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Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave
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The cross sections associated with absorption, scattering, extinction, and radiation pressure for
homogeneous isotropic spheres illuminated by plane waves are well known. We derive a new funda-
mental cross section, namely, the one which gives the time-averaged torque caused by circularly-
polarized illumination. Consider a z-directed wave with pure circular polarization corresponding to
a positive value for the z projection of the photon spin. Formulation of the Maxwell stress dyad of
the total (incident+ scattered) field gives the following torque relative to the sphere's center,
I', =ILma Q,&, /tv. Here IL and cv are the incident wave's irradiance and angular frequency and a
and Q,i„are the sphere s radius and Mie-theoretic absorption efficiency. Consequently the effective
cross section for torque is the same as that for energy absorption era'Q, ~, as might be expected since
the scattered radiation is shown to have the same ratio of z component of angular momentum to en-

ergy as the incident wave. This result is rigorous for stationary isotropic spheres in vacuo. It may
be used to estimate the steady-state angular velocity co„ofa sphere in a gas which is achieved when

I, is balanced by the viscous-drag torque. A Rayleigh-scattering approximation for Q, „iwhich
should be useful for small spheres, gives co„=ILMgM'M" /gc(M' +2) where the sphere's refrac-
tive index is M'+iM" relative to that of the gas Mg, q is the viscosity of the gas, and c is the speed
of light. The radiation torque caused by elliptically-polarized illumination and the torque on strati-
fied spheres are also discussed.

I. INTRODUCTION

The purpose of this paper is to describe a novel
ab initio calculation of the radiation torque on an isotro-
pic sphere illuminated by a circularly-polarized elec-
tromagnetic wave. The transport of angular momentum
by a circularly-polarized wave was suggested by Poynting'
and by Sadowsky (whose work is noted in Ref. 2). Mea-
surements of the torque on a birefringent plate provided
early macroscopic evidence that the angular momentum
per photon in a pure circularly-polarized state is t Sub-
sequently, radiation torques were measured or approxi-
mately modeled for other anisotropic objects (e.g., screens
with unidirectional conductivity and thin wires). Recent-
ly, the rotation of small particles illuminated by
circularly-polarized light was observed. Rotation was ap-
parently due to radiation torques; however, details of the
experiment were not given.

There appears to have been no previous analysis of the
radiation torque on spheres comparable to Debye's
analysis of the radiation pressure. Like Debye's analysis,
our calculation of the torque is based on the exact classi-
cal description of scattering of a plane wave by a
stationary-homogeneous-isotropic sphere ' (presently
known as "Mie theory" ). From symmetry considerations
the torque on such a sphere will vanish unless the incident
wave is at least partially circularly polarized. The em-
phasis of this paper is on purely circularly-polarized il-
lumination; however, we extend our results to elliptically-
polarized illumination in Sec. VIII. In Sec. IX we note

applications to stratified spheres.
There are classes of radiation torques which do not re-

quire the presence of a circularly-polarized component of
the illumination. These are not germane to the problem
under consideration. For example, there will be a torque
(relative to the sphere's center) if the sphere is illuminated
by a plane-polarized Gaussian beam and is displaced from
the beam's axis of symmetry. Another example is the
torque on an irregularly shaped particle due to the "wind-
mill effect" which is thought to cause cosmic dust to
spin 1 1 12

The sphere under consideration has a refractive index
M =M'+iM" and is surrounded by a vacuum. Its rela-
tive permeability is taken to be unity. The incident il-
lumination has a wave vector k;„,=kz (Fig. 1). The in-
cident photons are in a pure circularly-polarized state of
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FIG. 1. The sphere (not shown) is illuminated by a
circularly-polarized plane wave propagating in the direction of
the z axis. The origin 0 of the coordinate system coincides with
the center of the sphere. It is also the center about which the ra-
diation torque is specified.
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positive helicity so their z projection of spin angular
momentum is positive. This incident wave's electric and
magnetic fields may be written. as

E;„,=Ep Re(Eie ' '),

8;„,=Ep Re(Bie ' '),
Ei (x——+iy )exp(ikz),

(2)

(3)

B„=EpRe(Bze ' '),
Mie-theoretic expressions for Ez and Bz are given in Sec.
III for a sphere of radius a and arbitrary values of ka.

