binary fluid mixture in that the structure of the basic
equations is anisotropic in space and is characterized by
nonlinearities of infinite order. Nematic liquid crystals
are attractive experimentally, however, since one can use
as a second continuously variable parameter a static mag-
netic field which changes the elastic energy and thus the
frequency and the Rayleigh number. Indeed, an experi-
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ment has been performed recently' using precisely this
technique. The major problem with interpreting the data
is the fact that the structure which occurs above the
threshold for the onset of the oscillatory instability is as
yet not well characterized.

This paper is organized as follows. In Sec. II we derive
in detail the amplitude equation without spatial modula-
tion for a porous system and for bulk binary mixtures
with stress-free horizontal boundaries. We then study the
influence of various types of boundary conditions on these
systems and describe the dynamical behavior expected
near the codimension-2 bifurcation point. In Sec. III the
influence of slow spatial modulations is investigated, and
some implications are discussed. In Sec. IV we present
quantitative estimates for real binary mixtures at room
temperature and low temperatures, as well as a discussion
of other experimentally relevant systems such as nematic
or cholesteric liquid crystals. A number of detailed calcu-
lations are given in the Appendices.

II. THE AMPLITUDE EQUATION
WITHOUT SLOW SPATIAL MODULATIONS

In this section we start from the nonlinear equations for
the deviations from the heat-conduction state and derive
the amplitude equation near the polycritical surface. In
Sec. IIA we discuss the derivation for a mixture in a
porous medium and in Sec. IIB we consider bulk binary
mixtures. We use two different methods to obtain the
amplitude equation. The first approach makes use of the
amplitude equations derived previously" for the station-
ary and the oscillatory instabilities, respectively. Assum-
ing the structure of the resulting amplitude equation, it
becomes possible by taking the appropriate limits to
evaluate its coefficients. The second technique, which is
more satisfactory from a logical point of view since it
does not assume the form of the answer, starts off from
the basic nonlinear equations' and carries out a projec-
tion onto the generalized eigenspace of the linearized
problem near the codimension-2 surface. The first ap-
proach is simpler and more intuitive. The second is quite
general and provides a sound basis for the first method.
For mixtures in a porous medium we give all details of
the derivation (with both approaches) in Appendix A.
For bulk mixtures, which are discussed in Sec. II B and in

Appendix B, we outline the derivation using the second
approach. In Sec. IIC the temporal behavior of the
dynamical system near the bifurcation point is discussed,
and in Appendix D the nonlinear oscillatory solutions of
the amplitude equations are calculated. Finally, in Sec.
IID we consider the changes which can be expected in
the results if realistic boundary conditions are im-

posed, ' ' rather than the somewhat idealized ones we
have assumed, especially for the case of bulk binary mix-
tures.

[(Klr/1 ev)B, +1]hw —328—%62c =O,

Rw+( —B,+a —V V)e=O,

Rw+[(D/a)A B,——v V]c (D/—g)hg=o,

(2.1)

(2.2)

(2.3)

u =0 at x =0 and x =L„,
v =0 at y =0 and y =L~,
m =0 at z=0 and z=1,

(2.4)

where we have assumed a rectangular container with sides
L„, L», and L, (=1=1). Different boundary conditions
for the velocity field will be discussed in Sec. IID. For
temperature and concentration fluctuations we assume

B„0=8„c=0 at x =0 and x =L„,
8„8=8~c=0 at y =0, and y =L~,
O=c =0 at z =0 and z =1 .

(2.5)

The boundary conditions for the concentration field are
an idealization of the more physical "no-mass-flux" boun-
dary condition. ' ' As will be discussed in Sec. IID,
however, none of the features presented in this section are
expected to change qualitatively when the more realistic
boundary conditions are used.

To arrive at the results for linear stability we proceed as
usual. ' Inserting the ansatz

where w is the z component of the velocity field v, 0 is
the deviation of the temperature from the conduction pro-
file, c is the concentration of one component, R is the
Rayleigh number R =PiglK b T/v~ corresponding to the
temperature difference b, T, ql = kr p2—/Tpi is the
separation ratio, Pi —— p'(Bp—/BT)p, is the thermal-
expansion coefficient, Pz ———p '(Bp/Bc)p z K and D are
the thermodiffusivity and the diffusion coefficient, kr is
the thermodiffusion ratio, ' h2 ——B /Bx +B /By is the
horizontal part of the Laplace operator b, E is the per-
meability, e is the porosity, v is the kinematic viscosity,
and l is the height of the layer. Time is scaled with l /~,
velocity with a/1, temperature with vent/PiglK, and con-
centration with vxkz/T—13igKI, and we shall choose
units of length such that 1=1. Equations (2.2) and (2.3)
are identical to the corresponding equations in binary
fluid mixtures (in dimensionless units). Equation (2.1) re-
places the equation for the velocity field and the in-
compressibility condition for usual binary mixtures. In
deriving this equation one makes use of Darcy's law for
the averaged velocity field. Contrary to usual hydro-
dynamics, the velocity field in a porous medium is not a
Galilean invariant quantity and thus it is impossible to
prescribe the gradients of the velocity field on the boun-
daries (v satisfies only a first-order differential equation
with respect to the spatial coordinates).

The boundary conditions we take in this section for the
velocity field v = ( u, U, w) are

A. Binary mixtures in a porous medium

The basic nonlinear equations for the deviations from
the heat-conduction state of a binary mixture of miscible
fluids in a porous medium read, in dimensionless units, '

w (x,z, t) W(t)
0(x,z, t) = 6(t) sin(vrz}cos(mx ),
c (x,z, t) C(t)

(2.6)

we obtain, after setting W(t) =wiexp(ot), a cubic polyno-
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mial for cr of the form

a3cr +a2o +a)o.+ao ——0.3 (2.7)

(A43), and (A49) of Appendix A we derive the following
expressions for the coefficients:

For the stationary instability (cr—:0) we have the critical
Rayleigh number'

fi ——m. /4,

f2 ——, (L —'+1).
(2.16)

(2.17)

R„=4m [1+/(1+L ')]

where we have introduced the Lewis number

(2.8)

L =D/lr, (2.9)

and a frequency at onset

co2 = 4~4L'—[1+/(1+L '+L ~)](1+/) (2.10b)

The polycritical point is defined by R~ ——R« ——R„,
which yields

and the critical-wave number is k, i ——m.. For the oscillato-

ry instability we find a critical Rayleigh number'2

R„=4+(1+L)(1+g)
-' (2.10a)

Equation (2.13) with Eqs. (2.14)—(2.17), constitute the
main result of this section. Its physical implications are
discussed in Sec. II C and Appendix D, A simple general
argument to determine the minimal form of the amplitude
equation (2.13) is given in Appendix C, for both
codimension-2 and codimension-3 bifurcations.

