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Stochastic pump effects in lasers
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We examine from fizst principles the effects of a stochastic pump on the output fluctuations of a
laser. The Hamiltonian for a four-level molecule interacting with a stochastic semiclassical pump
field and quantized laser field is used to obtain density-matrix equations of motion. Noise from the

pump field and from spontaneous emission is introduced systematically, as opposed to the ad hoc
inclusion of random forces in the semiclassical equations. The relationship of this theory with pre-
vious quantum and semiclassical equations is described. New equations are derived on which com-

puter simulations are performed to compare our theoretical results to experimental data for a
single-mode dye laser.

I. INTRODUCTION

During the last few years it has become apparent that
the presence of stochasticity in the pump source may
drastically alter the coherence properties of a laser. Apart
from an early study of this problem by Wang and Lamb, '

no systematic study of this problem appears to have been
carried out. Recent research on the subject has been based
on the ad hoc inclusion of noise terms in the semiclassical
Lamb equation. A new, comprehensive theory, based
on first principles, is clearly required if one is to under-
stand the transformation of the pump noise by the non-
linear laser system and include quantum effects such as
spontaneous emission. It is the purpose of this paper to
present such a theory, starting from the Hamiltonian for a
four-level molecule interacting simultaneously with a sto-
chastic semiclassical pump field and quantized laser field.

As long as ten years ago, there appeared to be ample
evidence that conventional laser theory and experiments
on the coherence properties on lasers were in good agree-
rnent with each other. Experiments on single mode dye
lasers by Mandel and his co-workers demonstrated, how-
ever, that fluctuation phenomena in these lasers showed
very different characteristics than those expected on the
basis of standard theory.

Kaminishi et al. attempted to apply the Haken-Risken
theory "' ' for single mode lasers near threshold to their
measurements on single mode dye lasers operated near
threshold. This theory is basically a Langevin approach
to laser noise governed by the equation
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in which E (t) is the complex amplitude of the laser elec-
tric field, a and 3 are real parameters. a is the pump pa-
rameter whereas A ( & 0) provides stabilization above
threshold as a result of saturation of the laser active medi-
um. g(t) is a Gaussian, white-noise source, representing
the contribution of spontaneous emission, and is of ad hoc
origin.

Kaminishi et al. found that this theory was inadequate
in explaining the behavior of the observed relative mean-

E(r) =[a (t) A~ E
~

']E— (2)

for which the authors found exact solutions, is no longer
tractable if a (t) contains colored noise. Dixit and Sahni,

square intensity fluctuations (versus pump parameter) or
the measured form of the intensity correlation functions.
Realizing that pump laser fluctuations could play a role
of importance, they suggested a preliminary treatment of
the mean-square intensity fluctuations which included
this source of stochasticity. Another possibility was the
effect of triplet state absorption which may occur in or-
ganic dyes. This situation was considered from a
quantum-mechanical viewpoint in the paper of Schaefer
and Willis. They gave an elegant treatment of the effect
of the triplet states on dye laser fluctuations. The condi-
tions of operation of the dye laser on which measurements
were made indicated, though, that these triplet state ef-
fects were not dominant since a triplet quenching agent
was used in the dye solution.

In order to explain the measurements, Graham et al.
made the simple assumption that the pump parameter a is
noisy. They then dropped g(t) from Eq. (1) and replaced
a with a Gaussian, white-noise process. This converts Eq.
(1) from an additive stochastic process to a multiplicative
process, one which can be solved exactly. ' With this ap-
proach, they were able to fit the published data of Kamin-
ishi et al. Unfortunately, this analysis did not fit some
unpublished data, as was pointed out by Short et al. in a
subsequent paper. They suggested the problem with fit-
ting the data may lie in the need to use "colored" noise
rather than white noise. This means that the time scale
for the relaxation of the pump noise may not be short
enough compared with all other time scales characterizing
the dye laser so that it is not a good approximation to use
a Dirac 5-function correlation for the pump noise auto-
correlation function.

The drawback to using colored noise, however, is that
the equations are no longer analytically solvable. The for-
mal theory for colored noise approximations is well
developed" but only rarely leads to exact analytic solu-
tions. The equation studied in Refs. (2) and (10),
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assuming an exponentially correlated noise source, per-
formed computer simulations to obtain fits to the mea-
sured intensity correlations of Short et al. 3 allowing the
correlation time for the pump noise to be an arbitrary pa-
rameter. They also had to adjust the value of the relative
mean-squared fluctuations to obtain reasonable fits. This
reflects the ad ho@ nature of the inclusion of noise in Eq.
(2).

It is tempting to consider the subject closed at this
point. However, if one examines Eq. (2), one notices
several inadequacies in the justification of its basic form.

First and foremost, Eq. (2) is phenomenological. If it is
correct, one should be able to derive it on more basic
grounds. Second, quantum noise has been totally neglect-
ed in this equation. Third, if stochastic pump effects are
important, not only the pump parameter a but also the sa-
turation parameter A should contain random fluctua-

. tlolls. Thcsc lnadcquaclcs icpi'cscnt serious dcfccfs 111 thc
theories reviewed so far. Wq address each of these prob-
lems here.

