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The coupling between betatron and synchrotron oscillations in a tapered wiggler free-electron
laser (FEL) is investigated analytically and numerically. The resonance between the oscillations,
first investigated by Rosenbluth, is shown to be important only for a very limited range of parame-
ters. In general, the resonance is not a serious detrapping mechanism for high-power FEL amplifi-
ers.

I. INTRODUCTION

Tapered wiggler free-electron lasers' have been pro-
posed as efficient, high-power sources for various pur-
poses (e.g., inertial confinement fusion). These devices
will work as intended only if those electrons which are
trapped in ponderomotive potential wells can be adiabati-
cally decelerated. The electron energy lost in the decelera-
tion is gained by the electromagnetic field. Any effect
which permits trapped electrons to escape the potential
wells during deceleration decreases the fraction of
electron-beam energy that can be converted to radiation.

Rosenbluth has suggested that resonance between the
synchrotron and betatron oscillations of an electron can be
such a detrapping effect. Synchrotron oscillations are the
quasiperiodic motions of an electron trapped in a pon-
deromotive potential well. ' Betatron oscillations are the
harmonic motion in the x-y plane (transverse to the beam
and laser-propagation direction) and are due to the trans-
verse variations of the wiggler magnetic field strength,
and to external focusing (if any; see Sec. VI). The oscilla-
tions are coupled if the wavefronts of the laser field are
curved; the betatron motion then periodically forces the
electron to different phases in the ponderomotive poten-
tial well. The electron's natural synchrotron oscillations
can become amplified when they and the betatron forcing
are in approximate resonance.

Rosenbluth showed that the range in laser power for
which resonance occurs partly overlaps that proposed for
high-power free-electron-laser (FEL) amplifiers. In order
to assess the importance of resonant detrapping, we have
extended Rosenbluth's analysis with a numerical study of
the resonance, and with two-dimensional particle simula-
tions of its effects in high-power amplifiers. We find
quite generally 'that the adverse effects of resonant detrap-
ping are greatly ameliorated by two other effects: First,
high gain combined with the wiggler taper moves the elec-
trons through resonance too rapidly for many to be de-
trapped, and, second, gain rapidly straightens the wave-
fronts of the laser field, thereby decreasing the coupling
between betatron and synchrotron motions. We conclude
that resonant detrapping critically affects FEL operation
only if it is designed to.

This paper is organized in the following manner. In
Sec. II we rederive the resonance equations in the labora-

tory frame; Rosenbluth's approximations are elucidated.
In Sec. III we describe a numerical study of the resonance
equations and the critical boundaries in parameter space
within which synchrotron-betatron resonance detraps elec-
trons. In Sec. IV we describe the simulation code in some
detail, and in Sec. V we substantiate the conclusions men-
tioned in the preceding paragraph. In Sec. VI we briefly
discuss an alternative origin for detrap ping by
synchrotron-betatron resonance; the presence of strong
external (nonwiggler) focusing may produce another form
of the resonance which can easily dominate that due to
phase-front curvature.
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is the wiggler magnetic vector potential,
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A =A x I+ sin(k„z)
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k~x'
+g 1+ cos(k~z) (3)

and y is the Lorentz factor of the electron. This form
[Eq. (3)] for the wiggler field is an approximation to a
"realizable" wiggler field; it satisfies Maxwell's equations
through 0(k„r ), and thus is a good approximation for
small betatron amplitudes.

The electric field of the laser radiation that is amplified
by electron motion in the wiggler of Eq. (3) is circularly

II. RESONANCE EQUATIONS

Rosenbluth worked with the electron equations of
motion in a frame of reference moving with the pondero-
motive potential well. We prefer to work in the laborato-
ry (wiggler) frame, but the connection with the pondero-
motive frame can be made without difficulty.

In the absence of external focusing, an electron in a hel-
ical wiggler executes approximately harmonic betatron
motion in both transverse dimensions x and y:

d'
(x,y) = —ktt(x, y),

dz

where
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polarized, and can be written as

(4)

Both E, and p are functions of x, y, and z.
The longitudinal equations of motion for an electron in

the combined wiggler and laser field are most convenient-
ly written in the variables y and P (the phase of the elec-
tron in the ponderomotive potential well):

df ks=k„— (1+a +y pi —2a~a, cos1()+, (5)
dz dz

r =rpcos(kpz +pp),
where pic is an arbitrary initial betatron phase. If the ra-
dius of curvature of the phase fronts and the beam size
change slightly over several betatron periods, Eqs. (5) and
(6) yield a second-order equation for g:

a~eg k~
k~+ (1+a~+y p~) sin1(

ck f 2+
2 2k, kprp ks d

cos[2(kpz+y~)] 2
— (a +y Oi) .

dz
dy Q~ eg

sing .
dz

(6) (12)

leap
e, (r,z, t) =eo

N

p2/~2 I (k Z —Cjjgf)+1f'
e —l' W

Here, a, =e, /—k, =eE, /k, mc, and a~:b~/k~—, Equation
(5) is correct to first order in a„ invariably a small dimen-
sionless number, and assumes that y ~& I+a~.

