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A new method of picosecond and femtosecond transient spectroscopy yielding information about

ultrafast relaxation processes without requiring ultrashort light pulses is presented. It is based on

the present theoretical analysis of the resonant degenerate four-wave-mixing process excited by two

temporally incoherent light beams with wave vectors k l and k2 which are originated from a single

beam at frequency co but have mutual time delay g. Under the assumption that the incoherent light

field has Gaussian random complex amplitude and that the resonant material consists of the usual

two-level atoms, the statistically averaged intensity of the output light field with k3 ——2k~ —kl at m

is calculated as a function of ~. Even with the light having a much longer duration than both Tl
(thc longitudinal relaxation time) and T2 (thc transverse relaxation time), the correlation trace, i.e.,
output intensity versus 7., represents a decay profile determined mainly by T2 for both homogene-

ously and inhomogeneously broadened transitions, as long as the light correlation time v, is much

shorter than the relaxation times. The correlation trace does not always represent a single-

exponential decay but is sometimes slightly deformed by the Tl effect. However, it does not cause a

sigmficant error in the determination of T&. Moreover, , as T2 jTl ~0, the trace becomes a single-

exponential decay curve determined only by Tz. The feature of the results obtained by the present

method is similar to that obtained by the conventional coherent transient spectroscopy with short

pulses, such as the photon echo. The time resolution in the present method, however, is limited only

by v; much shorter than the light duration. By regarding the incoherent light as a series of random

ultrashort pulses, the present four-wave-mixing process is also interpreted as the ensemble of
numerous transient four-wave-mixing processes caused by various combinations of these pulscs.

I. INTRODUCTION

Studies on the relaxation process associated with excit-
ed states of materials are very important in understanding
the dynamical behavior of the light-matter interaction. In
condensed matter, relaxation. times are generally very
short, and often fall far below I psec. For studies on such
ultrafast relaxation processes, various nonlinear spectro-

scopic methods in the frequency domain' 5 have been

developed and served to determine ultrashort relaxation
times in the range down to below 0.1 psec. The frequency
domain methods are, however, still indirect and require
careful interpretations. As complementary means, there
are various techmques of thc time-resolved nonlinear

spectroscopy, such as a convcnt1onal photon echo, a
stimulated echo, an accumulated echo, ' a tran-
sient degenerate four-wave mixing, ' ' an induced tran-
sient grating, an optical Kerr shutter, ' ' and so on.
These methods can more directly show relaxation.
behaviors in the time domain and give more exact relaxa-
tion times. Generally speaking, however, the time resolu-
tion of such methods is essentially hmited by the temporal
width of the optical pulscs used there. Although recent
progress of ultrashort pulse lasers ' and pulse-
shortening techniques has allowed us to obtain even
less than 100-fsec optical pulses, such an extremely short
pulse can be generated, for the time being, only in a very
limited wavelength region Rnd only with a sophisticated
apparatus. Therefore, it is still difficult even now to ob-

serve the ultrafast relaxation process occurring in less
than 1 pscc 1n particular over 8 wide spcctI'Rl range. In
view of this situation, we propose in the present paper a
new method of transient spectroscopy that makes it possi-
ble to observe such ultrafast relaxation processes without
the limitation of the time resolution by the pulse duration.

A temporally incoherent light with a wide spectral
width has 8 very short correlation time v, which corre-
sponds to thc reciprocal spcctI'Rl width 8nd 1S Dluch less
than the temporal duration of the light. This kind of
light appears like 8 single pulse ' with 8 duration v, in
the autocorrelation measurement, and is, therefore, ex-

pected to play essentially the same role as a short pulse in
nonlinear spectroscopy utilizing the correlation technique.
As 8 I'clcvRQt Qonl1ncar optical process we consider herc 8
k1nd of 1csonant degenerate foul -wRvc Dllxlng» 1Q

which as shown in Fig. 1 a light beam at 8 frequency co is
spatially divided. into two beams with different wave-

vectors k1 and k2 and then they are mixed in 8 resonant
material both 1n frequency and in wRvc vector to gcnelRtc
output 11ght bcRHls Rt, thc sRIDc frequency QP 1Q ncw d1rcc-

tions along k3 ——2k2 —k& and kq ——2kI —k2 due to the
third-order nonlinearity of the material. Vfc suppose that

one of the beams with the wave vector kz is temporally

delayed by ~ relative to the other beam with kl. %hen
thc energy of the output beam is measured as a function
of the time delay ~, wc can obtain a kind of corre1ation.

profile associated with both the incident light Rnd the
resonant material Rs 8 function of ~. The transient
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resonant four-wave mixing (TRFM) mentioned in the pre-
vious phrase corresponds to the case that ultrashort pulses
much shorter than the relaxation times are used as the in-
cident light. The TRFM is known' ' to include the
lowest-order part of the photon echo phenomena, and the
correlation trace of the TRFM draws a decay curve deter-
mined by the relaxation time. In contrast with the TRFM
case, if we use the temporally incoherent light with a
much longer duration but a much shorter correlation time
than the relaxation times of the resonant material, what
shape can we expect for the correlation profile? We show
theoreticaHy in the present paper that the correlation pro-
file even in this situation clearly reflects the relaxation
times and has a long tail determined by them. This fact
means that the use of the temporally incoherent light en-

ables us to measure a much shorter relaxation time than
the duration of the light if only the relaxation time is
longer than the correlation time ~, . In other words, the
time resolution of the measurement is determined by the
correlation time ~, instead of the duration of the light,
unlike the conventional methods of time-resolved spec-
troscopy. This fact has a possibility of benefiting us
greatly because it is far easier to prepare an incoherent
light source with a short correlation time ~, than to pro-
duce an ultrashort pulse with the same duration as ~, in
various spectral ranges, especially in the case of less than
1 psec. In an extreme case, even a cw light, which has an
infinite duration, enables us to observe the subpicosecond
or femtosecond relaxation process in the time domain if
only it has an adequate spectral width.