The remainder of the paper is organized as follows. In
Sec. II, the description of a laser at the level of the
quantum-mechanical density matrix for the active mole-
cule energy levels and the photon quanta for the laser
field is given. The stochastic pump field is treated semi-
clRssicRlly. Decay tIRnsitions bctwccn molecular energy
levels and cavity relaxation are modeled by stochastic in-
teractions, following a method developed by Fox.s In Sec.
II, adiabatic elimination is used to remove off-diagonal
dcIlsity matrix elcQ1cnts. A photon state contraction is
performed in Sec. IV. The correspondence of our theory
with semiclassical equations is presented in Sec. V, along
with the results of computer simulations. In Sec. VI, an
analytic approximation 18 examined %'hich includes quan-
tum spontaneous emission effects. The analysis of the
equations containing both quantum fluctuations and sto-
chastic pump effects is somewhat involved, and will be
discussed in R future publication. In Scc. VII we sum. ma-
rize our results and assess the status of the entire problem
of stochastic pump effects in lasers.

PIG. 1. Dye molecule energy levels interacting with pump
and laser radiation fields. The upward pointing arrows for the
stochastic transitions are in fact suppressed by Boltzmann fac-
tors.

schematic diagram of the molecular energy levels as weil
Rs the various transition mechanisms. The ground state is
level 1. The pump transition is from level 1 to level 4,
which is resonant with the pump laser. The wiggles show
transitions due to colhsions or radiative transitions not re-
lated to the puinp or lasing radiation. The decay process
connecting levels 4 and 3 and levels 2 and 1 are very fast.
The thick arrow between levels 3 and 2 is the lasing tran-
sitloli wllich ylcMs tlic light for wlllcli tlic lascl' cavity is
tuned. We will consider only single-mode operation in
this paper. The pump field will be treated semiclassically,
whereas the laser field will be quantized in the following
treatment.

The Hilbert space relevant for the density-matrix
description of the four-level molecule and the quantized
laser field is a direct product of the four-dimensional Hil-
bert space of the molecular levels and the infinite dimen-
sional Hilbert space of the quantized field. The density-
matrix equation is (in which [H, j=H —.H is a "com-
mutator" operator)

II. DENSITY-MATRIX DYNAMICS ilPi =[H,p'j (3)

The laser active medium will be modeled as a four-level
molecular system in a resonant cavity. Figure I shows a

I

in which p is the density matrix for the molecular levels
and the photons and H is the total Hamiltonian

~ =~2s&'u+ 2 I
i &c &i

I +p cos(~i4r)(14&Ep«)&11+
I

1 &&p «) &41)+g«+&')(13)&21+ 12)&31)

+II3~(t)(13& &41+ 14& & 31)+IIi4(r)(11&&41+ 14& &11)

+~»(»(12& & 31+ 13 & &21)+~»«)(11&&31+ 13 & &11)+II»«)(11&& 21+ 12& &11)+~.«) .

Strictly, those parts of this Hamiltonian which act in only
one factor of the product Hilbert space should be written
as a direct product with an identity operator for the other
Hilbert space factor, e.g.,

iiRoz3a a:—fuu23aa 1M .

I

We will dispense with such cumbersome notation. The
first term in (4) is the Hamiltonian for the quantized laser
field photons with the frequency co23. The second term is
the Hamiltonian for the molecular levels with energies e;.
The third term is for the pumping laser. The electric di-
pole coupling strength is given by p and the pump laser
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& Hj(r) & =0, &H, (r) & =0,
& H j(t)Hki(s) & =Qjki5(t —s),

& Hj(i}H, (r) & =0,

(6)

(7)

(8)

Qijkl =Qijkl(~rk~jl +~ilsjk) (9)

has frequency roiq. E~(t) allows for the potentially noisy
modulations of the pump mechanism. The fourth term is
for the coupling between the dye levels and the qUantized
field. The dipole transition coupling strength is g and this
expression contains (a+at) rather than (a —at) for the
electric dipole coupling because we assume standing waves
in the laser cavity. ' The remaining terms are stochastic
Hamiltonians representing the nonradiative level transi-
tions (or radiative ones not concerning the pump and las-
ing processes) depicted in Fig. 1, and a cavity noise Ham-
iltonian, H, (t), to account for cavity relaxation. Note
that each contribution to H is manifestly Hermitian.

Each stochastic contribution to the Hamiltonian is as-
sumed to be Gaussian, to have zero mean, and to be sta-
tistically independent of each of the others. These fa,cts
may be expressed by

Hr=)Leos(coi&t)(
I 4&Er (i)&1

I +
I

1&Er', (r)&4
I

)

+g(a+at)(
I 3&&2

I +
I
2&&3

I ),
g (3,4)+g (1,4)+g (2,3)+g (1,2)+g (&, 3)

where

(12)

(13)

Qijij ~ij

The Dirac delta correlations in Eq. (7) represent the as-
sumption that these quantities fluctuate on a very short
time scale compared with laser field relaxation time
scales.