B. Bulk binsrjj fluid mixtures

For bulk inixtures we introduce the velocity potential g
with w =g/Bx and u = —g/Bz and then have for the
basic equations'

1 gabe Beady +b, 1a
p a a a a

+ pat
R„=4m (1+L+L'),
60~=0 7

L'(1+L—+L ')

(2.11a)

(2.11b)

(2.11c)

=b.ze+ gb, 2c, (2.18a)

Bg ~g ~ B a/ac Bg Bc

Bx Bt Bx Bz Bz Bx

As is obvious from Eq. (2.1lc) the separation ratio for
which the crossover between stationary and oscillatory in-
stability occurs depends sensitively on the thermal dif-
fusivity and the diffusion coefficient. For water-alcohol
mixtures one has typically a/D =L ' = 100, which
means that g~, = —10, whereas for He- He mixtures
L =2 (near the tricritical point) and one can get

g&,——0.15. It is well established' ' that the first insta-
bility to occur is stationary for g& P~ and oscillatory for
P& gz„with vanishing oscillation frequency co~ and gz, .
The third root of Eq. (2.7) is negative so that it is possible
to neglect the term -o for sufficiently small o. Thus
one expects near the polycritical surface an equation of
the form2'

Bg B ~ g Bg B8 ai7 Bo
ax Bt Bx Bz Bz Bx

(2.18b)

(2.18c)

In Eqs. (2.18) we have used the same notation as in Eqs.
(2.1)—(2.3), but we have introduced a new parameter, the
Prandtl number,

P =v/a, — (2.19)

which involves the kinematic viscosity v. The ratio of
Prandtl and Lewis numbers is known as the Schmidt
number,

S=P/L =v/D . (2.20)
W aW PW+f—( W, W—) =0, (2.12)

with

W aW pW+f2W W—fiW—=0, —(2.13)

where f is the nonlinear function of W and W. Due to
the up-down symmetry of the present problem, f cannot

contain terms such as W, JF, or 8 5'. Thus one would
expect that to lowest order in the nonlinearity, f will have

terms of the form W, W W, W W, and W . We show

in Appendix C that only the terms 8' 8' and 8' are
necessary. We shall therefore seek the prefactors of those
to complete the deterinination of the amplitude equation,
which reads d N =0, for z =0, 1

Z2
(2.21)

and for concentration and temperature fluctuations we
take

Taking into account the relationship between P and u, w it
is immediate that Eqs. (18b) and (18c) and (2.2) and (2.3)
coincide, whereas the dynamic equation for the velocity
(2.18a), which already incorporates the incompressibility
condition, is markedly different from Eq. (2.1). In the
case of bulk mixtures we consider a fiuid layer of infinite
lateral extent. At the top and bottom plates we assume
free-slip boundary conditions for the vertical velocity field

W7

a=2m (1+L)(R —R«)/R« (2.14) O=c =0, for z =0, 1 . (2.22)

P=4~ L (R —R„)/R„, (2.15)

coming from the linear analysis. In Eqs. (A12), (A19),

In Sec. IID we shall dis'cuss the effect of more realistic
boundary conditions (rigid, no-mass-flux). Adopting the
standard procedure for linearized stability analysis we ob-
tain a polynomial for the growth rate o of the form (2.7).
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At the stationary instability (cr:—0) we have for the criti-
cal Rayleigh number R„

R„=[(k ll+ki, ) /ki, ][1+/(1+L) ')] ', (2.23)

with kll ~ and ki, vr/——v 2. For the oscillatory instabil-
ity [Rnr=0, Imo.&0] we have

("ll+ "i } (I+L)(1+L+P+LP ')
I ~P(l+f) (2.24a)

.=(k', l+k'„)L I P(1—+L ')(1+PL ')

&&[I+P(1+/)] ' —lI'~'. (2.24b)

For the intersection of the lines of stationary and oscilla-
tory instabilities, i.e., for the polycritical point, we find
Rco =Res =R~, with

R~ ——[(kll+ki, ) /ki, ][1+(1+L ')fp, ] ', (2.25)

fr, = —(1+P)[1+P+L '+P/L +P/L ) ', (2.26)

Cape =0 (2.27)

Proceeding as in the case of a binary fluid mixture in a
porous medium, one is led to an equation near the
polycritical point of the form

W a'W P'W—+f ( —W, W) =0, (2.28)

where f ( W, W) is the same nonlinear function as in Sec.
I!A,

f (W, W) =f2W W f i W— (2.29)

i.e., Eqs. (2.28) and (2.13}are isomorphic, only the numer-
ical values of the coefficients are different. For f', and f'2
we find in bulk binary fluid mixtures [cf. Eqs. (811) and
(812) of Appendix 8]

(2.30}

FIG. 1. Schematic phase portrait of the behavior of Eq.
(2.13) in the vicinity of the po1ycritical point a=P=O. The pa-
rameter space is divided into sectors with different characteristic
behavior. In each sector we show typical phase-space orbits and
the stability of various attractors (the stable fixed point is shown
as a solid circle, the unstable ones are shown as open circles, and
the stable limit cycle is a thick solid line; orbits are drawn as
thin solid lines). Quadrant -III has one stable and two unstable
fixed points, while quadrants I and IV have one unstable fixed
point, with an inverted stationary bifurcation along the line
P=O, a&0. On the line a=O, P~O the system makes a for-
ward oscillatory bifurcation to a stable limit cycle, which disap-
pears along the line L, ~ where the oscillation period diverges. In
sector IIa there are three unstable points joined by a heteroclinic
orbit. The points A and 8 are discussed in Appendix A 1.

for stress-free horizontal boundaries. The result we find
is

f~= ~'[1+(1+P)(L'+L+PL) ']. -
(2.31) X—1=2[(R —R„)/R„][1+/(1+L )]

From Eq. (2.31) we see that in the limit of infinite
kinematic viscosity the expression becomes proportional
to (1+L '), i.e., the dependence on L =D/Ic is the same
as in the porous medium case. This is not surprising be-
cause a fluid mixture in a porous medium represents a
highly confined situation which can roughly be thought of
as a very viscous fluid. Since both f'i and f'z have the
same sign as in the porous medium case, the essential
difference is that the location of the separation line be-
tween the sectors IIa and IIb of Fig. l now depends on
two parameters, the Lewis number L =D/lc (as in porous
media) as well as the Prandtl number P.