A similar idea has been applied to some research fields,
for example, slow neutron-scattering experiments,
molecular beam scattering experiments, random modu-
lation cw "lidars" (light detection and ranging), and so
on. In these cases, using the pseudorandomly modulated
beam ' of particles or light, they measure the cross corre-
lation between the incident beam and the output beam
scattered by an object and obtain the scattering response
in the time domain. Their purpose in using such a
method is to get a high sensitivity due to the integrated
intensity by the quasicontinuous beam.

Such types of ideas, however, have never been applied
to the nonlinear spectroscopy on the light-matter system.
Besides, we must recognize that this system has some sig-

ki, =2k) —
k2

FIG. 1. Relation among the directions of the incident beams
and the output beams of the resonant degenerate four-wave mix-

ing. The two incident beams are produced by splitting a single

original beam and the k2 beam is delayed in time with respect to

the k& beam.

8'(t)=e(t)R (t), (2.2)

where n is the unit vector of k, U is the light velocity in
the material, ignoring the dispersion of the refractive in-
dex. While e(t) is a normal function, R (t) is a complex
random function representing a stochastic stationary
Gaussian process for which

(R'(t)R(t+r)) =f(r),
(R (t)R (t+r) ) = (R*(t)R'(t+r) ) =0,
(R (t) ) = (R*(t)) =0,

(2.3)

(2.4)

(2.5)

where the symbol ( ) denotes the statistical average over
the random variable of the stochastic process. We assume

nificant differences from other systems mentioned above.
In our case the response of the material to be investigated
is nonlinear instead of linear, and furthermore the materi-
al response and the cross-correlation procedure occur
simultaneously in the same material. Therefore, we can
never treat these two processes separately. Moreover, in
the light-matter interaction, we must co~sider two kinds
of responses, namely, those of population and of coher-
ence. It is also a difference that our purpose is not to get
a high sensitivity but a high temporal resolution. In view

of these points, it is very significant to examine the effects
caused by the characteristics peculiar to the nonlinear in-

teraction between the light and the resonant material.
The present result is a new aspect of the four-wave-mixing

process and gives us a new method of time-resolved non-

linear spectroscopy with an ultrahigh temporal resolution.
In Sec. II we describe the theoretical model and calcu-

late the correlation traces to show that their profiles re-
flect the relaxation times af the resonant material. In Sec.
III we compare the present results with the case of the
TRFM using short pulses and clarify the similarities and
the differences between them. Simultaneously, we give an
appropriate interpretation to the present results. Finally
in Sec. IV, from a viewpoint of applications, we examine
the conditions for the present method to give the relaxa-
tion times definitely. We also make a slight comment on
the experimental results of the present method which have

been obtained very recently, as well as a few concluding
remarks.

II. BASIC MODEL AND STATISTICAL
AVERAGE OF THE SIGNAL INTENSITY

In this section we examine theoretically the behavior of
the output light in the degenerate four-wave-mixing pro-
cess in a resonant material with the temporally incoherent
light. In the four-wave-mixing experiment, the configura-
tion consisting of three incident beams' ' ' ' are often
adopted to satisfy the phase-matching condition. We
treat in the present paper, however, only the case of two
incident beams as shown in Fig. 1. This is because our
purpose is to clarify the essential. points of the present
idea and the theoretical treatment in this section can be
easily extended to the case of three incident beams.

As the temporally incoherent light, we consider a model
for the electric field with the following form:

E(r, t)=8'(t —(n r)/u)exp( icgt+ik r)+—c.c. , (2.1)
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that
~
f(r)

~

&0 only at
~
~~ &~„which is the definition

of the correlation time r, . It should be noted that this
mathematical model manifests the fluctuations of both
the amplitude and phase of the light field.

As shown in Fig. 1, the total electric field incident on
the material is a superposition of the two fields with dif-

ferent wave vectors ki and k2 which are produced by
splitting a single incoherent light beam at a frequency co,

where the field with the wave vector k2 is temporally de-

layed by ~ relative to the other with k1. We write the to-
tal field in the form

E(r, t)=I S'(t+~—(ni r)/v)exp[ ice—(t+~)+iki r].
+ 8'(t —(nz r)lv)exp[ idiot —+i k2 r] j+c.c. ,

(2.6)

where n, and nz are the unit vectors of k i and kz,
respectively.