Fox has analyzed the effects of performing stochastic
averages over the stochastic contributions of the Hamil-
tonian. The exact result of such averaging, given the as-
sumptions of Gaussian white stochasticity in Eqs. (6)—(9),
is given by (see Appendix A)

ih =[Ho+Hr p]+iMp+ifd)pBp
Bt (10)

in which R and D are superoperators w'hich cannot be ex-
pressed by commutators Th. e quantities in (10) are

4

Ho=hco23a a+ X li &e;&i (11)

I ~)"(I+e ")(Ii&&i i &&i + li&&i I
'Ii&&i I)

2 Z
(14)

In this expression, P= I/kaT where ks is Boltzmann's
constant and T is the temperature; AE;~=a; —

c~ and

Z=1+e ". Because we will be dealing with a laser
for which P~ij &&1, we will neglect the terms involvingp~
e ' . This amounts to neglecting upward transitions
while keeping the downward transitions. In the context of
Fig. 1, this means we keep the downward pointing transi-
tions but not the upward pointing ones, which are
suppressed by a Boltzmann factor in the exact expres-
sions. Making this approximation, which is very good,
means

, I;j !i&&i I li&&i I +—„,I j I &&i I

I;(li&&i I li&&i I
+ li &&i

I
li&&i

I

(15)

In both Eqs. (14) and (15), the dots ' indicate where to put
the density matrix upon which these superoperators act.
Finally, when the upward transitions are neglected, D is
given by

D=g[ —
An,

I &n& nl ln&&n I

+(n+1)sin&&n+1
I

In+1&&n I] (16)

in which
I

n & denotes the n-photon state of the laser
fiehl, and X is the rate parameter for the decay of the
field. The factors of n and ( n + 1) preceding A, in Eq. (16)
are the boson enhancement factors appropriate for pho-
tons. Notice that the 8"~'s act exclusively on the dye
levels whereas the D superoperator acts exclusively on the
photon states. Moreover, the process of stochastic averag-
ing did not in any way alter either Ho or Hr in Eq. (10) as
compared with Eq. (3). This is a consequence of the
Dirac delta correlations in Eq. (7) and would not occur if
the nonMarkovian correlations were assumed in Eq. (7)
for these very fast processes. Equation (10) is still sto-
chastic, even after all this averaging because it still con-
tains the stochastic pump laser field, Ez(t).

The next step of this analysis is to convert Eq. (10) into
an interaction picture representation with respect to Ho.
Define p by



30

p=exp( —iA I [Ho, "])P

in which we exponentiate th.c commutator supc1'opcI'RtoI',

[Ho, .]. We can show straightforwardly that this yields

P =[HI(t),P]+iARP+iADP
Bf

in which HI{i) is the interaction picture InteI"action Ham-
iltonian

H, (I&=P( [4)E,«)&1(+ ~1)E,(I)«~ &

+g((3)a{2)~ ]2)at{3[)
111 w111ch only thc cIlc1'gy coIlscrvlng terms have been I'c-

tained. Notice that both the 8"i's and the D are unal-
tered by this step. For D, this is a consequence of the fact
that [Ho, ] and D act in orthogonal portions of the direct
product Hilbert space. For the R "J's, it is R consequence
of their particular structure and that of [Ho, .]. Equation
(18) may now be rendered as a closed system of eight
oper Rtor de'&sit/-Hlatrn cqaatlons

~P I I
iA =@[A(t)P4I —E~(t)PIg]

Br

Thc dynamics of flic lascI' will bc characterized by
several time scales. The fastest processes are those which
Lave just been averaged over, the level and cavity stochas-
tic processes. The decay rates from level 4 to level 3 and
level 2 to level 1 are the next fastest processes, which re-
sult in the populations of levels 4 and 2 being very small
compared to those of levels 3 and 1. These relaxation
rates are given by (1/4 )I I4 and (1/fi )I Iz. Slower still
are the relaxatIon rates (1/R )1,4„{1/A' )I z3, and
(1/A' )I ». These may differ from (1/IrI )I z4 and
(1/A' )I II by one or more orders of magnitude. Usually,
tLC 810%est process involved is the cavity decay Mte, A, .
The precise values of these rates depends on the particular
system be1Ilg stUdied, but tlM ox'deriQg giveD above is quite
common, and occurs in many different laser systems. '

Based on these premises, we may neglect I I4 and the A,

impl1clt III D compared with I Ig I11 Eq. (23). This IInpltcs
the "adiabatic elimination" of p4q by the identity

p44= . [EI {r)pw &j"(r)p4—I ] .

'~

+ {II2P22+ I I3PI3+ I I&4)+I~PI i

— =g «P3Z —PI3~)
dr

+
&

(I'I@3—I"Ie»)+i~P2. *

F33
=g(up23 —p»~ &

+—{I34p44 —I"I3p33—I IAS)+i~p33

i' =p, [E~(I)pgg Ep {I)pgI]—at

(20)

(21)

A.nywhere else in Eqs. (20)—(25) in which Pq4 occurs
without I"I~ it is to be neglected whereas terms of order
I 3~~ are kept. Thus, Eq. (25) yields

PI4(I)= —.— ds exp — I'I4(t —s) E (s)PII(s)p 1
P

and its Hermitian adjoInt for p4I. Wc have assumed hc«
that P~I( 0)= 0= P4( 0). Similarly, we assume P2s(0)=0
=P32(0) below'.

Equation g7) may be used in Eqs. (20) and (26) to yield

P[Z,*( )PI„, (r) E,(r)P—I4(r)]

(23)

8P23
4

=g(u P3S —P22~ &-
2fi

X [&,(I)E,*(s)+E,'(r)&„(s)]p»(s) .

It IS convelcGt to introduce the RbbreviatloIls

ih' =@[E'(I)P44 8'(I)PI I] I—I4P)4, —
(29)

i A —=@[A(t&PII
—E~(t)P~] I I+4I . —

r
{25b& Equation (24) may be solved to yield

BecM1sc tLMC dcQ8lty-matxkx elements %'1th respect to the
molecular levels are still operators in the photon Hilbert
space, it is crucial to respect the ordering of a and a with
respe{ t tQ tbeID.