In closing this subsection we note that the nonlinear
coefficients [(2.30) and (2.31)] imply a Nusselt number N
which is different from the one obtained by Gutkowicz-
Krusin, Collins, and Ross. ' ' Indeed, the general expres-
sion for X in terms of the velocity and. temperature may
be evaluated immediately above the threshoM for the sta-
tionary instability using the formulas of Appendix 8 valid

X [1+/(I+L -'+L, -')]-' . (2.32)

This formula should hold wherever the stationary instabil-
ity leads to a forward (not inverted) bifurcation, a condi-
tion which is, however, not realized near the polycritical
point. The Nusselt number obtained froin Eq. (65) of
Gutkowicz-Krusin et al. , 's for stress-free boundaries, is
given by a different formula:

1V —1=2[(R R„)/R„](1+$)(—1+ 3' )
' . (2.33)

The error in the above result comes from the assumption,
originally made by Chandrasekhar that the nonlinear
behavior above threshold can be obtained purely from the
linear modes. It is well known, however, even for the case
of convection in simple fluids z~ that in lowest order the
modification of the vertical profile may not be neglected
in calculating the Nusselt number.
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C. Dynamical behavior resulting from the
amplitude equation

In this subsection we review the dynamical behavior
predicted by the amplitude equation (2.13) in the vicinity
of the cadimensian-2 point a=P=O, for fixed f~ (which
are positive and of order unity). The general behavior of
equations having double zero eigenvalues was first eluci-
dated by Takens' and Arnold and has been the subject af
numerous investigations by mathematicians (see Refs. 3,
5, and 6 for reviews). The steady solutions of Eq. (2.13)
are fixed points at 8' =0, 8'=0 and at
W=+( f, /P—)'~, W=O, and a periodic solution (limit

cycle) which only occurs for a&0, /3&0 (see Fig. 1). In
order to determine the stability of these solutions we must
linearize the equations about each solution and evaluate
the dynamical eigenvalues. The procedure is simplest for
the 8'= 8'=0 fixed point whose eigenvalues are

o+ ———,
' [a+(a +4P)'~ ], (2.34)

a= —(f2/5f i » . (2.35)

The analysis of Apendix D may also be extended to show
that the limit-cycle solution is stable in its domain of ex-
istence.

The full dynamical behavior around the polycritical
point is shown in Fig. 1, where the various solutions and
their stability are indicated, as well as the transitions (bi-
furcations) between solutions as one changes a and P. Be-
cause of the signs of the coefficients f, and fz, only the
sectors III and IIb have stable solutions. In the sectors
IIa, I, and IV, Eq. (2.13) has no stable salutions and W(t)
and W(t) will in general grow, thus invalidating the per-
turbation theory which led to (2.13). In order to find the
precise state of the system in those sectors it is necessary
to solve the full system [(2.1)—(2.3)], and the proximity to
the polycritical point does not. a pfiori simplify the
analysis. We are therefare able to predict a Hopf bifurca-
tion along the negative P axis and an inverted bifurcation
in crossing the negative a axis from region III to region
IV where the precise behavior is unknown. Along the line
L, ~ the limit cycle slows down to zero frequency, with a.

bifurcation to some other behavior [not determined by Eq.
(2.13)] in sector IIa. Note that throughout sector IIa there

from which it follows that this fixed point is only stable
(Reo+ &0) in the third quadrant (a &O,P&0), The stabil-
ity of the fixed points at W =+{ f i/P)' —can be stud-
ied by a similar linearization. The result, indicated in Fig.
1, is that these fixed points are always unstable far f i & 0.
On crossing the a=O axis upward for P&0 into the
secand quadrant, Eq. (2.34) shows that the W=O fixed
point has an ascillatory instability [Imo+&0], and it can
be shown that Eq. (2.13) has a limit-cycle solution, at least
sufficiently close to the horizontal axis. The domain of
existence of this solution can be studied analytically for
small a and P. As shown in Appendix D the limit cycle
disappears when the orbit W(t) grows sufficiently large to
pass through the fixed points at W=+( f, /P)'~ . This—
occurs along the line I. i of Fig. 1, given by

exists a heteroclinic orbit joining the three unstable fixed
points in the system. The appearance of such orbits is
often the precursor to a transition to chaos. The multi-
plicity of behavior in the immediate vicinity of a single
point in parameter space should be experimentally observ-
able if a and P can be sufficiently well controlled. Physi-
cally, this means controlling the temperature difference
which determines R and the mean concentrations of the
components, which control 1{.

we can obtain from the relation

(2.36)

J'= Vc —VO=O (2.37)

(in dimensionless units) the na-flux boundary condition

=0, at z =0 and z =1 .
dz

(2.38)

Taking into account the rigid boundary conditions for the
velocity field

dw =0, at z =0 and z = 1
dz

(2.39)

together with (2.38) we obtain a linearized boundary value
problem very similar to that treated in Ref. 16,

0—ki —— +k i w = —kg [0(1+$)+Pg],dz2 dz2
(2.40)

d2
o.— +kq 8=Rw,

dz2
(2.41)

d2
o —I.

d2 —kg 0,
dz2

(2.42)

where we have introduced

(w, g, i1)=(w(z), 8(z),g(z))e (2.43)

Contrary to the boundary value problems studied in Secs.
IIA and IIB above, the present one is nonseparable and
cannot be solved analytically. Using a Galerkin technique
analogous to one first used in Ref. 17, one arrives at an
equation for o. of the form

a3O +a2~ +~ &~+&0=0,3 2

with
(2.44)

D. Realistic boundary conditions

Up to now we have assumed that the concentration is
kept constant at the upper and lower boundaries, Eqs.
(2.5) and (2.22). The question naturally arises to what ex-
tent the situation outlined above carries over if more real-
istic boundary conditions for the concentratio~ field are
implemented (no-flux boundary condition). I.et us first
consider bulk binary mixtures. It has been shown by
many authors' ' ' that different boundary conditions
in this case do not change the qualitative picture, I.e., the
point of intersection of stationary and oscillatory branches
exists for any boundary conditions.