As a resonant material we consider a simple model, that
is, an ensemble of usual two-level atoms with no degenera-

cy, in order to clarify the essential points of the theory.
The relaxation processes in this system are usually

described by two kinds of phenomenological parameters,
the longitudinal relaxation time T1 and the transverse re-

laxation time T2, representing the decay of the population
difference and the coherence between the two levels,

respectively. Furthermore, we also consider the inhomo-

P"'(r, t) =P "'(r, t)exp( itot)—+c.c. ,
00P' '(r, t)=X dcoop, ,bpb, '(r, t, coo)g(coo),

(2.7)

(2.8)

where N is the atomic number density, the subscripts a
and b denote lower and upper levels, respectively, p, b is
the electric dipole matrix element of the transition be-
tween the two levels, and g(coo) is the distribution func-
tion of the transition frequency coo, characterizing the in-
homogeneous broadening. The third-order off-diagonal
density matrix element p &,'(r, t, coo), represented in the ro-
tating frame at the frequency co, contains generally four
components of different, wave vectors k i, kz,

k3 ——2k2 —k1, and k4 ——2k1 —k2. In the present theory,
we consider only the k3 component because the analyzing
procedure and the results are easily extended to the cases
in the other components. Taking out only the k3 com-
ponent, we have (see Appendix A)

geneous broadening, i.e., the distribution of the transition
frequency between the two levels. The motion of this sys-
tem is usually described by means of the density matrix
formalism, which is given' ' with regard to the transient
resonant four-wave-mixing process in Appendix A.

The output light field at the frequency to in the four-
wave-mixing process is proportional to the induced polari-
zation of the third order, P' '(r, t), which is given in the
orm

'0 3

p b
'( k3) = —2ip ' exp(i k 3 r +i cow)

fi

f2

1 t2 t3 t1 t2 t3+ 7 exp —/ COp —CO t —tl 2+ 3

+ I'(t i )8"(t2+~)8'(t3 )exP[ i (coo co)(—t„t,+—t2 t3—)]

&«xp[ —yi(ti —t2) —yz(t„—ti +t2 t3)], — (2.9)

where yi ——Ti ', 'y2 ——Tz ', p' ' is the thermal equilibrium value of the population difference, and we assumed

pb =p, t =p. We also introduced the reduced time t„=t—(n r)lv, assuming ni n2 ——n.
The output light intensity, which is the only physical quantity we can detect in usual experiments, is proportional to

» the present case, however, because of the stochastic nature of P '3'(r, t), we should calculate the statisticaliy averaged

value J(k3) of this quantity, written down as

J(k3)=( (P"'(r, t) ~') ~e(t, ) ~'F(r),
4 E2 sl $2

F(r)= g f dti f dt2 f dt3 f dsi f ds2 f ds3Mj (ti t2 t3 si&$2ys3 T)
j=1

(2.10)

&& exp[ —y i(c i +d i ) —y2(c2+d2) ]

Mi ' ——(R(ti)R(tz)R*(t3+~)R (si)R ( )RS2( +F3)),

X Gj (t ti t2 t3 )6& (t„,s i,s2, s3 ) (2.11)

(2.12)
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M'z ' ——(R(t~)R(tz)R'(t3+r)R*(s&)R(sz+r)R'(s3)),

M3 ' ——(R (t& )R*(tz+r)R (t3)R*(s~ )R'(sz)R (s3+r) )

M4 ' ——(R (tl )R (tz+r)R (t3)R*(s| )R (sz+r)R*(s3) ),
C] —t) —t2, d) ——S) —SP, C2 —tr —t)+tg —t3p d2 —tp $]+$2 S3

GJ(t„,t~, tz, t3) = dcocg(F00)exp[ i (to—o to)a—j],0

GJ (t„,s&,sz, s3)= derog. (coo)exp[+i (coo co)—bl. ],0

a] ——a2 ——t„—t~ —t2+t3, a3 ——a4 ——t„—t~+t2 —t3 —Cp,

6]—63 —tp S] $2 +$3' 6P —64 —tp S] +$2 $3 —d2 ~

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

The statistically averaged quantity MJ '(t&, tz, t3, s&,sz, s3,r) represents the sixth-order moment of the stochastic process
R (t). In deriving Eq. (2.10), we assumed also that e(t) varies very slowly in comparison with T~, Tz, and the correlation
time r, of the light. Our interests now exist in the behavior of F(r), which is independent of t„because R (t) is the sta-
tionary stochastic process and, therefore, the sixth-order moment MJ

' does not depend on t„. Although we need an ex-
plicit form of this moment as a function of five independent time variables in order to calculate the value of F(r), it is
impossible to determine such a function with only the properties for R (t) shown in Eqs. (2.3), (2.4), and (2.5). For the
stochastic stationary Gaussian process, however, we can make use of the well-known factorization property of the mo-
ment, written as

(R'(tl)R*(tz) R*(tm)R(tm+1»(tm+z) ' ' R(tm+n))

=5~„+(R'(t( )R (t; ) ) (R'(tz)R (tj ) ) (R'(t~ )R (tk ) ), (2.18)
P

where the subscripts i,j, . . . , k are given by the permutation

m+1 m+2 . . . 2m

l j ~ ~ ~

and the summation g is made over all possible permutations.