The set of equations, (20&—(25), provides a detailed
quantum-mechanical description of the stochastically
pumped laser. In the following sections we will introduce
approximations to obtain a fnore tractable, but still accu-
rate, description Qf the laser.

F23
pI3(t) = —Ig ds exp — (I —s)

0
I

X [II P3s(s) —P22(s)P t] (30)

Ried its HCADitkaQ adjOI. Gt.
Putting the consequences of Eqs. (26)—(30& together in

Eqs. (20)—g5) provides the contracted dynamical descrip-
t106
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~p»
Bt 0

———P ds exp — (t —s) [Ez(t)E& (s) +E„*(t)E&(s) ]p»(s) + (y,~22+ y i3P33) +Dp»,2 (31)

y i
—422+ y 23P33+g J ds exp

I

2
(t —s) [a p33(s)a p—22(s)a a a—ap22(s)+a p33(s)a]+Dp22 (32)

33
(y i 3 +y z3 )P33+P Jo ds exp — ( t —s ) [Etp ( t )E& (s ) +Ez ( t )Ez (s ) ]pi i (s )

+g ds exp — (t —s) [ap2z(s)a —p33(s)aa —aa p33(s)+ap2z(s)a ]+Dp33 .
0 2 (33)

The photon density-matrix operator is not an independent quantity and is defined by &=p, i+Pq2+p33 since we are
neglecting p44 in this order of approximation. It satisfies the equation

t
=D&+g ds exp — (t —s) [2a p33(s}a p33(s)a—a aa p33—(s)+2aP22(s)a pz2(s)a—a —a ap22(s)]0 2 (34)

which depends directly on the solutions to Eqs. (31)—(33).
Equations (31}—(33) provide a contracted alternative to
Eqs. (20)—(25), and are a very good approximation to
them if the time scales are well separated; this is true in
many laser systems of interest, including the dye laser. In
the following sections we will examine still further reduc-
tions of these equations; one of these reductions will pro-
vide us with the equivalent of a semiclassical theory,
while the other will be a reduced density-matrix descrip-
tion of the quantized laser field. QN&n Ip;; In):N, fori =—1,2, 3 (35)

space for each molecule. The details are given in Appen-
dix B. The result is that we obtain equations similar to
Eqs. (31)—(34) except that Eqs. (31)—(33) are multiplied
by an overall factor of N, whereas Eq. (34) has a factor of
N multiplied into only the integral term in its right-hand
side (rhs). The consequences of these factors of N are de-
lineated in the following.

The number of molecules in state
I
i ) is given by

IV. PHOTON STATE CONTRACTION

Up to now, we have described a quantized laser field in-
teracting with a single four-level molecule. In this sec-
tion, we will perform a photon state contraction of the
description and obtain dynamical equations closely related
to the phenomenological, semiclassical equations. In ad-
dition, we generalize our treatment to N (four-level) mole-
cules. It is to be noted that we obtain the electric field
behavior directly from the density-matrix descriptions and
we do not have to introduce an auxiliary account of the
electric field and polarization as is usually done, e.g., in
Louisell's account. ' '

It is convenient to introduce the generalization to X
molecules first, since the N= 1 special case follows im-
mediately. To treat X molecules, the Hamiltonian given
in Eq. (6) must be enlarged to include terms for each mol-
ecule. The corresponding Hilbert space also must be
enhanced by factoring in a finite dimensional Hilbert

where N; is a number between 0 and N. Conservation of
molecules implies

%~+%2+%3——X=const .

The laser field intensity is the expectation value of the
photon number operator, a ~a, and is given by

g &n
I
ata&

I
n) =I . (37)

Equations (35) and (37) are consistent with the additional,
but not independent, identity

QN&n Iatap;; In)= NI . — (38)

With these identities, the contraction of Eqs. (31)—(34),
appropriately reinterpreted for N molecules, proceeds by
tracing each equation over photon number expectation
values. For example, Eq. (31) yields

dX) F14= —P ds exp — (t —s) [Ez(t)E~ (s)+Ez (t)E&(s)]Ni(s)+ (yi2Nq+yi3N3) . (39)

The D term in Eq. (31) gives rise to zero when we use Eq. (16) for D

QN&n IDpiiln&=N g ( —n~)&n Ipiiln&+ X (n+1)~&n+llp» In+1&
n n=0 n=0

(40)
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g(n Jafat~n)=g(n+1)f(n+1) . (45)

Applied to Eq. (38), these results imply

QNnPs(n)=N;I . (46)

Whereas for the other kind of combination which occurs
in Eq. (32), for example, a p33a, they imply

(n Ia p33a I
n) = QNnP33(n —1)=N3I+N3 .

(47)

Therefore, the contraction of Eq. (32) yields

d —2

dt
Nz =—Y]2N2+ Y23N3+2g

g(n
~ f ~n)= gf(n),

n n

n a~a n = n n
n 7t

g(n ~atfa ~n)=conf(n —1),
n n

g (n ~aatf
~

n)= g(n+1)f(n),

(41)
t r23s exp — t —s

0 2(42)

X [N3(s)I (s)+N3(s) —Nz(s)I (s)] . (48)(43)

(44) The contraction of Eq. (33) yields

The last step in Eq. (40) follows from shifting the summa-
tion index on the second sum. This cancellation will hold
also for Pzz and P33.