Our result for the torque, Eqs. (7) and (36), is propor-
tional to the absorption cross section. We are unaware of
any previous statement of this result, however, it appears
to be consistent with the classical limit of the quantum
theory of radiation according to the following argument.
From the form of Eqs. (12)—(15), the expansions of both
the incident and the scattered fields contain vector spheri-

cal harmonics X„~ having only the azimuthal index
m = 1. Consequently, the quantization of the incident and
scattered fields [following, e.g. , the procedure given in
Ref. 3(b)] will involve photons having only fi units of z
angular momentum. Therefore, it is reasonable that the
classical limit for the z component of the torque, be pro-
portional to the absorption. Our direct classical calcula-
tion of the flux of angular momentum into the sphere is
merited because of subtleties of both classical and quan-
tum theories of electromagnetic angular momentum (dis-
cussed, e.g., in Refs. 3, 13, and 14). Furthermore, our for-
mulation provides a limiting case against which the solu-
tion of more complicated problems (e.g. , the torque on a
birefringent sphere) can be checked.

(4)

and will be referred to as left circularly polarized. '3'4

This terminology and normalization, for which Ei and Bi
are dimensionless, is chosen for ease of comparison with
results in Jackson. ' The time-averaged Poynting vector
for this wave is Il z where

Il Epc/——4'
and c is the speed of light i n Vacua.

The scattered fields are defined such that the total fields
(outside the sphere) are E, =E;„,+E„and 8, =8;„,+8„.
It is convenient to introduce the dirnensionless scattered
fields Ez and Bz such that

E„=EpRe(Eze ' '),

( Jp+ Jf)= —f r MdS,

where the angular-momentum flux-density (pseudo) tensor
M= T&& r and T is the Maxwell stress tensor of the total
field. Let ( } denote time average over the period
2ir/co of the incident wave. The radiation torque on the
sphere is

I = Jz ———f r (T}&&rdS,
dt

(6)

where we use the result that fields oscillating with a
steady state am-plitude must have (d Jf/dt }=0. The
right-hand side of (6) is the average flux of angular
momentum into X due to the incident and scattered fields.
For the isotropic sphere in the unbounded plane incident
wave under consideration, symmetry considerations re-
quire' I „=I~=0.

The stress dyad T may be written' ' T=T"'+T' '

with

T")= (E,E, +8,8, )
4a

where 1 is the unit dyad. The vector r T' '&(r vanishes

identically since r -1 & r =0. The time averages in the
remaining contribution to (6) contain dyads of the form

2

(E,E, }= Re(EiEi+EzEz+EiEz+EzEi) .t t

Consequently the torque may be written

I,=II era Qr/co,

Qr =Qii+Qiz+Qzi+Qzz

Q,J
———k(2vra ) 'G,J,

(8)

(9)

GJ ——r Re r E; E~grz

transport must be independent of r provided r &a. Let
J~ denote the total mechanical angular momentum of the
particle and let Jf denote the total angular momentum of
the electromagnetic fields within X (both internal and
external to the particle). These angular momenta and the
radiation torque on the particle 1" are relative to an origin
at the center of the particle. The conservation law for the
angular momentum of this system has the following well-
known surface integral form (Ref. 13, p. 264; Ref. 14, p.
169; Ref. 15):

+r B~(B~ && r z)]dQ, (10)

II. RADIATION TORQUE AND THE FIEI D'S
ANGULAR MOMENTUM FLUX

The radiation torque may be computed from the aver-
age rate of transport of field angular momentum across a
surface X which encloses the spherical particle of radius
a. It is convenient to choose X to be the surface of a con-
centric sphere of radius r ~~a though the average rate of

and the integration is over a solid angle of 4m sr. Equa-
tion (8) partitions the torque efficiency factor Qr into
terms involving incident fields (Q»), scattered fields
(Qzz), and mixed terms (Qiz+Qzi). A similar partition-
ing is useful when computing the energy flow in the vicin-
ity of a scatterer. '

Equations (3) and (4) facilitate the. direct evaluation of
the integrals in Gii with the result Qii ——0. Indeed, the
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average angular momentum transported across X by the
incident wave in the absence of a scatterer must vanish.
The angular momentum, which is transported-inward
across the hemisphere closest to the source, is transported
outward across the opposing hemisphere. In Secs. IV and
V the other Q;J are evaluated in the liinit kr ~Oo. We
inay neglect contributions to individual Q,J which vanish
as kr~oo since the sum of these neglected terms must
vanish in (8) for any surface having r & a.

00

3 = g i"p„pJ „(kyar)X„~+ z a„V Xj„(k&r)X„i

00

B3 g i pn
'

P» V XJ.«3r)Xnl+, ~nJn(k3r)Xni , ~

E;„,=Eo Re(Eie ' ') and B;„,=Eo Re(Bie ' '), where
the dimensionless internal fields, Ez and Bi, may be ex-
panded as

III. MIE THEORY OF THE SCATTERED FIEI-DS

To evaluate Gz, and Gzz, the radial components of the
scattered fields must be expressed. This motivates the
vector spherical harinonic expansion of the fields given
here. We find it convenient to use Jackson's notation' in-
stead of the traditional notations of optical scattering
theory. ' Let X„~ denote the vector spherical harmon-
ic

]Ei= g i"pn JnXn, i+ VX—
Jn Xn, ik

(12)

CO

Bi g i pn
n=1

g ~ Xjn Xn 1 Vn Xn, ]. (13)

where p„=[4m(2n+1)]'~ and j„denotes the spherical
Bessel function j„(kr).