By the factorization property, each MJ' '(t&, tz, t3,s&,sz, s3,r) can be written as the sum of six terms each of which is the
product of three second-order moments, for example,

M p' = (R*(s~ )R (t& ) ) (R*(sz)R (tz) ) (R*(t3+r)R (sz+r) ) + (R (s& )R (t t ) ) (R*(sz)R (s3+r) ) (R*(t3+r)R (tz) )

+ (R*(st )R (tz) ) (R*(sz)R (t, ) ) (R"(t3+r}R(s3+r) ) + (R*(s~ )R (tz) ) (R*(sz)R (s3+r) ) (R*(t3+r)R (t~ })

+ (R*(s
~ )R (s3+r) ) (R*(sz)R (t~ ) ) (R*(t3+r)R (tz) ) + (R*(s& )R (sz+r) ) (R*(sz)R (tz) ) (R*(t3+r)R (t& ) )

=f(s| t& )f(s—z —tz)f (t3 —s3)+f (s& t& )f(sz —s3 —r)f (t3+r tz)— —

+f (s
&

—tz)f (sz t& )f (t3 —s3)+f (s~——tz)f (sz —s3 r)f (t3+r t)—)—
+f (s& —s3 r)f (sz t~)f (t3+r—tz)+f —(s& —s3 —r)f (sz —tz)f (t3+r—t, ) . — (2.19)

Therefore, F(r}has totally 24 terms each of which includes the product of three correlation functions.
Now we can calculate F(r) when a reasonable form is given to the correlation function f(r). The calculation is, how-

ever, very troublesome to execute if we choose a function with a finite width. For this reason, we assume here

f (r) =D5(r), (2.20)

where D is a positive constant proportional to the spectral density of the light. Our interests are never diminished by this
extreme assumption because our purpose is to examine the effects of the relaxation times of the material that are much
longer than the correlation time ~, .

We show in Appendix B the explicit form of F(r) when g (coo) is a Gaussian distribution centered at to with the width
of 5'. Because the general form of F(r) is rather complicated as seen in Appendix B, we examine here two extreme
cases concerning the width 5' of g (coo), as in the following.

(a) Homogeneous broadening case (5' =0)

(i) r&0

F(r) =C~ u + exp( —2x) —4(1—u)exp[ —(2+u)x]+ exp( —2ux)2(3 —4u) u (3—B)
1 —Q 1 —Q

(2.21)



30 ULTRAHIGH- TIME-RESOLUTION COHERENT TRANSIENT; . . 2529

(ii) r=0
F(0)=C, (2+2u + —,

' u');

(iii) r &0

F(r) =C
~ [u +2 exp(2x) ] .

(b) Extremely inhomogeneous broadening case (5'—+ ~ )

(i) r&0

(2.22)

(2.23)

32 1—
( )

32 1 —u) exp( —4x)+32u (1—u)exp[ —(2+u)x]+8u exp( —Zux)

(2—Q)
(2.24)

(ii) r=0
F(0)=Cr(u +4);

(iii) v&0

(2.25)

F(r) =Cpu,
where

C2 ——

D3
C) ——

4y )y2

V2~D'
8y i5co

(2.26)

u =yi/y2, and we used the normalized time x =y2r.
We show the profiles of I'(r) in the above two cases (a)

and (b) in Figs. 2 and 3, respectively. The ratio u of the
two relaxation rates obviously takes the value from 0 to 2
in the usual two-level system, because y2

—— /2+
w ere y2 represents the rate of the adiabatic relaxation
the pure dephasing rate). Figures 2 and 3 show thow e pro-
iles for some typical values of u. The discontinuity at

x=0 in these figures are of course caused by the choice of
the 5-function as the correlation function f(r). If we

choose a correlation function with a nonzero correlation
time, each profile should be continuously drawn around
x=O with a finite slope associated with the correlation
time.

As seen in Figs. 2 and 3, we can find that the correla-
tion traces clearly reflect the relaxation times of the
resonant transition, although they are much shorter than
the temporal duration of the incident light. This means
that we can obtain some inforrriation about the relaxation
times with the time resolution limited only by the correla-
tion time r, . The correlation profiles, however, do not
necessarily have single-exponential decay curves. This
property is considered to be peculiar to the present
method and has a possibility to bring the ambiguity in the
determination of relaxation times. We will discuss these
points in the following sections.

1.0 1.0

U=P

U=)

U=2

0.5 —0.5-

0-2

x (=~xT, )

FIG. 2. Correlation profiles of the output intensities with in-

, and 2 in thecoherent incident light for u (= T /T )=0 1 d
omogeneous broadening case; each profile is normalized to uni-

ty at its peak.

x (=~/r, )

FIG. 3 Correlation profiles of the output intensities with in-

coherent incident light for u ( = T2/'T~) =0, 1, and 2 in the ex-

tremely inhomogeneous broadening case; each profile is normal-
ized to unity at its peak.
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III. COMPARISON WITH THE TRANSIEN'F
FOUR-VIVE MIXING WITH SHORT PULSES

It is very interesting and significant to compare the
present results with the signal behaviors of the transient
resonant f'our-wave mixing. g with two incident short
pulses' ' (hereafter we call it the two-pulse TRFM) The
comparison is made because the situation of the latter case
is the same as the present one if both the two incident in-
coherelIt light waves are replaced by tvvo coherent light
pulses much shortei' than Ti and Tg with a Ielatlve time
delay of v. As discussed in Refs. 16 and 17, the two-pulse
TRFM for an inhomogeneously broadened transition be-
comes the conventional two-puIse photon echo phe-
nomenon in the low-field limit, and therefore has the
property peculiar to the echo phenomena that the correla-
tion profile represents the phase relaxation process
governed by T2 not affected by the presence of the de-
phasing due to the iahomogeneons broadening. The
behaviors of the correlation traces in the two-pulse TRFM
case are described in detail in Ref. 16 as follows: (a} in
the homogeneous broadening case (5' =0), it decreases to
zero as proportional to exp( —2@2~) if r & 0 and is always
zero if v&0, and (b) in the extremely inhomogeneous
broadening case (5'~ ~ ), it decreases to zero as propor-
tional to exp( —4yzv) if ~~0 and is always zero if x~0.
These behaviors are shown in Fig. 4 together with the typ-
ical present results for the sake of comparison.