Inspection of Eqs. (31)—(34) justifies the conclusion
that for i=1,2,3, P;; is a function of the operator com-
bination ata (or aalu=a a+1) and not a function of the
separate linear operators, a or a . Therefore, it is con-
venient and valid to write p;;(n)=(n ~P;; ~

n), or
p;; (n + 1)—:( n + 1

~ P;; ~

n + 1 ) . In Eqs. (32)—(34), we also
meet combinations such as asap;; and ap;;a~, as well as
others. The ordering of these operators has been carefully
preserved throughout the analysis, and it has the follow-
ing consequences during the contraction process: Let
f=f( a ta) be any function of a ta, which is a continuous
and infinitely differentiable function of its argument. We
have the following identities which are easily proved:

N3 ———()'&3+)'z3)N3+P ds exp
0

(t —s) [Etp (t)Et*, (s) +Ez (t)Etp (s) )N &
(s)

(49)+2g I ds exp — (t —s) [Nz(s)I(s) —N3(s) —N3(s)I(s)] .-2 r23
0 2

To obtain the intensity equation, Eq. (34) must be multiplied by a a and then traced over the photon states. Part of
this particular contraction requires

g (n
~

a aD&
~
n) = g n [ nA&(n)+—(n +1)A&(n+1)]

n=0

= g [—n A&(n)+(n —1)nA&(n)]= —g An&(n)= AI—
n=0 n=0

as follows from Eq. (37). Therefore, we get

(50)

—2 r23
dt

I= A,I+2g N ds exp—— (t —s)
0 2

X g [n p33(n —l,s) —n (n +1)p33(n,s)+n (n +1)pzz(n + l,s) —n pzz(n, s)]

g [(n +1)P33(n,s) —npzz(n, s)]
n

A,I+2g N ds exp —— (t s)——2 r23
0 2

A,I +2g ds exp—
0

r23
2

(t —s) [N3(s)I (s)+N3(s) —Nz(s)I (s)] . (51)

Notice the cancellation of all terms of order n in Eq (51). .
So far, we have not made use of the fact that y, z is a very fast rate. This fact can be used to adiabatically eliminate

Nz from further consideration. All terms in Eqs. (39), (49),and (51) of order Nz can be neglected whereas terms of order
y~zNz must be retained and replaced by the adiabatic elimination identity which follows from Eq. (48)
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y12N2 ——y23N3+2g ' d$ exp
0

y23

2
(t —s) [N3(s)I(s}+N3(s)—N2(s)I(s)] (52)

df
N, =(y23+) $3)N3 —p ds exp

0

in which the Nz term on the right-hand side is self-consistently dropped. Putting Eq. (52) into Eq. (39) yields

2
(t —s) [E&(t)E&(s)+E& (r)E&(s)]N&(s)

t
+2g $ exp

y23

2
(r —s) [N3(s)I(s)+N3(s)] . (53)

Equation (49) becomes

N3 ——(yf3+ f23)+p f ds exp — (t —s) [Ez(t}E&(s)+Ez (t)&z(s)]N&(s)
0 2

—2g f ds exp — (t —s) [N3(s)I(s)+N3(s)] .—2 r23
2

(54)

Equation (51) becomes

I=—u+2g f ds exp
0

y23

2
(t —s) [N3(s)I(s)+N3(s)] . (55)

Clearly, to this order of approximation, we still preserve the total number of molecules, since N~ —— N3. The—refore, it
is correct to eliminate N& through

N( ——N —N3 . (56)

In the next section we will proceed with the final reduction of these equations, which will be similar to well-known
semiclassical equations. At this stage, however, it is useful to note the structure of our results.

Two different memory integrals occur in Eqs. (54) and (55). The memory integral in Eq. (54) for the pump terms in-
volves E~(t)E~(s)+E~(t)E~(s). If the pump field is stochastic, then the fluctuations must be incorporated into this
structure. Only if the memory effect can be neglected in Eq. (54) can we approximate this structure by 2I&(t), the pump
inte'nsity at a single time. Only then is the phenomenological treatment of pumping fluctuations used by earlier investi-
gators partially justified.

V. COMPARISON WITH SEMICLASSICAL THEORY AND NUMERICAL SIMULATION RESULTS

On performing the photon state contraction of the last section, we have finally obtained two coupled equations for the
upper las1ng level population and the laser intensity. They are

N3 (l $3+ /23)N3 +p f ds exp — (t —s) [EIp (t)E~ (s) +Ez (t)E&(s))[N —N3(s)]

—2g dS exp
0

723

2
(t —s) [N3(s)I(s}+N3(s)] (57)

and

d = -2 y23I = AI+2g f ds e—xp — (t —s} [N3(s)I(s)+N3(s)] .
0 2

(58)

These equations contain the effects of quantum fluctua-
tions of the laser field (since we have traced over the pho-
ton number states). They also contain the effects of the
pump stochasticity, and reveal several novel features on
examination. The right-hand side of Eq. (57) shows clear-
ly the dependence of N3 (and hence I) on the fluctuating
amplitude of the pump field E&(t) The exponential. ly de-

caying terms in the memory integrals contain relevant re-
laxations of the molecular levels. The relative time scales
of the pump laser fluctuations and these decay rates will
determine the eventual behavior of the integrals.

There are some special cases in which these equations
reduce to forms which are well known.