If we introduce the variable
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1 ' da3= — w —ki wdz
P o dz

(2.45a)

az ——(1+P '+LP '}f 2
2

—kj wdz (2.45b)

3
1 G

ai ———(I+/)Rki f w dz —(1+L+LP ') f w —ki wdz,
0 0 z2

(2.45c}

4
2 d2

a0 ——L w —
2

—kj w z+Rkq 2
—kj w + 1+ Ldz. (2.45d)

One can use Eqs. (2.44) and (2.45) to obtain the critical
values of R, ki, and o for any specific system by choos-

ing trial functions which satisfy the appropriate boundary
conditions. There are two ways to check the accuracy of .

the calculations. The first possibility is to calculate the

trial function in higher approximations and to check the
convergence af the Galerkin procedure. The second possi-

bility is to compare the result with an exact solution, at
least in some limit if it is available. In the case of the sta-

tionary instability the first method has been used in Ref.
17 and the second method in Ref. 16. However, in the
case of the oscillatory instability the first method presents

considerable complications, since no exact solution is

known. Therefore, in order to check the accuracy and re-

liability of the procedure, two different trial functions
were used in Ref. 17, and two different expressions for R,
and co, were used in Ref. 16. It should be noted that there

is no variational principle for the oscillatory instability in

binary mixtures, i.e., it is impossible to prove that R, is
the extremum of a functional, so no strict upper bound to
the exact value is known (such results exist priinarily for
self-adjoint operators). ~Vhat is possible is the calculation
performed in Ref. 16, which shows that the results for R„
k„and co, agree closely with each other, even in the first
approximation, using two different trial functions in the
Galerkin method. Also, one of the expressions reduces to
the variational estimate for stationary convection in the
limit co=0. As has been shown in Ref. 16, in the region
of parameter space of interest here (the vicinity of the
polycritical point), different boundary conditions do not

change the picture qualitatively. The IDain effect is an
overall shift of the values of R, and kj, . It is only far
away from the codimension-2 bifurcation that the trans-

verse wave number for the onset of the stationary instabil-

ity changes drastically and is determined by the container
size in the case of no-Aux boundary conditions. '

The same argument can be given for the case of binary
mixtures in porous media. Since the velocity and, tem-

perature boundary conditions in (2.4) and (2.5) are the
physically correct ones, we need only implement the no-

flux condition, i.e., replace the concentration boundary
condition in (2.5} by (2.37). Then, using g Elefined in Eq.
(2.36) as a variable (instead of c), we have for the linear-

ized basic equations [(2.1)—(2.3)]

—zK d0'
~

—ki w
l e'v, dz

—ki w+ki [(1+/)0+prl],
dZ

d2
o — +k~ O=Rw,

dz
(2.46)

d2
m —L 2

d2 —ki 8.
dz

Proceeding as in the case of a bulk binary mixture we

once again obtain a critical polynomial of the form (2.44),
with coefficients

«E ' d'
w —kj wdz,

l'~v 0
I
dzz

(2.47a)

1

a, =f w —kj wdz
dz2

'2
2(1+L)f w z

—ki w dz,
I ev dz

'3
K~I. ' dQ1= W —kj wdz
l2ev 0 dzz

(2.47b)

—(1+L)f w —ki wdz
0 2

1

+ki(1+/)R f w dz, (2.47c}

d
a 0

—— k iL ( I +g+ gL —')R f w —k i w dz
dz

3
d+L w —kg wdz

0 dZ
(2.47d)

As above one can use (2.47) to evaluate the critical values
R„co„and k&, (after R, has been minimized also with
respect to k„) by choosing appropriate trial functions for
any specific system under consideration. It should be
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stressed that the values one gets from carrying out this

proccdule are of relevance to real experiments because

they correspond to reahstlc vertical QBd lateral boundary

conditions. As above we believe that the results will be

qualitatively the same as those derived analytically in Sec.
II A.

III. AMPI. ITUDE EQUATION
WITH SLOW SPATIAL MODULATIONS

For convection in layers of large horizontal extent the

flow pattern is highly degenerate since only the magnitude

of the transverse wave vector is fixed but not its direction.

In such a situation an amplitude equation of the form

(2.13), which involves only a single mode W(t) with rolls

parallel to the y direction, is clearly an oversimplification.

Even assuming that the rolls stay parallel to y, it is possi-

ble to make small departures from the critical wave vector

by a small distortion of the flow. For the case of convec-

tion in a simple fluid, Segel' and Newell and Whitehead'

have shown how the one" 111ode amplitude equation 18

changed by spatial modulation. In the simple case of
parallel rolls the complex amplitude w(t, x) is given by

C

1 B'Z, (k, )

ilk'
(3.2)

1 B R„(ki)
Bkj kj —kj

(3.4)

Near the oscillatory bifurcation we have P=m, with

W(t, x)= w, (t,x)e ' +c.c. , {3.5)

and the amplitude equation reads, instead of (A6),

BN0 ~BNg
Bx

(3.6)

These generalizations of (Al) and (A6) can be obtained by
making the replacements 6

depends on the deviations of R, (kz) from the critical
value R, (kz, ). We wish to generalize Eq. (3.1) to the case
of codimension-2 bifurcations treated in Eq. (2.13). For
simplicity we restrict ourselves to the case of parallel rolls
(two-dimensional flow) where the amplitude function de-
pends again on only one spatial coordinate.