For the circularly-polarized incident fields (12) and
(13), the scattered and internal fields are describable with
vector spherical harmonics having only m= 1. (It is
necessary that the scatterer consist of a medium with iso-
tropic constitutive relations connecting the electric dis-
placement and current to the electric field. This is the
case under consideration. 'We also exclude from con-
sideration spheres consisting of optically active media. '

)
We have demonstrated this assertion by including terms
having m&1 in the expansions given below with the re-
sult that the coefficients of these terms vanish, It is con-
venient to expand the dimensionless scattered fields as

Ez ———g i "p„b„h„X„i+ —a„V' Xh„X„i, (14)

X„(0,$)= [n (n + 1)] '~ LY„(9,$),
where the operator L=i '(r X V ) and the F„~ are
spherical harmonics obeying the Condon-Shortley phase
convention and the usual normalization. ' The angles 8
and P are shown in Fig. 1. Orthogonality properties of
the X„ facilitate the following expansions of the dimen-
sionless incident fields, ' (3) and (4):

Mg(MP)P'(P) —g(P)1b'(MP)
Mg(Mp) g'(p) g(p)g'(M—p)

(16a)

P(Mp)g'(p) Mg(p) f'—(Mp)
g(Mp)g'(p) —Mg(p)$'(Mp)

Here p =ka, g and g are Riccati-Bessel functions,
g(p) =pj„(p), g(p) =ph„"'(p), and primes denote differen-
tiation with respect to the arguments indicated. These a„
and b„are identical to the usual "scattering coefficients"
of Mie theory and algorithms for their computation are
well established. ' This correspondence motivated the
normalization used in (14) and (15). The series in (14) and
(15) converge rapidly for n somewhat in excess of ka
when ka »1. Equations (14)—(16) are equivalent to re-
sults of Chew et al. ' and to the far-zone predictions of
standard Mie theory when adapted to circularly-polarized
illumination. "

The scattered fields are attributable to oscillating elec-
tric (E) and magnetic (M) multipoles. The following sub-
division of fields is convenient: Ez ——E' '+E'
B2=8(E)+B(M) where

(E) ~ n —I (~) L .n
n Pn~n ~ n Pn+n

This subdivision gives r E' '=r-8' '=0; r E' ' and
r 8' ' may be found from'

These fields may be shown to satisfy Maxwell's equations
appropriate to a material with a complex refractive index
M, wave number kz ——Mk, and a relative permeability of
unity.

The unknown coefficients a„, b„, a„, and P„are deter-
mined by requiring that the following boundary condi-
tions be met at the particle's surface at r =a:
r X(Ei+Ez E3)=0 and r X(Bi+Bz—Bz)=0. Only the
a„and b„are needed for the evaluation of (10) on a sur-
face having r »a. The required coefficients are

Bz—g i "p„b„VXh„X„,+ia„—h„X„,
n=l

(15)
r [V Xh„"'(kr)X„]=i[n(n +1)]'~ h„"'(kr)Y„r

(18)

where h„ is the spherical Hankel function h„"'(kr) (which
is appropriate for an outward propagating wave), and the
unknown coefficients are determined below.

The fields internal' to the particle may be written

which follows from (11) and the identity V X[r X g(r)]
=r(V' g) r(2r '+Blur)g. Since t—he G,z are to be
evaluated in the liIDit the radius r of X is such that
kr~ ao, the foBowing approximations will be useful
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+

82& r E2, (19b)

where the terins omitted from the right-hand sides are
0 (1/kr) smaller than those retained.