(i) Constant pump intensity: In this case, the equations
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simply become, with I~ E——~E~ equations used to describe laser operation. If we now
"adiabatically" eliminate N3 through

with

d
N3 ——G —A, 'N3 B—N3 (I + 1 ),

d
dj

I= AI +—BN3(I + 1),

(59)

(60) we obtain

G
A, '+B (I+ 1)

d ~ GB(I + 1)
dt A, '+B(I +1)

(64)

(65)

G = I N, A, '=(y~3+y23)+ I4p 2
4p,

714 3 14

4g 2

y23

(61)

—y /2(t —s)f e " " 'N3(s)[I(s)+1] N3(t)[I(t)+1]
0 y23

and

(62)

The assumption used in obtaining these equations is that

This equation, apart from the 1's in the parentheses, is
identical to the (phenomenological) semiclassical equation
given, for example, by Louisell in Ref. 5(d). The one's are
a consequence of using a quantized formalism, which in-
cludes spontaneous emission.

(ii) If the pump field is not constant, but a very fast sto-
chastic process, we may still obtain somewhat simplified
equations which can be used to obtain numerical results.
In addition to Eqs. (62) and (63) we have to approximate
the pump noise in Eq. (57). Taking E~(t) to be simply of
the form

f e " N (s)ds=
0

2N, (t)
(63) Eq QI~ +——g(t), (66)

Equations (59) and (60) are identical with the usual rate
where g(t) is Gaussian white noise, the pump term con-
sists of four parts

2p2 f ds e '
I [QI~+g(t)][QI~+g(s)]I [N —N3(s)]

=2p 2[N —N3(t)] f ds e " [I~++I~((s)+')/I~pt)+g(s)g(&)]

in which X3 has been treated as slowly varying compared
to all other factors, which contain white noise. The first
and third terms immediately give us

If f ( t) is still on a fast time scale compared to the time
scale for field fluctuations set by I/A, , we may still treat
this term as white noise, i.e.,

[N —N, (r)]I lim e ~25(t t') . —g]4 —y)4/2 I
t —t'

I

00 2
(69)

[N N, (t)]g(t)+I~ .—
714

In other words,

lim (f(t)f(r'))~Q5(r t')—
y~&~ ao

(70)

(g(&)g(&')) =Q5(t —t')

then, with f(t)= e ' g(s)ds, we have
0

(68)

The last term may be approximated by 2p
&& [N —N3(t)]g(t) . A heuristic way of recognizing this is
to realize that since the time scale for fluctuations of g(t)
is very short (compared to I/y&4), only very small time
differences will contribute to the integral, for which the—y (4/2( t —s) .
exponential e " is essentially unity. —y /2( j—s)

The second term, 2p [N N3(&)]+I~ f e-
g(s)ds will actually generate a colored noise term f(t)
with a time scale (1/y~q). One can show that if

with Q =4Q/y |4. To simulate Gaussian white noise, we
use the Box-Muller algorithm to generate Gaussian ran-
dom numbers x, and x2 from uniformly distributed num-
bers y, and y2,

'

x, =Q —2 lny icos(2~y2) &Qb,&,

x2 ——/ —2 Iny]sin(27ryp)&Q&t,

(71)

(72)

where ht is the time step used to'integrate the equations
of motion. To simulate the noise term f(t), Q would
have to be replaced by Q, which thus gives us the same
contribution as the third term, each being (4P /y~q)
&& [N N, (r)]QI~x-,

With these approximations, one may now simulate the
Eqs. (57) and (58) numerically on the computer and obtain
correlation functions of the intensity of the laser field.
The correlation function
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(M(t)M(t+r) )
(73)(I)'

may be calculated, suitable estimates being taken for the
large number of dye parameters which occur in Eqs.
(57)—(58). We have made such plausible estimates and
obtained fits for the three intensity correlation functions
which were measured experimentally. The fits have been
obtained by varying the average pump intensity I&, and
the coefficient 8, i.e., the three curves have been fit by
varying two parameters. When the experiments reported
in Refs. 3 and 7 were performed, I~ was not measured as
an experimental parameter. At that time this was not
considered a crucial measurement, since fits were being at-
tempted with the one-parameter Haken-Risken theory of
the laser. Also, when those measurements were per-
formed, the pump intensity required for threshold varied

by as much as 40—50%%uo on different days, depending on
the overlap of the pump and dye beams in the dye stream,
the flow rate of the dye, and the overall alignment of the
laser optics. However, the values of I~ used in our fits
are of a reasonable magnitude for a low-loss laser cavity.
The time step size taken was 1 ns and 300 realizations of
40000 steps each were computed. Other parameters are
stated in the figure captions, and the estimated errors in
experimental and simulation results are shown in Figs.
2(a)—2(c). No "subtraction" procedures have been
used, which we regard as an important aspect of our
theory.

VL THE EFFECT OF QUANTUM FLUCTUATIONS

We have, until now, traced over the photon number
states in order to show the correspondence of our equa-
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tions with those of semiclassical laser theory. This pro-
cedure neglects the statistical features of the laser radia-
tion which owe their origin to spontaneous emission, al-
though i.t accounts for it in an averaged sense. In this sec-
tion we will retain the stochastic effects due to both the
pump laser and the intrinsic quantum fluctuations. The
actual analysis of the equation which contains both these

stochastic contributions is quite involved, and mill be
treated in detail elsewhere. In this section we merely out-
line the procedure to be followed.