The similarity between the present correlation profiles
and those in the two-pulse TRFM is that both profiles re-
flect the relaxation processes governed dominantly by the

phase relaxation time T2. On the other hand, there are
some differences between the present and the two-pulse
TRFM cases. The main differences are as follows (see
also Figs. 2—4).

(i) The most important difference lies in the fact that
the correlation traces of the present four-wave mixing do
not necessarily dravv the single-exponential decay curves,
while those of the two-pulse TRFM always decay single-
expollcIltiallg by the rate PIOPQrtional to 72.

(ii) The second difference is the presence of the back-
ground level, namely, the present correlation profiles have
nonzero values at r=+ 00 except in the case u=0, while
no backgrounds exist in the two-pulse TRFM case.

(iii) The third difference is that the correlation profiles
at i&0 grow up with increasing ~ in the homogeneous
broademng case, while those in the two-pulse TRFM case
are always zero Rt v Q 0-

The expression for F(~) in Eq. (2.11) does not easily
show the relation between the present results and those of
the TRFM process with short pulses. We will show below
that this relation can well be understood by regarding the
incoherent light as a pulse train consisting of numerous
random ultrashort pulses, each of which has a duration
corresponding to the correlation time and has no correla-
tion with the others. Io order to see this feature, it is con-
venient to use a 5-function-type correlation function as
given in Eq. (2.20) and to transform F(r) of Eq. (2.11}by
using the general relation

5(a b)= f —dx 5(a —x)5(b —x) .

After transformation, we have

EXTREMES(
INHOMOGENEOUS BROADENING

(b)

KCMT2, TI~ tp

COHERENT

5HORT PULSED

FIG. 4. Typical correlation profiles for the present four-wave mixing with ~,~0 [(a),(b)J and the two-pulse TRFM with t~~O
[(c),(d)j, where t~ and ~, are the duration aud the correlation time of the incident light, respectively; the curves iu (a) and (b) are drawn
for u (= T2/Tj )=0.5. The decay curves in (c) and (d) and, the rising curve at &~0 in (a) are single exponential. Though the decay
curves at ~ ~ 0 in (a) and (b) are not always expressed by simple functions, they can be approximated to be single-exponential functions
of the forms shown nearby the corresponding curves, where f varies with u (see Sec. IV in the text).
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F(~)=D A(r)+ , D—3B(~),
2

Ch"[H(r', r",t" ~)+H(t", t', t" ~)]

where

w(~}= f" dt' f
B(~)= f dt' f dt" f dt'"

~

H(t', t",t"')+H(r", r', t"')
~

2,

(3.1)

(3.2)

(3.3)

H (t„ti„t,) =H ) (t„tg, t, )+Hz(t„tp, t, ),
t2

H)(t„tg, t, )= f dt( f dt's f dt35(t) t, )5(t—2 tg)5—(t3 t,—)

Xexp[ —y~(t~ t2) —y—z(t„—t&+t2 t 3)]G~—(t„,t~, t,2t 3),
rr g2

H2(t„tg, t, )= f dt) f dt's f dt35(&) t, )5(—t 2 t, )5—(t3 rQ)

XexP[ —y~(&~ —t~) —yz(&„—t~+&z —t3)]G4(t r$ tp t3) .

(3.4)

(3.5)

(3.6)

As discussed in Appendix A, H(t„t&, t, } is proportional
to the output field of the transient resonant four-wave-
mixing process with three (not two) incident pulses (here-
after we call it the three-pulse TRFM), the field ampli-
tudes of which are proportional to 5(t„t,), 5(t„—tb), —
and 5(t, —t, ), respectively. These pulses arrive at the ma-
terial at t„ tb, and t„respectively, providing the material
lies at r=0.

Equations (3.1)—(3.6) can well be interpreted in terms
of the random-pulse-train model of the incoherent light as
described before. When the light is divided into two
beams and incident on the material, the material senses

the two pulse trains, one of which has the wave vector k2
and is delayed by ~ relative to the other with k]. At this
time, there occur a number of three-pulse TRFM process-
es with various combinations of the incident pulses be-
longing to the two pulse trains. The expression of I" (r)
given in Eqs. (3.1)—(3.6) shows that the present four-
wave-mixing process can be interpreted as an assembly of
many such three-pulse TRFM processes.

The presence of the two terms proportional to A (r) and
B(r) in the right-hand side of Eq. (3.1) means that the
three-pulse TRFM processes occurring in the present situ-
ation can be divided into two groups. The first group,
corresponding to the first term with A (w), consists of the
three-pulse TRFM processes with the incident pulses
whose fields are proportional to 5(t„—(t"—~)), 5(t„t"), —
and 5(t„t'},designated as p&—, p2, and p3, respectively.
The pulses p& and p2, separated by v., have correlation

l

I

with each other and their phase relation is always con-
stant for any t" because they come from the same original
pulse. Therefore, the output field always has a constant
phase for any t" as long as the pulse p3 is fixed. This is
the reason why the summation over t" in A(~) is not
done on the intensities but on the field amplitudes of the
outputs, as seen in Eq. (3.2). Because the pulse p3 has no
correlation with p& nor p2, the output fields given for
various values of t' have no correlation with each other.
For this reason, the output intensities (not the field ampli-
tudes) are summed up over t' in A(z). On the other hand,
the second term with B(~) in Eq. (3.1) represents the
group consisting of the three-pulse TRFM processes in
which the three incident pulses have no correlation among
them. Therefore, the output of each three-pulse TRFM
process has no correlation with each other. This is the
reason why the three integrals in B(r) are all performed
on the intensities, as seen in Eq. (3.3). This term is, of
course, a constant independent of ~ and the presence of
this term causes the background level to exist in the
present correlation traces as mentioned previously in (ii).