IV. EVALUATION OF THE MIXED TERMS
Qiz AND Qzi

The integrand of Giz, call it I,z, may be simplified by
using Eq. (19) and Eq. (4). This procedure gives

Iiz-(r Bi)(z Ez) —(r.Ei)(z.Bz)= —r.E,z (Bz+iEz).
The error vanishes as kr~ oo as it does in the following

approximations: E2-8' 'gr+E' ' and 82-—E' '&(r

+8 ' '. Use of the latter approximations and the limiting
form of Ii"'(kr) give

(8*+iE*)
=(Bi'i*+iEi '*) (7+i7Xr")

—ikr
= gi"+' (a' '"+' ' ')(X* +'X' X")

kr

(20)

Equation (18) can also be used with h' '{kr) replaced by

j„(kr) so that r Ei becomes

r.Ei —g P„k 'j„(kr)r„, ,

U+-(kr~ oo ) =—
3 g (2n +1)(a„*+b„*)

k

X [1+( 1)ne i—zkr]

Qiz=Q-t . (26)

The integrand of Gzi, call it Izi, may be simplified by
using Eqs. (3) and (4) and the identities (Ei X r ).z
=(zXEi).r and (BiXr) z=(zXBi) r. The result may
be written

Iz, ——(r E'E')(r Bi)—(r 8' ')(r.Ei) .

Application of Eqs. (18) and (21) shows that Izi is of or-
der k r Con.sequently, Gzi is of order k r ' and

Qzi may be neglected from the sum in Eq. (8) for the
reasons noted at the end of Sec. II. This conclusion has
been confirined by a detailed evaluation of Gzi which
need not be reproduced here.

The oscillating terms cancel in U++ U and consequent-
ly also in 6 iz(kr ~ oo ) with the result

Cc

Qiz —— g (2n+1)Re(a„+b„) .
(ka)

The right-hand side is identical to the extinction efficien
cy ' Q,„, of a sphere where ~a Q„, is the extinction
cross section. We conclude that

where P„=p„[n{n+1)]'~zi"+'. Insertion of (20) and
(21) into Iiz gives G,z~ Re(U++ U ) as kr +oo where-
we have define;d

U +(kr)= g-g P„p„krj„(kr)e ' "(a„*+b„')E„

The integrand of Gzz, call it Izz, may be simplified by
using Eq. (19). This procedure gives

Izz- —(r Ez)(z Bz)+(r.Bz)(z.Ez) .

I'„+„= z X„)T„]

E„„=i z X)gr T) Q.
Evaluation of these integrals gives

(22) The real part of the second term may be rewritten such
that

ReIzz-Re[ —(r.Ez)(z Bz)+(r Bz)(z Ez)]=z. jz

P.+n =[n{n+I)] ' ' I «*I'ni)*In id&

=5„„[n(n +1)] (23)

(24)

8'+ = n (n+2)
(2n + 1)(n + 1)(2n +3)

(n+1) (n —1)
(2n + l)n (2n —1)

The proof of {24) is summarized in Appendix A.
Since we need only evaluate U +(kr moo), it is p-erm—is-

sible to replace krj„(kr) by sin(kr —n'm/2) in Eq. (22).
The required summations may be condensed by using (23)
and (24) and algebraic manipulations give

j;=Re[rX(E;XB;)], i =1,2.
The time-averaged classical angular momentum density of
the scattered field' ' ' (considered alone such that in-
terference with the incident field is neglected) is manifest-

ly proportional to j 2. It is convenient to use the subdi-

visions Ez ——E' '+E' 'and Bz——8' '+Bi ' {which were
introduced in Sec. III) and to obtain the following expres-
sion: jz ——Re(r 8' 'Ez —r E' 'Bz). The terms E' '

and 8 ( )* may be replaced by using the relations
4

E( ) ' p+g(E) g(w) —~ ~+E(~)
k

which follow from the definitions of the multipole fields.
This procedure and a vector identity give

q, =k-'Re[ —E,i.(E' ")+8;(i8'E')],
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where L is defined as below Eq. (11). The E' ' and B™
parts of Ez and Bz may similarly be eliminated to obtain
the following expression:

i Re[B~E~~(l. B ~&~)+E™(LE ~Mi)~

+ik '[(V'XE' ' )(L.B'")
+(&XB'")(LE' ')']I . (28)

Evaluation of this integral proceeds from (28) and the
multipole expansions of the fields in terms of the coeffi-
cients given by (17). The expansions are evaluated in the
limit kr ~ ao with the approximations h ' '(kr)
=( i )"+—'(kr) ' exp(ikr) and

P && [h'"(kr}X„~]=( i )—"r''e-'""r"

&&X„+O(kr ) .
For the case under consideration, Eq. (10) becomes

G zz( kr~oo)=r z f j zdQ . (29)
The proof of the latter is similar to the one described for
Eq. (18). In the limit kr ~ ao, we find

f j zdQ= Re g g (i)" ( —i) [(a E a +a ~a™)K++(a ~
~a —a M "a )K ] (30)

+Kn, n=

K-n, n
=

f (L X„ i) X„idQ,

L X„1*r)&X„10 .