Let us introduce the approximations represented by
Eqs. (62) and (63) into Eqs. (33) and (34) for p33 and &,
respectively. Neglect of the population of level 2 and the
adiabatic elimination of p33 then gives

&(n) = —Ano(n)+(n + 1)A &(n + 1)+
—2

+
7 13723y" 2

nG (t)&(n —1)

+ g n

3 13Y23y" 2

(n +1)G(t)&(n)

1+ g (n+1)
+

~133 23
F23

(74)

Here

G(t) =IT, 2% ds e
0

)& [E~(t)Ep (s)+&p (t)&p(s)] . (75)

which contains both additive and multiplicative noise.

VH. CONCI. USION
'I

Till now, the problem of pump noise in lasers was dealt
with in a very ad hoc manner, by assuming a fluctuating
pump parameter, which was either 5 correlated or colored
noise. We have formulated from first principles the in-
teraction of a pump laser with the molecul. es of the secon-
dary laser system. The pump laser is taken to be an in-
tense, semiclassical field, while the laser field is quantized.
Though a particular form for the stochasticity of the

This equation has nearly the same form as the Scully-
Larnb master equation. " It can no longer be solved for
steady state by putting the left-hand side to zero, since
G (t) is a time-dependent fluctuating quantity. In the spe-
cial case that the pump field is constant, G (t) is no longer
stochastic and the ScuHy-Lamb equation is obtained as a
limiting form.

It is possible to perform stochastic averages with
respect to the pump fluctuations and obtain an approxi-
mate recursion equation for &(n) in the steady state. This
may be done by using the cumulant method of Fox and
leads to an equation of the form

A(n+1)&(n+1) —a(n)&(n)+P(n)&(n —1)=0 (76)

which can be solved asymptotically for large n to obtain
the form of the distribution &(n). Analytic and numerical
results on this equation will be presented in a forthcoming
paper. This technique allows us to retain the statistical
effect of quantum spontaneous emission and also stochas-
tic pump effects. Our theoretical results for the photon
number distributio~ wiB be compared with the recent ex-
perimental results of Mandel and co-workers'4 and also to
the results obtained by simulating the phenomenological
equatio~

E=[tt(t) AJE J']E+f(t),—

pump field still has to be assumed, the manner in which
this noise appears even in the reduced semiclassical equa-
tions is seen to be different than has been assumed to date.
We have, in particular, taken white noise for the pump
laser, shown that this wiB produce colored noise in the
secondary laser system, and fit some experimentally mea-
sured correlation functions for a single mode dye laser.
An equation which includes quantum. fluctuations has
also been derived, using our basic equations in which the
secondary laser field is quantized. This equation will be
analyzed in. a future publication.

APPENDIX A

The density matrix provides an alternative to the
Schrodinger equation

iA P=Hga
at

in the form

iR p=[H p]
a

(Al)

(A2)

H is the Hamiltonian. The right-hand side of (A2)
denotes the commutator of H and

[H,p] =Hp pH— (A3)

1. Operator calculus

To solve (A2), it is convenient to introduce the commu-
tator operator, [H, ], defined by

[H, ]M =HM MH— (A5)

in which M is an arbitrary operator. While M acts in the
original Hilbert space, [H, .] acts in the space of opera-
tors. It is called a "superoperator. " The solution to (A2)
can be written

in which p is the den. sity "matrix, " or operator, " which is
related to g by

(A4)

In (A4),
~
g) denotes the Schrodinger wave function, f, in

Dirac's ket notation.
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p(t)=exp — t—[H, ] p(0) (A6)
in which HI(t) is defined by

in which p(0) is the initial value density-matrix (operator),
and the exponentiated superoperator is itself a superopera-
tor which acts on p{0). An easily proved identity, for ar-
bitrary M, is

l l i
exp ——t [H, .] M =exp — iH—M exp tH—

(A7)

Let H =Ho+H(t) in which H(t} is stochastic white noise
and [HO, H{t)]~0

EHl(t)=exp —tHO H(r)exp ——rHO
fi

(A10)

The solution to (A9) is not as easy to express as was the
sol«ion, (A6), to A(2) because of the r dependence in
Hl(t). For two different times, i and s, we find

[II;(t),HI(s)]~0

because [HO, H(t)]&0.
We may overcome the comxnutativity problem ex-

pressed in (All) by introducing the "r-ordered exponen-
tial." Consider the general vector equation

p(r)=exp ——i[HO, ] p(t) .

This yields an equation for p(t)

iA p(t) =[HI(t), ]p(t)

(AS)

in which a is an N-component vector and M(t) is a r
dependent operator (XXN matrix) acting in the vector
space lil wlllcli 0 is found. Tile sollltloil to {A12),wltll 111-

itial value vector ao, is

S]
a(t)=ao+ f dsM(s)ao+ f dsi f dszM(s])M(sq)ao+. . .

'n —~

+ f ds] f ds2 . f ds„M(si)M(s2) . . M(s„)ao+ .

00 'n —i t
1+ g f dsi f ds2 . . f ds„M(s])M(sz). M(s„) ao—=Texp dsM(s) ao .

m=1
(A13)

The third equality defines the symbol Texp[ f ds M(s)],

which must not be confused with the ordinary exponen-
tial, exp[ f dsM(s)].

We may now write the solution to (A9) in the form

p„d(&) =exp ——„tHO {p(r)}exp
' tHD—

2. Cumulants and stochasticity

(A16)

p(r)=Texp ——f ds[HI(s}, ] p(0) .

For arbjtrary M(g), the analog of (A7) may be proved

Texp —— s Hl s, . M

Kquat1on (A16) does not provide a closed description
for p„d(t) in terms of itself only, but depends upon the
full density matrix, p(t) The idea o.f "contraction of the
description" is to get a closed description. Ttus means
that we must find a closed description for p„d(t) The.
te:hnique for achieving this goal is exhibited bdow.