Considering the order of the integrals in Eqs. (3.5) and
(3.6), we can see that H&(t„tb, t, ) has a nonzero value
only when t, & t, & t~ & t„while H2(t„t~, t, ) has one only
when t„&t, &t, &tb. These conditions represent the or-
ders of the arrival times of the incident pulses at r=0.
Taking these conditions into account, A (~) is reduced to
the form as

oe f'+T
H~ t,t, t —V + f H~ t, t, t —V + t H2 t +7,t,t, T)O (3.7)

dt' dt"H2 t', t"+~,t", ~(0 .
(3.8)

As discussed in Ref. 17, the three-pulse TRFM in the
presence of the inhomogeneous broadening is the lowest-
order process of the echo phenomenon with three incident
pulses, which is often called the stimulated echo. The
output intensity of the three-pulse TRFM behaves in the

same way as the stimulated echo intensity', that is, it de-
creases in the single-exponential manner by the rate pro-
portional to T2 with increasing separation between the
first and the second pulses, while with increasing separa-
tion between the second and the third pulses it decreases
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by the rate proportional to T~ '. The output intensity
behaves similarly' ' also in the homogeneous broadening
case, although the output signal is not a photon echo but a
free-induction decay. As seen in the following discussion,
the fact that the output behavior of the three-pulse
TRFM is more complex than the two-pulse TRFM causes
the present correlation traces to be rather complicated, as
described in (i).

In H&(t', t",t" r) o—f the first term in Eq. (3.7), r serves
as the separation between the first and the second incident
pulses. Therefore, the behavior of H~(t', t",t" r) —with
varying ~ represents the decay with the rate proportional
to T2 '. In H2(t" +r, t', t") of the third term in Eq. (3.7),
however, v corresponds to the separation between the
second and the third incident pulses. In this case, it
represents the decay with the rate proportional to T& '.
The behavior of the second term in Eq. (3.7) is more com-
plicated, because ~ serves as the separation between the
first and the third pulses in H~(t", t', t"—r) and, more-
over, the range of the integral with t" depends on ~. This
term, after all, turns out a multi-exponential function con-
taining both rates r~

' and Tz '. Consequently, A (r)
does not represent such a simple decay as in the case of
the two-pulse TRFM.

Finally, the behavior of the correlation trace at ~ & 0 is
given by Eq. (3.8). The presence of this term causes the
third property of the present correlation traces as men-
tioned in (iii). The corresponding term vanishes in the
two-pulse TRFM case. Therefore, the behavior at ~~0 is
also peculiar to the three-pulse TRFM process. This
term, however, vanishes in the extremely inhomogeneous
broadening case. This is because the factor G4(t„, t&, t2, t3)
in this term, representing the dephasing process due to the
inhomogeneous broadening, does not have the property of
inverting the phase development peculiar to the echo phe-
nomena, while G&(t„t&,t2, t3) has this property.

IV. CONSIDERATION FOR APPLICATION
AND CONCLUDING REMARKS
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equations and the figures, the profiles represent the
single-exponential decay with the rates 2T2 ' and 4T2 ' in
the homogeneous and extremely inhomogeneous broaden-
ing cases, respectively. These decay rates entirely agree
with those in the two-pulse TRFM case. In this case we
can uniquely determine the relaxation time T2 by the
present method. In condensed matter, such as singlet-
singlet transitions of dye molecules, interband transitions
of semiconductors, broad absorption bands of impurity
ions in insulators and so forth, the phase relaxation time
Tz is generally very short and often falls far below 1 psec.
In these transitions, the population relaxation time T& is
often much longer than T2. Therefore, the present
method is a powerful tool to determine T2 of these transi-
tions.

In the case u&0, the present method cannot definitely
determine the relaxation times, except when u =2 in the
homogeneous broadening case. It can be seen in Figs. 5

X (=~/Tp)

FIG. 5. Semilog representations of the correlation profiles of
Fig. 2 minus background levels (homogeneous broadening case);
these are displayed only for ~&0. All traces are normalized to
unity at v~0. u =T2/T~.

In Sec. II it is shown that we can obtain some inforrna-
tion about the relaxation times by the correlation profile
in the four-wave-mixing process with the temporally in-
coherent light whose electric field amplitude is a stochas-
tic stationary Gaussian process. We remarked in Sec. III,
however, that the profile does not necessarily give us one
of the characteristic relaxation times T j and T2 in such a
definite manner as in the usual photon echo phenomena.
In this section we further examine the usefulness of the
present idea as a practical method to measure the relaxa-
tion times.

In order to clarify the decay feature of the correlation
profile, we show in Figs. 5 and 6 the semilog representa-
tions of F(r) F(oo), the correla—tion profiles with the
background subtracted, as derived from Figs. 2 and 3,
respectively, although the former figures include only the
right halves of the latter ones. The right half, where ~& 0,
of each correlation profile is more significant for practical
use, because it remains even in the extremely inhomogene-
ous broadening case.