Near the stationary bifurcation we have the generaliza-
tion of Rq. (Al) of Appendix A,

Ng 2
&sus =e'stcs+Cs gs I tcs I tcs ~—

8&
(3.3)

with26

{3.8a)

(3.8b)

in the appropriate amplitude equations (Al) and (A6)
is thus clear that to leading order in the spatial variations
tlM amplitude equation (2.13) is replaced by

W —a e+e, fbi—Wi W2 B'
2

X

—& &s+ks, +fi
~

W~' W=0, (3.9)

where aeo ——a,pe, =p, and the function W(x, t) is now, in
general, complex and defined by

to(x, z, t)=-,' W(x, t)sin(nz)exp(imx)+c. c. , (3.10)

Since we are interested in the behavior of normal-fluid
binary mixtures under an external temperature gradient,
possible systems come naturally in two groups. The first
consists of room-temperature mixtures, e.g., of two al-
cohols or alcohol and water; the second group has only
one member, He-~He normal-fluid solutions. Both
groups have advantages and disadvantages from an exper-
imental as well as a theoretical point of view, and as we
shall see they are complementary in many respects. In
He- He mixtures ' the disadvantage in study1ng con-

vection is an obvious one: Up to now there exists no tech-
nique which allows a visualization of the flow pattern
above the onset of convection. Therefore the experiments
are confined to measurements of the heat current (i.e., the
Nusselt number), which can be done with very high accu-
racy. On the other hand, He- He mixtures offer the
unique advantage that the dimensionless parameters such
as the separation ratio and the Schmidt and Prandtl num-
bers can be varied over orders of magnitude. This is, in
particular, true in the vicinity of the A, line (close to the
superfluid transition) and in the neighborhood of the tri-
cflt1cal point (close to the two-phase region). In the He
concentration range between 40% and 50% and at tem-
peratures of order 0.1—0.2 K from the A, line, the typical
value for L '=«/D is 3. This yields for the separation
ratio at the polycritical point, g&,——0.1, a value which
may be reached near the superfluid transition by varying
concentration aod temperature. Moreover, there is an ad-
ditional advantage in this region that the value of g~, is
reasonaMy well separated in parameter' space from the
"nonequilibrium tricritical point" for the stationary bifur-
cation at which the cubic term in the amplitude equation
undergoes a change in sign. " For this point one obtains

which replaces Eq. (2.6).
Equation (3.9) has a mathematical structure which may

lead to interesting behavior, due especially to the presence
of the mixed term B W/Bt Bx . In particular, this
lowest-order equation does not derive from any minimiz-
ing potential.

IV. QUANTITATIVE ESTIMATES
AND POSSIBLE EXPERIMENTS
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the value P, =—0.07. The second interesting region is the

vicinity of the thermodynamic tricritical point. There, f
can be easily varied from —0.01 to about —1 in a very
narrow temperature range, thus including the polycritical
value of P (g~= —0.01 for a./D=10). In the region of
parameter space where the amplitude equation derived
above predicts a stable Hopf bifurcation (region IIb of
Fig. 1) we predict oscillations in the Nusselt number with

frequency 2', and we further predict that this frequency

goes to zero at the polycritical point and along the line

Li.
For room-temperature systems ' ' the situation is com-

pletely different. One can observe the flow pattern using,
for example, a shadowgraph technique, for any given

pair of values of the separation ratio and the applied tem-

perature gradient. In addition, it is simpler to measure

the time dependence of the flow using a visualization

technique or by local temperature measurements at several

points in the fluid. Spatial correlations can be determined

in these room-temperature systems by using laser Doppler
velocimetry, a technique not available in low-temperature
convection. The disadvantage common to all roorn-

temperature systems is the close proximity of the polycrit-
ical point (Pz- —10 for a typical alcohol-alcohol mix-

ture) with the nonequilibrium tricritical point for the sta-

tionary instability (g, = —10 ). This means that it will

be necessary in experiments to control both the tempera-
ture gradient and the separation ratio rather precisely in
order to ensure reproducible results and to avoid confus-

ing the different dynamical behaviors near these two
points. Given the accuracy of the experimental tech-
niques available at present and the fact that one can com-
bine the results obtained by various methods, it should
nevertheless be possible to obtain some information on the
dynamic behavior in the vicinity of f~

Let us compare the onset of convection in the vicinity
of the polycritical point in a binary fluid mixture (with
and without a porous medium) with other systems in
which codimension-2 bifurcations could occur or have
been studied. In a simple fluid one can clearly not have a
codimension-2 bifurcation near onset, since the first insta-
bility is always stationary. The system which has at-
tracted most theoretical attention so far is the thermoha-
line problem, ' ' i.e, , the onset of convection in a layer of
salt water. As mentioned in the Introduction, there is un-

fortunately one important experimental problem: To
study codimension-2 bifurcations in the thermohaline
problem it would be necessary to vary salinity and tem-
perature gradients independently, and it appears quite dif-
ficult to do this experimentally, due to the coupling pro-
portional to kT which exists between these gradients in
equilibrium mixtures. '

Another candidate for a codimension-2 bifurcation is a
simple conducting fluid jn an external magnetic field
which serves as the second parameter. Although some
model calculations have been carried out on this problem,
no experiments have been published so far, to our
knowledge. (Mercury in a magnetic field appears to be a
promising candidate. ')

Very recently Andereck et al. have reported experi-
ments an the behavior of a simple fluid between corotat-

ing and counterrotating cylinders. The observations in-
cluded several types of codimension-2 bifurcations, but no
theoretical interpretation of the results has been attempted
so far.

The experimental systems for which most data have
been accumulated so far in the vicinity of a codimension-2
bifurcation in convection are nernatic liquid crys-
tals. ' ' As in binary fluid mixtures one has the possi-
bility of an oscillatory instability. The role of concentra-
tion is taken over by the fluctuations of the nematic direc-
tor, the variable which characterizes the spontaneously
broken rotational symmetry in these liquid crystals (the
center of mass of the molecules shows no long-range or-
der). As a convenient second parameter in nematics one
has an external magnetic field which couples to the elastic
free energy and can thus be used as a lever to change the
critical Rayleigh number and the frequency at onset. The
codirnension-2 point and its vicinity have so far been stud-
ied only experimentally. Theories concentrated on the
derivation of amplitude equations for the stationary and
the oscillatory instability separately. Dubois-Violette and
Rothen found a stationary instability in the planar con-
figuration in MBBA [N-(p-methoxybenzylidene)-p-
butylaniline] with a forward bifurcation, and Dubois-
Violette and Gabay reported for the same compound in
the homotropic configuration an inverse oscillatory bifur-
cation. The only experiments performed for MBBA have
been carried out by Guyon, Pieranski, and Salan and
they seem to indicate an inverse Hopf bifurcation trigger-
ing a finite amplitude instability. The vicinity of the
codimension-2 point was not studied in detail in these ear-

ly reports. More recently, this question was addressed ex-

perimentally in a series of papers by Otnes and Riste. '