Define the evolution superoperator, E(t), which acts on
operators in the Hilbert space, by

=Texp —— xHI s M E(I)=(TeXP ——I dI—[HI]I), ] ) .

&& Texp —f ds Hl(s) ' .
I

The reduced density matrix is deh~ed by

Therefore, we can write (A16) a,s
I

p,~(t) =exp — tHO [E(t)p(0)]—exp
fi

From this form of p„d(t}, it follows that

(A18)

l
]xi — p„,(r) =[Ho,p,~(r)]+kiri exp ——„rHoBt Bt

E (t) E (t)E (t}p(0) exp —tH0 (A19)
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It will be shown below that the superoperator combination [8/BtE(t)]E '(t) can be written

E(t) E '{t)—=G(t) .
Bt

(A20)

Using (A7) twice, and (A 1 8) once with (A20), permits us to rewrite (A19) as

i' p„d(t) =[Ho, .]p„d(t)+ii)lexp — t [H—o, .] G(t)exp t [H—O, ] p„d(t) .
Bt

(A21)

This is now a manifestly closed equation for the reduced
density-matrix (operator) p„d(t). The first term on the

. right-hand side of (A21) is the only term present if there
is no stochastic Hamiltonian. The second term involves a
succession of three superoperators and is explicitly t
dependent. This t dependence is the price paid in order to
achieve the contraction of the description.

When Ht+0, G(t) does not vanish, and it is not ex-
pressible in the form of a simple commutator operator
(superoperator), i.e.,

*

'll

exp — t [HO, ]—G(t)exp —t[HO, ] &[H,tt(t), ] .
J

(A22)

Therefore, (A21) is not a special case of (A2), nor is it
equivalent to (Al), with an effective Hamiltonian.

The operator curnulant expansion is expressed

G{t)= g G'"'(t).
0=1

The first two cumulants are

G' '(t) = —
z f ds &[Hz(t), *][Ht(s), ] )

—f ds G"'(t)G'"{s) .

Equation (10) follows from these formulas.

APPENDIX 8

(A25)

Texp ——I ds [its(s), ] l
OQ f

=Texp y f dsG'"'(s)
m=1

Explicit expressions exist for the nth operator cumulant,
G'"', in terms of the moments of Ht. Comparison with

The effect of having N molecules instead of only one
shows up in the analogs to Eqs. (18) and (19)

iA =[H,(t),P]+i' g RtP+iADP (81)

in which Rt corresponds with the definitions in Eqs. (13)
and (15) except that the molecular states in these equa-
tions are now for the 1th inolecule; and Ht(t) is given by

Ht«)= XHtt«)= 2 [v(l4t)E«)&lt I+ lit&&p«)&4 l)t+g(I3z&a&2t I+

l2z&a'&3(I�)I,

(82)

where again the molecular states with subscript i are for the 1th molecule. Our notation ignores factors of identity
operators for each orthogonal factor of the Hilbert space, just as we earlier discussed for Eq. (5). Thus„

I
3t)a&2t

I
is

really Qk+t I
3t)a &2t I X lk. The correct eigenkets contain X indices:

I
i&i2 - . . i' ), where it= 1,2, 3,4 for

i = 1,2, . . . , ¹ The analogs to the diagonal equations {20) through (23) are

t&& P™t,t, i,t, .~t~= g &tie' 4 I [Htt(t)P] liii2 iN)

X
+'& g &iii2 ' ' O'

I &tp I
iii2 ' ' ' 4")+'~pi)), i', ), (~(~ ~

1'=1
(83)

This amounts to 4 c4agoQal equations. Thc photon den-
sity matrix, which for one molecule was given by
&= $,. ,p;; [Eq. (34) wherein we have already adiabati-
cally removed p44] is now given by the N-fold trace

4 4 4=x x xp. . ., . . „'.. (84)
ig=1i2 ——1 IN= 1

Qo 4 4XXX
n =Oi( —1)2—1

4

~1 )22 '~NN
iN ——1

(85)

To obtain the analogs of Eqs. (20)—(25), we perform

The N-fold trace over P satisfies the N-molecule normali-
zation requirement
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reductions of the density-matrix expressions such as in
Eq. (83). This is done by tracing over molecules 2
through N. Without loss of generality, we are isolating
molecule 1 since the molecules are identical. Thus define

pi, i, or p;,J, by

4 4
(Q6)pl) J) ~ ~ pl)J)l2l2 ' l~l~

i2 ——1 i~ ——1

in which 5; J is the Kronecker delta symbol. The first
three terms of the right-hand side coincide with Eqs.
(20)—(25). The extra terms, which only contribute to di-
agonal elements, result from the noncommutativity of the

p molecular matrix element with the photon operators. It
also follows immediately from Eq. (87) that the & defined
in Eq. (84) satisfies

This yields the reduced equations
gA

=(ii
I [Hl i(&),p] I

ji)+i&(i i I &iP I ji)Bt
+ifiDp; J 5;,J,

N

+&;„,g g ([a',p3,2,]+[a,p2, 3,])
l=2

(87)

iiri =ihD&+g g ([a",pi, 2, ]+ [a,p2, 3,]) .
1=1

(88)

Adiabatic elimination of off-diagonal elements from the
system of equations given by Eqs. (87) and (88) will result
in the N-molecule analogs of Eqs. (31)—(33).
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