When u=0, namely, T»&T2, as we can see from the
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FIG. 6. Semilog representations of the correlation profiles of
Fig. 3 minus background levels (e'xtremely inhomogeneous
broadening case); these are displayed only for ~&0. All traces
are normalized to unity at ~—+0. u = Tq/T~.
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and 6, however, that most profiles are not far from ex-

ponential and that for any possible value of u (from 0 to
2) the effective decay time defined by r(e ') is not far off
the value for u=0 where r(e ') means the value of r at
which the trace decreases to e ' of its peak. This means
that the correlation profile is governed dominantly by T2
for any value of T&. Even if we have no information
about T~ at all, it is possible to determine T2 by r(e ')
within the error of factors 1.5 and 2.7 in the homogeneous
and extremely inhomogeneous broadening cases, respec-
tively. In the extremely ultrafast region of the relaxation
process, even such an accuracy is often quite enough.

The theoretical model in the present paper requires a
considerably restricted condition for the property of the

temporally incoherent light; the complex electric field arn-

plitude of the light is a stochastic stationary Gaussian. It
is expected, however, that the basic features of the results

may not largely be changed by the statistical property of
the incoherent light, as far as the correlation time can be
defined. As a practical light source, natural incoherent
light such as thermal radiation can hardly be used in the
present method because the light source must satisfy two
more conditions as follows: the light should have enough
high intensity to cause the third-order nonlinear process
in the material and should have fairly good directivity,
i.e., the transverse spatial coherence, because the output
can be taken out only by separating it spatially from the
incident light. One of the candidates for useful source is
the amplified spontaneous emission from a dye solution.
This source will also have a statistical property close to
the Gaussian. From a practical point of view, it may be
important to try to use a broad-band dye laser light with
poor temporal coherence but with good directivity, tuna-
bility and intensity, even though probably it cannot be re-

garded as a Gaussian noise.
Here we note that the present authors have made a pre-

liminary experiment in Na vapor by using a broad-band
imperfectly mode-locked cw dye laser and successfully
demonstrated the fact that the transient phenomena can
be observed with a temporal resolution determined by the
correlation time of the light which is much shorter than
the pulse duration. The detailed results will be described
elsewhere. Very recently, Asaka et aI. also dernonstrat-
ed this fact in Nd +:glass by using a broad-band cw dye
laser and an imperfectly mode-locked cw dye laser. They
obtained some correlation traces with much longer tails
than the correlation time of the light. The decay curves
of these profiles were in good agreement with that ob-
tained by the usual photon echo technique, and the decay
time of both curves is determined by the phase relaxation
time T2. In their experimental condition, T2 is much
shorter than the population relaxation time T&. There-
fore, their result is consistent with our present theoretical
result, as discussed in the beginning of this section. Asa-
ka et al. provided also the theoretical analysis. Their
analysis, however, is valid only when T2 « Ti, while the
present analysis can be applied to any case concerning the

I
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APPENDIX A

A two-level system interacting with light field is
described by the density matrix formalism. We consider
here two nearly resonant light beams with the same fre-
quency co. The basic equations describing the motion of
this system are given as

8 / 1 (Oj

~ pD 2 (Habpba pabHba) (pD pD ) i
1

(Al)

8 8 y I
Pba Pab IbaPD

Bt Bf ' A'

1 + l COO Pbg
2

(A2)

where pD ——p« —pbb, the subscripts a and b denote the
lower and upper levels, respectively, cop ( co) is the transi-
tion frequency, pD' is the thermal equilibrium value of p~,
and T& and T2 are the longitudinal and transverse relaxa-
tion times, respectively. The matrix elements of the in-
teraction Hamiltonian are given by

Hb, =H,*b ———pb, E(r, t)exp( icot)+c.c. , —

E( r, t) =E, ( r, t)exp(i k
&

r )+E2( r, r)exp(i k2 r ),
(A3)

(A4)

where pb is the electric dipole matrix element of the tran-

sition, and E~,E2 and k~, k2 are the electric field ampli-
tudes and wave vectors of the two incident beams, respec-
tively.

In the perturbation and rotating-wave approximations,
the nth-order density matrix elements proportional to the
nth power of the electric field can be calculated as

relaxation rates. A theoretical problem which needs fur-
ther refinement is to clarify the effect of the statistical
property of the incoherent light on the correlation profiles
under any condition of relaxation.

The significant point of the present idea is to utilize the
correlation technique. In this situation, the information
of the coherence in the atomic levels caused by a certain
instantaneous field of the incoherent light can be retrieved
later by the same field, although the statistical average of
the coherence itself falls to zero. In the field of pi-
cosecond and femtosecond spectroscopy, a great number
of attempts have hitherto been made to produce coherent
pulses as short as possible in order to observe the extreme-

ly fast phenomena associated with the light-matter in-

teraction. In view of this situation, it is paradoxical and
interesting that there exists a great possibility to observe
such ultrafast phenomena in the time domain without any
difficulty to generate ultrashort pulses.

ip
pb", '(r, t)= dt, E(r, t)PD 'exp — +idee (t t,)—T2

(A5)
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pt3'(r, t)= dti[ E—(r, t)p,'"s "+E*(r,t}pb", "]exp —— (t t—i)
oo

I

WhCI'C KCO =COO 6—)r P bz Pb+—CXP(l07t)r aild WC aSSumed Pb =@zip =)tt.
The third-order off-diagonal density matrix element p b,

' at e contains generally four components of different wave
vectors k, , ki, k3=2k2 —k&, and k4 ——2k& —kz. Taking out only the k3 component, we have

p I)()(( k3) 2lp cxp(i k3 I )
fi

X f dr~ J r(rr f drr(Er(r, rr)Er(r, rr))r r(r, rr")exp( (Err(r ——r, rryrr—))

+Ei( r, t i )E i( r, t3)E2( r, t3)exp[ i Leo—(t t i+ t—z —t3)] I

& exP [—7 i(t i
—tz }—'Yz(t —t i + ti —t3) ]

, RM, we B,ssgmed pa ——p, agd pb
—O.