The investigated material in their case was PAA (p-
azoxyanisole) and they used neutron scattering to detect
changes in the order parameter. In a small aspect ratio
cell with a small magnetic field they found a forward
Hopf bifurcation with sustained nanlinear oscillations,
and at high fields they observed a stationary instability
which was accompanied by spatially irregular behavior
and possibly a strange attractor. At higher temperature
gradients they found multistability for the oscillations and
in addition they observed hysteresis. The experimental
behavior for small temperature gradients resembles very
closely what we have found in binary fluid mixtures: a
forward Hopf bifurcation competes with an inverse sta-
tionary bifurcation. We mention in passing that it is pos-
sible to derive the structure of the amplitude equation
near the polycritical point in nematics as well, and we

have found very recently that this equation is identical
with that for the binary-fluid-mixture case. The situation
differs only insofar as f&

and fz are more complicated ex-
pressions which can probably assume either sign and thus
allow for a rich variety of behavior which varies from one
compound to the next (e.g., from MBBA to PAA).

In conclusion, it is our belief that binary fluid mixtures
(with and without a porous medium) and nematic liquid
crystals are the best candidates for study, since they are
experimentally accessible and allow a theoretical descrip-
tion of the behavior close to the intersection of a station-
ary and an oscillatory instability in convection.



2556 BRAND, HOHENBERG, AND STEINBERG 30

ACKNOWLEDGMENTS
1+L1

2

&cs

4m.
(A2)

We have benefited from useful discussions and
correspondence with D. S. Fischer, J. Guckenheimer, P.
Holmes, and W. van Saarloos. We wish to thank E. A.
Spiegel and J. Guckenheimer for making Refs. 6 and 3
available to us prior to publication. The work of V.S. was
supported in part by National Science Foundation Grant
No. . MBA-81-17241, and the M. M. Boukstein Career
Development Program.

APPENDIX A: DERIVATION OF THE
AMPLITUDE EQUATION IN A POROUS MEDIUM

and

e, =(R —R„)/R,g,

1 R„1+ (1+L-')
166 4' z

(A3)

(A4)

ice t ~ —ice t
w =(w, e ' +w, e ' )sin(mz)cos(mx),

the complex "Ginzburg-Landau"-type equation

(AS}

The function w, = —,
' W is related to the velocity by

w =2w, sin(mz)cos(mx). For the oscillatory instability we
found, with

1. Derivation of Eq. (2.13) from the
amplitude equations for the stationary instability

and the oscillatory instability

For the stationary instability, we derived previously"
the amplitude equation

rowo eowo go I wo
I wo

2

where

2l Cgo

(ico, +2m )(ico, +2m. L)

(A6)

(A7)

with

3
sNs 6s Ws gsNs (A 1)

and

e, =(R —R„)/R„, (AS)

2L (2m L +i co, )

1+
2n icoo — QR,o(2nicoo. ) — 4m +co,

2(4m +co, ) 2(2m +ico, ) 4(2m+ico .)(2'. L+icoo) 2a L(2m L+icoo)
4n +co, R„(2mico, .) — gm LR„(2m ico,)—

2(2' +L+icoo) 4(2m L+icoo) 2(2n +icoo)(2m'L+icoo)
(A9)

To determine fi and f2 in Eq. (2.13) from Eqs.
(Al) —(A9) it is useful to keep in mind the situation
sketched in Fig. 1, showing the intersection of the lines
for the stationary and oscillatory instabilities. At point B
we have P & 0 and P« 1 because B was chosen to lie close
to the line P=O. Furthermore, we can easily choose B so
as to satisfy the inequalities a&0,

~

a
~

&&p. At B,
W =O(p) «

~

a ~, so that it is possible to neglect the
term containing f2 in (2.13), which becomes

aW=PW+f i W— (A10)

where according to (2.6) and (AS) W =woexp(i co, t)+c.c.
Comparing Eq. (A10) with Eqs. (Al) —(A4) we read off
immediately

and

W =qW, (t„r)+rt'W, (t„r)+ ~ ~ (A13)

into Eq. (2.13) we obtain to order ri

(a', +~.') W, =0,
with p= —co, +O(g ), and to order ri3

(&i+, ) W3+(»ic),—c)i+f, Wic), —f, W', ) W, =0

(A14)

(A15)

a slow time scale and ti as a fast time scale. Inserting the
expansions

fi —— 4~ g,L . — (Al 1) (A16)
If we now let B go to the polycritical point along R„we
obtain for fi using Eq. (2.11)

Using the solution of Eq. (A1S),

Wi ——Wi(~)e ' + W i(~)e (A17)
1 4 (A12)

Next we perform a similar analysis for point A near the
oscillatory line. We have chosen A to satisfy p& 0 and
0&a«

~
p~. Using a=g as a small parameter we carry

out a perturbation expansion of Eq. (2.13) using ~=g t as

we get for the solvability condition for the coefficient of
exp(ico, t) in (A16}

Wl 2 (I+t~o)W1 2 (f2+3tfi/coo)
~

Wi
~

'Wi

(A18)
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In. order to identify the coefficients ln (A18) we must
compare with (A6) in the limit co, ~0. A lengthy but
straightforward expansion of (A7) and (A9) then leads to
a confirmation of (A12) and to the further result

fz =—,'(1+L ') . (A19)

2. Derivation of the aIIlplltude eguatioll
fmm the non1inear basic equations

We now wish to present the alternative derivation start-
ing from the nonlinear equations for the deviations from
the heat-conduction state, Eqs. (2.1)—(2.3), which we
rewrite in the form

B,—W if+W zg =~(g),

0

Pki /k "L sin(mz)cos(mx )+gg, l,
—/k' /k4L

4

with g again arbitrary at this stage. After these prehmi-
nary remarks about the linear analysis on the polycritical
sllrfacc wc 81'c prcpalcd to carry ollt 8 110111111cRrRllalysls.