(31)

(32)

It is convenient to partition Qzz as Qzz=Qzz+Qzz
where from Eqs. (9), (17), (29), and (30) we find

Qzz
——

z
Re g g p„p„(a„*a„+b„*b„)zK„+„,

2ir(ka)z
(33)—1

Qzz= z R«g + p'npnN ', nz Kn ,n'
2ir(ka)

where N„„=a„'b„+b„*a„Equatio.n (11) and the rela-
tions L Y„~=n(n+1)Y„~ and L, F„~=mY„~ give
z.K „+„=6„„and,consequently,

Qzz
—— g (2n+1)(

~
a„~ z+

~
b„~ z) .

(ka)' „
Using Eq. (A3) we find that

z K„„=[n'(n'+1)]'~ f Y„' iz (r XX„,)dQ

(34)

=i [n'(n'+1)]'~ ( W„6„„,—W„+5„„,),

Qzz = —Q.. (35)

VI. DISCUSSION OF THE Q;J, Qr,
AND THE RADIATION TORQUE

The efficiency Qzz accounts for the angular momentum
radiated by electric and magnetic multipoles oscillating

where 8'„—is defined in Eq. (25). The required summa-
tions for Q zz reduce to

2
Q,,=

z g n(n+2)Re(N„„+i N„+i „) . —
(ka)

Since ReN„„+i ——ReN„+ i „,we find that Qzz
——0.

Inspection of Eq. (34) gives Qzz ———Q„where Q„ is
the usual scattering efficiency according to Mie theory
and ira Q„ is the scattering cross section. We conclude
that

with the strengths given by Eq. (17). These are the mul-
tipole strengths appropriate for an incident wave of posi-
tive helicity. Equation (35) has the following quantum in-
terpretation: the wave radiated by these multipoles, when
considered separate from the incident wave, radiates i'
units of z angular momentum per fico units of energy radi-
ated. Our proof of Eq. (35) made use of the result Qzz

——0
which has the following interpretation: the interference
between the electric and magnetic multipoles does not
contribute to the radiation of z angular momentum, (For
a general collection of multipoles, interference affects the
radiated angular momentum. ') The results Qii ——Qzi ——0
together with Eq. (26) may be interpreted as follows: the
extinction of fico units of energy from the incident wave
makes available iz units of z angular momentum for rera-
diation by the scattered wave and for producing torque on
the sphere.

The torque is proportional to the rate of absorption of
the incident wave's energy. The results Qii ——Qzi ——0 to-
gether with Eqs. (8), (26), and (35) give the following
torque efficiency factor:

Qr =Q-~ —Q- =Q.b. (36)

where Q,b, ——Q,„,—Q„ is the usual definition of the ab-
sorption efficiencys ' and ira Q,b, is the cross section
for absorption. Evidently Qr vanishes for an idealized
lossless dielectric sphere. Real materials have M" &0 if
we neglect the possibility of stimulated emission so that
Q.bs & o.

The Mie series for Q,„, and Q„(and hence for Qiz,
Qzz, Q,b„and Qi ) may be evaluated with comPuter algo-
rithms. ' ' Computationally efficient approximations for
Q,b, have also been derived. ' ' ' We consider Q,» for a
few cases.

(a) Large nearly black spheres. Con-sider a sphere hav-
ing ka »1, M'=1, M" &~1, and kaM" &&1. Such a
sphere should be weakly reflecting and yet highly absorb-
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Q,b, -4ka Im[(M —I)/(M +2)) . (37)

For this approximation to be accurate, it is necessary that
the right-hand side be «3(ka) . The scattered field is
attributable to an electric dipole spinning with an angular
velocity co about the z axis. For such a dipole, the evalua-
tion of Eq. (29) is relatively simple' and the multipole in-

terference term Qzz need not be considered. The result is

that A units of z angular momentum are radiated per %co

units of energy radiated; This confirms Eq. (35) for the
special case of Rayleigh scattering.

Our prediction for the radiation torque, Eqs. (7) and
(36), is the exact classical result which should be applic-
able to radiation fields containing many photons. (For a
discussion of the relevant limit of quantum mechanics, see
e.g. , Sec. 16.3 of Ref. 13.) A single incident plane wave of
infinite extent is an idealized case. The predicted torque
should be applicable to spheres which are centered in a
circularly polarized Gaussian beam whose width greatly
exceeds the sphere's diameter. Tam and Corriveau have
calculated the extinction and scattering by a sphere in a
Gaussian beam and have explicitly demonstrated that the

Q,„, and Q„reduce to the Mie theoretic results in the
limit of a beam of infinite extent.

ing. It is to be expected that Q,„,=2 and (due to forward
diffraction) Q„=1; consequently we expect Q,b, -l. This
was confirmed for the case M = 1+i0.01 by using
Wiscombe's Mie scattering algorithm to compute Q,b,
for ka of 500, 1000, and 2000; we found Q,b, of 0.9966,
0.9993, and 0.9987, respectively.