(0) (0)

When the total electric field of the incident light beams is given as Eq. (2.6), we have

E&(r,t}=$'{t+v—(ni r)/u)exp( —iaido),

Ei(r, t)=I'(t —(nz r)/u) .

(Ag)

Substituting Eqs. (Ag) and {A9) in Eq. (A7), assuming ni-n2 ——n, and using the reduced time t„=t—(n r)/u, we get
the form of Eq. (2.9) in the text.

Next, we consider the case of the three-pulse TRFM with the incident pulses whose electric fields are given as

E~(r, t)=Rp '8, 5{t t, —(n3.r—)/u)exp[ i'(t t, )+—ik2 2—]+c.c. ,

Eb(r, t)=Pip '8b5{t tb —(nz. r)—/u)exp[ iso(t —tb)+ik2 i—]+c.c. ,

E,(r, t)=Kgb '8, 5(t t, —(n, r)/u)ex—p[ iso(t —t, )+i k&F]—+c.e. ,

(Al 1)

where 8/ (j =a, 5, and c) is the pulse area and we assuine t, ~ tt, In this ca.se, p i„'(k3) consists of two parts; one of them
represents the pure three-pulse TRFM process, which means that this part is generated only by mixing all the three in-
cident fields. The other part is quite equivalent to the two-pulse TRFM process, which requires only two incident fidds
E, and E, (or E& ). (The output fields of these two processes cannot be separated in the present situation with only two
different directions of incident beams. They, however, can be spatially separated if the three incident pulses have dif-
ferent wave vectors from each other. ) The former part is the lowest-order process of the stimulated photon-echo phe-
nomena. The term "three-pulse TRFM" which we used in the text refers to the former part Taking o.ut only this part,
ave have

pa '(k3)= 2ip' '8, 8b—8,exp[i k3 r+ico(t, +tb —t, )]
gp

X f dt, f dt2 f dt3I5{ti —t, )5(t, —t&)5(t3 —t, )exp[ —i(co,—u3)(t, —t, —t, +t, )]

+5(ti —t, )5(t2 t, )5(t3 t$—)cxP[ —i (6—)(3—co)(t, —t$+ tz t3)]I—
Xexp[ —y, (t, —t, ) —y,(t, —t&+t, t, )], —

where we assumed n
&
—n2 ——n. Substituting Eq. (A13) in Eq. (2.8), we have

P ' '(k3)= 2ip'~'i(ip8, 8s8—,exp[ik3 r+iru(t, +tb t, )][Hi(t„tb,t, )+HI(t„—tb„, t, }],
where Hi(t, ti„t, ) and Hz{t„t&,t, ) are given in Eqs. (3.5) and (3.6), respectively.

The two-pulse TRFM case is realized by letting Eb ——0 (or E,=0). The expressions for pt '(k3) and P' '(k3) in this
case are consequently given by replacing the subscript b with a (or a with b) in Eqs. (A13) and (A14), respectively.

A.PPENDIX 8
When the distribution function of the transition frequency is given as
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1
g (coo) = exp

v 775co

(cdp —ro )
2

5' (B1)

the explicit form of F(r) under the assumption 5' « ro is calculated to be

(i) r&0

F(r) =D (2V 2yf5ro) '(F)+F2+F3+F4),

F, =u [(1—a )4(a)exp(a )+a],
F2 ——[4/(2 —u) ]I4(1—u) 4(a —x/a)exp(a —4x)+4u (1—u)4(b —x/a)exp[b —(2+u)x]

+u 4(c —x/a)exp(c —2ux) j,'

F3 ——[8u(1—u)/(2 —u) ]I24(a)exp(a ) —24(b)exp(b )+(2—u)a [1—2a@(a)exp(a )]jexp[ —(2+u)x],

F4 [2u /——(2—u) )I24(a)exp(a ) —24(c)exp(c )+2(2—u)a[1 —2a@(a)exp(a )]

+(2—u) a [(2a +1)C&(a)exp(a ) —a]jexp( —2ux);

(ii) r=0
F(0)=D (2W2yt5ro) 'I(u+4)4(a)exp(a )+3ua [1—2a@(a)exp(a )]+(u a /2)[(2a +1)4(a)exp(a ) —a]j,

(B2)

(B3)

(B4)

(B5)

(B6)

(111) 7 & 0

F(r)=D (2W2yf5co) 'Iu [(1—2a )4(a)exp(a )+a]+44(a —x/a)exp(a )j, (B8)

where x =r!Tz, u =T2/T~, a =v 2(T25ro) ', b =au/2,
c =a (u —1), and @(x) is the error function defined as

4(x)= I dy exp( —y ) .

From this general form, the expressions in two extreme
cases (5r0~0 or ao ) are derived as in Eqs. (2.21)—(2.26) in
the text.
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