As has already been mentioned above, one expects an
equation of the form

W+a W+PW= f ( W, W),

where f ( W, W) contains all nonlinear terms, the lowest of
which are cubic by symmetry. %e make the ansatz

where f=fiW +flW W+fsW W+f4W (A27)

00
lzevL

0
0

10, W, =R b, 0
0 1 R Lb, Lb—. g= g g; (JW )i'(W )i+le Wi+1giWz, (A28)

Now it is fairly clear how to proceed: one tries a power
expansion of the solutions of the full nonlinear equations,
generalizing a technique of the Stuart type,

0
N

~(g)= (v V )8, g=
(v P')c

where Wi = W and Wz
—= W, and each g;~ is a vector. If

such an expansion is valid one can expect that only goz,
g ii, Rlld g zo need to bc dc'tcrlnlllcd to dcrlvc 8 cubic cqllR-
tion for 8'. Using

I.inearizing Eq. (A20) and taking 8 Fourier transform we

obtain from the condition

(A21)

ag ag
B,g= Wi+ Wz,

8Wi BWz

we can rewrite Eq. (A20) as

(A29)

sin(mz)cos(mx ),

~lkZ=~ it i .

We are left with

(A23)

0
—R /k sin(m. z)cos(mx) +g'1, (A24)

R /fk
with g an arbitrary constant [in view of (A21)] which we
take to be zero for convenience. Proceeding in an analo-
gous way for the left eigenvectors we obtain

(kl /k )(1+ itj) sin(mz)cos(mx )

Pkl/k L

a first right zero eigenvector (of W)

1

R/k (A22)

R/k (1+L '),
where, in Eq. (A22) as in the following, R and g are al-

ways evaluated at the polycritical point (2.11) and

k =k~~+kl. Since Eq. (2.7) has a double zero eigenvalue

at the intersection of the lines for the stationary and oscil-

latory instabilities we must determine a second right
eigenvector which can be evaluated from

( —uW, —13W, +f)
Bg' Bg

BR',

+~,g=~(g) . (A30)

All that is 1«t to do is to insert Eqs. (A27) and (A28) into
Eq. (A30) and to determine the coefficients fi, . . . , f4
self-consistently in the reduced perturbation scheme.

To first order in the iteration scheme we get for the
nonlinearities

0
mR /2k

.(m'R/2k )(1+L ')
0

~(4,g', )= mR/2k' sin(2mz—),
mR/2/k

sin(2mz),

~(g, g )=0. (A33)

The coefficients g lo, g ii, and g oz can then easily be deter-
mined [using (A30)J:

~allo=~(ki 0i»
~alii=~(ki kz)+2~ italo (A34)

~ zkoz=2~ ik ii
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leaving us with

0
—R /1677

( —R /161r3)(1+L '+L--')
0

R /16m.

(R/16m )[1—(LQ) ']

sin(21rz ),

sin( 2lrz),

(A35)

(A36)

~430=~(kzo k 1)+f1~ 4z
~2421 ~(( ll~k 1)+f2~ 102+3~ lk30 ~

~ zg 12 ~(koz~k 1)+f3~ 142+2~ l(21 ~

~zk03 f4~ lk2+~lg12 .

(A38)

(A39)

(A40)

(A41)

From Eq. (A38) we immediately find f1, using the first of
the orthogonality conditions:

(A42)
(gol ~ go)

0

402= —R /32lr7 sin(2mz) .

( —R/321r )I 1+[1 (Lg)—]/L]
(A37)

Due to the up-down symmetry, all orthogonality condi-
tions occurring in second order are satisfied trivially, thus
justifying again the omission of terms quadratic in

and/or W in the ansatz for f. To determine fl, . . . , f&
we must evaluate the orthogonality conditions (because we
have a larger critical space there are four such conditions
here instead of one for the Rayleigh-Benard instability in
simple fluids). In detail, we have from Eq. (A20)

(~(k ii k i»k 1') —3(~(420,& i),gz')
(A48)

»serting $11, g 1', gzM, »d $20 into Eq. (A48) we find
after a straightforward calculation

f, = —,'(1+I- '), (A49)

a result which agrees with Eq. (A19) above. We are thus
left with the determination of f3 and f4. From Eq. (A38)
it is clear that $30 is given by a special solution of the in-
homogeneous equation plus the general solution of the
homogeneous equation ego with c an arbitrary constant.
The same type of argument can be used for the general
solution of Eq. (A39). From Eq. (A40) it follows that the
compatibility condition for this equation pins down only
an arbitrary linear combination of f3 and the arbitrary
constant c entering $30. Accordingly, we may choose this
constant so that f3=0. The same argument applied to
the orthogonality condition for Eq. (A41) yields f4=0,
which completes our derivation of the amplitude equation
(2.13). A more general derivation of the form of this
equation is given in Appendix C.

0 0 0
0 0 I

(81)

APPENDIX 8 DERIVATION OF THE
AMPLITUDE EQUATION FOR BULK MIXTURES

To derive Eqs. (2.28) and (2.29) we use the direct
method, i.e., we obtain the amplitude equation from the
basic nonlinear equations. Since the steps are similar to
those in Appendix A2 we shall use the same notation and
list the results only. For W 1 and Wz we have

—I' '6 50

From Eqs. (A24), (A25), and (A35) we have immediately

f1= (A43)

where we have introduced the inner product as an integral
over the fluid layer

(A,B)=fdx dz A(x, z)B(x,z) .

R b, 0
R —Lh L5

For the first zero eigenvector we have then

R/k
(R/k')(1+L -')

(82)

(83)

as in Eq. (A12). Rewriting Eq. (A38) as

430 ~ 2 [~(420~41)+fi~ ik] (A44) with k =k~~+ki„and gz reads

we obtain froin Eq, (A44)

(~ 1430~4 1 ) (~(420~41)+f1~142~(~2 ) ~ 1 110)

(A45)

042=
0

—R/k~ +g'1 .
(R /k k /kiP)/g—

(84)

=(~(rzo, rol)+f, ~ i&20, gzo')

=(~(kzo 0 i»kz') .

(A46)

(A47)

To arrive at Eq. (A47) we have chosen (gz, gz )=0 which
fixes g in Eq. (A26). Combining Eqs. (A47) and (A39) we
arrive at

For the left eigenvectors g 1 and gz we find

j.