(b) Spheres with weak or moderate absorption So.hren
and co-workers have compared geometrical-optics approx-
imations for Q,b, with Mie computations for weakly and
moderately absorbing spheres. ' ' The geometrical-optics
approximations predict Q,b, which increase with radius;
the exact Q,b, are similar to the approximate ones except
for a superposed ripple structure. The geometrical-optics
contribution to Q,b, can be substantial for a range of radii
and wavelengths A, =2m. /k for cases of practical interest
calculated in Ref. 24. For example, water droplets at
A, =2.0 pm have M=1.304+ i0.001082 and Q,b, in-

creases smoothly from =0.43 to =0.66 as a increases
from 50 to 100 pm.

(c) Small spheres with strong surface modes. Q,b, can
be greatly enhanced for small metallic particles at ultra-
violet frequencies because of surface plasmons. Enhanced
absorption is also possible for small insulating particles at
infrared frequencies because of surface phonons (Chap. 12
of Ref. 10 and Ref. 17). An example of the former
enhancement is the prediction' ' that an aluminum
sphere having ka 0.3 has Q,b, -18 when irido=8. 8 eV. It
should be remembered that our derivation of Qr ——Q,b,
required the scatterer to have isotropic constitutive rela-
tions and that this is not necessarily the case for these par-
ticles.

(d) Rayleigh scattering. If the Mie series for Q,„, and

Q„are dominated by terms proportional to Reai and

~
a, ~, respectively, then the scattering is usually referred

to as ' Rayleigh scattering. If ka is sufficiently small
and

~

M
~

ka &&1 the resulting dominance of ai leads to
the following approximation

There has been considerable interest in the classical
theory of the angular momentum transport of circularly-
polarized plane waves and bounded beams. ""'

The time-averaged classical z component of the angular
momentum density of the incident wave, which is propor-
tional to z j i of Eq. (27), vanishes for a plane wave.
Simmons and Guttmann give a pedagogical discussion
of the classical perspective of the radiation torque on an
absorbing disk illuminated by a wave which is well ap-
proximated by Eqs. (1)—(4). When the disk is large in

comparison with the wavelength, the scattering is nearly z
directed. The z projection of the angular momentum den-
sity of the total (incident+ scattered) field is predom-
inantly negative. Consequently the torque I, is positive

even though z j &
vanishes at the position of the disk. A

similar argument applies to the large nearly-black sphere
which was previously described as case (a). The classical
field angular momentum may be separated into an orbital
and a spin part. ' ' This separation was not required in
our analysis. Instead, our calculation computed the
torque directly from the Maxwell stress tensor by way of
Eq. (6).

A comparison of the form of Eqs. (7) and (36) with the

form of the net force f on the sphere due to radiation
pressure is in order. Debye's theory ' ' gives f„=f» =0
and f, =ILma Q~, lc where the efficiency for radiation
pressure Q~, =Q,„,—Q„g. Here g is commonly known as
the asymmetry parameter. It is the average of cos0 over
4m sr with the scattered irradiance as a weighting func-
tion; Q„g may be expressed in terms of a series contain-
ing the scattering coefficients a„and b„. Unlike I „f,
does not vanish for a lossless isotropic dielectric sphere
and it contains no intrinsic ~ ' factor.

In Beth's experiment, the illuminated object was a
half-wave plate (in the form of a crystalline-quartz disk)
for which the helicity of the forward transmitted wave
was reversed from that of the incident wave. The ex-
istence of a radiation torque along the propagation axis
did not rely on the absorption of energy. It is to be antici-
pated that circularly-polarized illumination of a sphere
consisting of an anisotropic dielectric media will generally
produce nonvanishing I, I ~, and I, even if absorption
is negligible. Furthermore, linearly polarized illumination
of such spheres will produce nonvanishing I" except for
specific orientations.

In the remainder of this paper we consider some appli-
cations and extensions of our calculation of the radiation
torque. Consideration is limited to spheres having isotro-
pic constitutive relations.

VII. ROTATION DRIVEN BY THE
RADIATION TORQUE

In response to the radiation torque I „the sphere will
undergo an angular acceleration. If the sphere is sur-
rounded by a fluid, there will be an additional torque I D,
due to viscous drag. If the fluid s refractive index M~ is
close to unity, as is the case for air, we assume that Eq. (7)
and Qr =Q,b, are good approximations where M, used in
the calculation of Q,b„ is replaced by the refractive index
of the sphere relative to that of the fluid and k becomes
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the wave number in the outer dielectric Mg~/c. (Th«e-
sulting I ~ Qlay be exact; however, we have not considered
in detail the problem of electromagnetic momentum
transport uxthin dielectric media as reviewed by Brevik. )

The z-angular velocity of the sphere, co„will reach a
steady value when I";+ID,

——O. The drag torque is

1D,———8m'qa m, where q Is the viscosity of the sur-
rounding fluid. It is assumed that the sphere rotates as a
rigid body and that the flow is Stokes flow with the fluid
at infinity at rest. The steady-state angular velocity be-
COIIles

~„=II,Q,b, /Scuba . (38)

When the sphere is sufficiently small for Eq. (37) to be
applicable, the steady-state angular velocity becomes

' Irn (39)
2'gc ~ +2

which is independent of a and depends on co by way of
the relative refractive index M. It is assufned that the
sphere is sufficiently large that classical continuum
theories apply both in the electrodynamics (which was im-
plicit in our use of constitutive relations appropriate for
bulk material'o) and to the mechanics (as in the deriva-
tion of I n~). When M =M'+iM" is such that
M «M ~ Eq. (39) siillplifies to

Consider the case of a spherical drop of water sur-
rounded by air for the conditions noted in case (b) of Sec.
VI, namely A, =2.0 pro and M 1.304+ i0.061082. The
viscosity of air at 20'C is 0.018 cP and we take II.——10s
%'/I . The drop's rotation should approximate that of a
rigid body. For a drop with a radius of 50 pm,
Q,b, ~0.43 and Eq. (38) gives co„~6.3 sec '. For small
drops (a & 0.2 pm), Eq. (39) is applicable; it gives co„=7.1
sec, The effect of radiation torques, though not large,
may be observable for drops or other spheres illuminated
with circularly-polarized laser beams. Since the effects of
viscous drag appear to be an 1ITlportant 11mltatko11~ lt map
be preferable to observe the response to radiation torques
on spheres optically levitated in a vacuum as noted in Ref.
5.

Some caveats concerning our analysis of the rotation of
spheres should be noted.

(a) Molecular collisions with the sphere's surface give
rise to random rotations commonly known as the Browni-
an rotation. The mean-square angular displacement in a
time interval t was estimated by Einstein to be
XTt/4mqa rad, where X is Bo'1tzmann's constant and T
is the temperature. %'hen compared with the response to
radiation torque, these angular dlsplaceIHents may be sig-
nificant, especially when the sphere s radius g is small.

(b) The result Qr =Q,b, indicates that torques are ac-
companied by the absorption of energy. The microscopic
lass mechanisms incorporated into M" Inay be classified
as "nonIadiative" or as "radiative. " In tIle nonradiative
case, the absorption gives risc to heating of the sphere.
This heating leads to thermal reradiation of energy and
heat conduction away froin the sphere. It results in pho-
tophoretic forces on the sphere, ' however, the torques

due to these forces should be negligible if both the therma1
and the electromagnetic constitutive relations are isotro-
pic. In the relatively unusual case of radiative lass rnecha-
nisms, same of the energy is radiated at frequencies other
than co because of fluorescence. For example, the sphere
may be embedded with fluorescent molecules. " Torques
due to fIuorescence should be negligible if this embedding
has radial symmetry and if the radiating state is buffered
from the polarization of the exciting fields within the
sphere E;„,and 8;„,. Such buffering could result from in-
termediate nonradiative transitions. Torques due to
fluorescence and to heating were not included in our
analysis.

(c) The field scattered from a spinning scatterer may
contain frequency components which differ from the fre-
quency co of the incident wave. Furthermore, the irradi-
ance distribution of the scattered field for spheres may be
affected by the angu1ar velocity. The resulting errors in
our calculati. on of the torque should be sm.all when
cg&g ++co and Q)~g ggc.

(d) The nonsphericity of liquid drops will not, neces-
sarily, significantly affect the radiation torque relative to
the drop's centroid. Drops deform into an oblate spheroid
if spun at sufficiently low co~ in a gas. Let a denote the
radius of the equivalent sphere which is defined to have
the saHle volUIDC as the dI'op. If the parameter
co=co a (pi;q —ps») j8y is «1, the ratio of the minor to
major axis lengths of the spheroid is =(1—co). Here p
denotes the indicated mass density and y is the surface
tension. For example, a drop of water having a=50 p, m
and co„=6.3 s ' has cu 10 . Drops will also deform in
response to the surface distribution of radial radiation
stresses. For weakly absorbing spherical drops the
geometrical-optics contribution to naQ, b, is ro. ughly pro-
portional to a; consequently, if the ripple structure is
also negligible, absorption is seen to be a vol'urne effect. '

The absorption cross section should change only slightly
with small deviations from sphericity. The I computed
for the equivalent sphere should well approximate that of
the nearly spherical object whose surface is one of revolu-
tion about the z axis.