(k i /k')( I + lt )

ski/k L

and

(85)
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0
—(ki lk )(1+/+//L)

gk /kL

For the nonlinearities we get

(B6)
0

—mkiR /2k

( —mR /2k 4)(1+L '+L ~)

(B8)

0

~(g i,g i)= m.kiR/2k

(mRki /. 2k )(1+L ')
(B7)

In the next step we determine, as in Appendix A2, the
quantities (2o and gii.

0

(2o= —kiR /8mk

( —kiR/8m. k )(1+L '+L )

sin(2m. z), (B9)

0

7kiR /72m

(Rki/m~)[ —+ (1+L i+L 2)/24L —(18LQ) ]—3ki/8mLQP

(B10)

In the final step we determine f i and f 'z, and we obtain W'= W+3d, ( W2W+2W'W)

and

3 4
32 7T (B1 1)

f2
——(7m /64)[1+(1+P)L (1+L '+P/L) '],

+d, (2W'+6WWW+ W'W)

+d, (5 W2W+2WW'+2W'WW)

+3d, (WW'+2WW') . (C4)

as in Eqs. (2.30) and (2.31) of the text.

(B12)

APPENDIX C: CANONICAL FORMS FOR THE
AMPLITUDE EQUATION FOR CODIMENSION-2

AND -3 BIFURCATIONS

In Appendix A2 we have given a detailed argument

why terms proportional to 8' 8'and 8' may be omitted
from Eq. (2.13). Here, we wish to discuss this point from
a more general point of view. Accordingly we place
ourselves on the polycritical surface a=P=O and start
from the most general form for a system having "up-
down" symmetry,

Since according to Eqs. (Cl) and (C2) W and W are at
least of order W, W W, or WW, the terms containing
these may be dropped from the right-hand side of Eq.
(C4), which simplifies to give to the order we are interest-
ed in

W'= W+6d, W'W+2d, W3 . (C5)

In comparing Eq. (C5) with Eq. (Cl) it is obvious that the
terms in (Cl) proportional to W and W W can be re-
moved by appropriate choice of the d;, whereas terms
proportional to 8' and 8' W will remain. Thus we end
up with the "canonical" form for the equation on the
polycritical surface associated with a codimension-2 bifur-
cation,

W'=fi W' f2W' W'+f3W—' W'+f4W', (Cl)
W=fiW —fqW W. (C6)

for an amplitude function W' which is related to W by a
nonlinear transformation

8"=8'+d)8' +d2S' W+d3WW +d48'

From (C2) it follows immediately that

For codimension-3 bifurcations which were studied by
Arneodo, Coullet, and Spiegel, ' a similar technique can
be applied. The most general equation reads in this case

W —c]W +cgW W +c3W

W'= W+d, 3W'W+d, (2W'W+ W'W)

+d3(W'+2WWW)+3d4W W,

and

(C3)

+C4W W +C5W W +C6$V +C7W W
I

+C88 W +C9W W W +C]pW

Making the nonlinear transformation

(C7)



W'= W+doW +di W W+d2WW +ds W +dgW W (Dlc)

+d 8'8' +d 8' +d 8 8'

+dsW W+d&WWW, (C8) W=a, W=c2X, (r)=c'a, x, (D le)

one arrives to the order we are investigating here, using
similar arguments as above, at the following expression

for W':

and rewrite Eq. (2.13) as

X1 ——X2,

X2 =~lxi+fl Xl+&(~ 2X2 f2X1X2) . (D3)
W '= W+3d2(6WWW+2W')+d, (12W'W+6WW')

+Iud, WW'+12d, W +6d, WW +3d, W

By comparing Eqs. (C9) and (C7) we see immediately that
the terms proportional to 8' and 8 W' can be removed
by a nonlinear transformation. In addition we find a rath-
er surprising result: there is a choice as to which other
terms are removed. One of the following four combina-
tions of nonlineari ties,

IWWW, W Wj, IWWW, WW j,

For c =0, Eq. (D3) is a Hamiltonian equation with energy

H =TX2 —TA Ix 1
—

4 f1X i
1 2 1 2 1 (D4)

To zeroth order in e the solutions of (D4) are therefore
lines of constant energy H(xi, x2) =const. Since areas are
conserved by a Hamiltonian flow the change of phase
space area of the motion given by (D3) depends only on
the term proportional to c. It is obtained by integrating
the divergence of the vector flow t)xi/Bxi+Bx2/t)x2
around the orbit. Since we are dealing with a limit cycle
the area A does not change with time (even for finite c),
so we have the condition

IW', W2Wj, [W', WW'j,
(C10) dA 2—=c dxidx2(A2 —f2xi)=0.

d7
(D5)

can be removed, but not the other three. From this result
we can infer immediately that Arneodo, Coullet, and
Spiegel ' in their Eq. (31) have chosen to remove the first
pair, and that they have retained the other three, but one
could have selected any other of the combinations listed
above —a choice which does not exist for the case of codi-
mension 2.

We wish to find the point in (A, I,A,2) space at which the
limit cycle x, (r),X2(r) touches the fixed points at
xi ——+( —A, i/fi)'/, X2 ——0. At these points the energy
(D4) is H =—,AI/f1+0(e). To lowest order in c we may
thus evaluate Eq. (D5) in a limit cycle for which

H(xi, x2)= —,'x2 ——,A, IXI —
~ fixi ——

~ A, I/f, . (D6)

APPENDIX D I.IMIT CYCLE SOLUTION
OF EQ. (2.13)

In this section we display the periodic solution of Eq.
(2.13) which exists in sector II of Fig. 1, using an argu-
ment which has been given by a number of au-
tlloI's. ' ' ' ' I11 tllc 111111't cx,p~O wc Introduce tllc scal-
1ng

Inserting Eq. (D6) into Eq. (D5) we obtain

( —~/f )

+1 2 2+1 1 2 +1+ 1 1—(—A )/f I
)~/

%'hlch IIlay be evaluated to yield

X2/Xl f2/5fl

(D7)

(D8)

W(t) =ex 1 (r),
p=c Ai, (Dlb)

leading to Eq. (2.35) of the text. The stability of the limit
cycle within sector IIb, where it exists, may also be veri-
fie to lowest order in c, using the Hamiltonian limit.
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