VIII. ELLIPTICAI. LY-POX.ARIZED
II.LUMINATION GF SPHERES

Consider the case of right circularly-polar1zed illuIDina-
tion with an irradiance I~. The incident field is given by
Eqs. (1) and (2) with Eqs. (3) and (4) replaced by
E& (x iy)exp——(i'—) and 8& ——iE&. This corresponds to
incident photons in a pure circularly-polarized state of
negative helicity. ' Expansions of the incident and scat-
tered fields' are similar in forin to Eqs. (12)—(15) except
for SOIYle reversals in signs and the replacemeYlt of a11 X& ~

by X„ i. Symmetry considerations show that Eqs. (7)
and (36) are replaced by I,= Iz ma Q,» /co, —where
ma Q,b, is again the absorption cross section of the
sphere.

Consider no%' the case of elliptically-polarizeci illuIDl. na-
tion. The incident wave's electric field may be written

E;„,= ReI [El (x+iy )+Eg(x iy)]e'~ '"'I, —
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where EL and Ett are complex constants which determine
the ellipsometric parameters of the plane wave. ' The ex-
pansions of the incident and scattered fields now contain
both X„~ and X„&. An important result is that the
cross terms between fields having m= 1 and those having
m = —1 do not contribute to the G;J because of the in-
tegration over the azimuthal angle. This result follows
from the forms of Eqs. (11), (Al), and (A2). As a conse-
quence of this result and of our previous results for pure
circular polarization, the torque is predicted to be

l, =(IL Itt)~—a Q,b, /co, (40)

where IL ——
~
Et.

~

c /4m. and Itt ——
~
Ett

~

c /4~ are the ir-
radiances of the left- and right-handed components con-
sidered separately. Consideration of the integration over
azimuthal angle in Eq. (6) gives the result I „=I'»=0
where use is made of vector spherical harmonic expan-
sions of the fields. In the case of a linearly polarized in-
cident wave, IL Itt a——nd we find I =0.

IX. THE RADIATION TORQUE ON
STRATIFIED SPHERES

In this section we consider the generalization of our
previous results to a sphere whose optical properties are
stratified such that the complex refractive index may vary
radially from the center to the outer surface. For definite-
ness we first consider the problem of a homogeneous
sphere coated with a homogeneous layer of uniform thick-
ness illuminated by the wave of Eqs. (1)—(4). The prob-
lem of scattering from such a sphere was first solved by
Aden and Kerker. For the purpose of our present dis-
cussion we need only note that the vector spherical har-
monic expansion of the scattered field is given by Eqs.
(14) and (15)provided the scattering coefficients a„and b„
are suitably chosen. Concise equations for the suitable a„

and b„, which replace those of Eqs. (16), are well known
and need not be reproduced here, see, e.g., Eq. (8.2) of
Ref. 10. With this replacement, the calculations of the
Q,J are identical to those given in Secs. IV and V. The
torque on the coated sphere is given by Eqs. (7) and (36)
where ~a Q,b, is the absorption cross section of the coat-
ed sphere and Q,„, and Q„are computed using the re-
vised a„and b„.

The general procedure for selecting the scattering coef-
ficients a„and b„ for a sphere consisting of many concen-
tric shells is described by Kerker. For the incident wave
of Eqs. (1)—(4), the scattered field is generally given by
(14) and (15) even though the refractive index varies con-
tinuously provided there is radial symmetry. The general-
ization of Eqs. (7) and (36) follows; however, the exact
formulation of Q,b, may be impractical for the case of
continuously varying refractive index. For elliptically-
polarized illumination, Eq. (40) is again applicable and
r„==r,=o.
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APPENDIX

Introduce the basis vectors eo ——z and e+ ~

——+2 ' (x
+iy ) and the vector spherical harmonic'

Y'„(8,$)= g (l, l, m iz, iJ,
~

l, l, n, m —)e„Yt~ „(8,$) . (Al)

In the notation of Ref. 14, the Clebsch-Gordan coeffi-
cient is c&(lnm) and Y „~ is T „~; notice that
Y "„~=X„~. The following relation is given by identities

involving the Y'„~ (Ref. 14, p. 270; Ref. 18; and Ref. 39):

r XX„~=i (2n +1) r [n'r Y"„~ +(n + I)'r Y„" ] .

(A2)

z (r XX„&)=i($'„Y„ i i —W„+Y~+i,i) ~ (A3)

where JP„is defin-ed in (25). Insertion of (A3) into F„„
gives (24).
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