The y2Pi terin in Eq. (5) is the square of the electron's
dimensionless x-y momentum in its betatron orbit. %'hen
the betatron. motion is due entirely to helical wiggler
focusing [Eqs. (1) and (2)], the sum a +y Pz remains
constant throughout the betatron motion of an individnal
electron.

The coupling discussed by Rosenbluth between beta-
tron (x-y) motion and synchrotron (y-1() motion occurs
via the dp/dz term of Eq. (5). If g depends on x or y
(i.e., if the phase fronts of the laser field are curved), then
the betatron motion produces a periodic forcing term in
the expression for d1(/dz.

For a vacuum Gaussian laser beam,

Here we have assumed that a,k, /2@k && I, permitting us
to drop several terms that are negligible in that limi. t. The
term proportional to d(a~+y Pi)/dz vanishes when the
betatron motion is described by Eqs. (1) and (2); it can be
important if there is other external focusing of the elec-
tron beam. We defer discussion of that term until Sec.
VI, and far now assume it to vanish.

If we assume that both (a) the sum a +y Pi is con-
stant, and (b) y is constant and equal to the synchronous
energy y, (for which dg/dz =0 in the absence of phase
front curvature), where

y,'=— (1+a'+y'Pi),
2k

the usual penduluID equation, with the addition of a
periodic forcing term, is recovered:

2e~b~ krak pr psing — —cos[2(k~z+yp)] . (14)d" y'

with p and w expressible as

k, r
g( r, z) =y(O, z)+

2 j./2
z=~o &+

~R

(8)
A, =e U3p

LU

Zeob

'Vr
(15)

~=A,z, (16)

Equation (14) can be made dimensionless by introduc-
ing

The radius of curvature (R) of the phase fronts is given

by

a =2kp/0, ,

P= k, r pa2/4R,

(17)

(18)

2R
(10) A, = r p/2N

where z is measured from the longitudinal position of the
laser-beam waist. Here, zii ——k, wo/2 is the Rayleigh
length; mp is the radius at the beam waist, at z =0. The
phase on axis, g(O,z)= —tan (z/zR), is slowly varying
and can be neglected in Eq. (5).

Individual electrons follow elliptical orbits in the
wiggler field of Eq. (3). Those in circular orbits are not
affected by phase-front curvature because r (hence y) is
constant in Eq. (8). Those in linear orbits are affected
most; r varies from 0 to a maximum, rp. We will consid-
er primarily else:trons in linear orbits in this section (al-

though the simulations described in Sec. V include orbits
of arbitrary eccentricity).

For an electron in a linear orbit,

—A, cos(uwj

dH
= —e '"' 'sinf+Pcos(a~), (20)

precisely the equation obtained by Rosenbluth.
Resonance between the natural synchrotron oscillations

and the periodic forcing occurs for cz = 1. Near resonance,
values of P or A, above an a-dependent minimum will lead
to rapid electron detrapping. In Sec. III we determine the

Here, Q, defined by Eq. (15) is the synchrotron frequency
averaged over a linear betatron orbit, 13 is the amplitude of
the phase-front —curvature forcing term, and A. measures
the spatial variation of field strength e, within a betatron
orbit. After substitution of (7) into (14) with the arbitrary
choice of pp ——m'/2, we find
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ur P
SX

4w0
(22)

Detrapping is strongest at (or very near} p,„,where, since
w =w([l +(z/zg ) ],

(23)
2w 4NO

Thus, at the point of maximum detrapping in a given
beam, a, P, and I, are related by

2pmax=a ~ '' (24)

The boundary between trapped and detrapped orbits can
therefore be reduced to a curve in a, A, space, with p at
each point on the curve having the value given by Eq.
(24)

Figure 1 is an approximate graph of that boundary

0.3

boundary for detrapping in (a, A, ) space, with P set equal

to the maximum value possible for a Gaussian vacuum

beam.

III. DETRAPPING BOUNDARIES

Whether or not an electron whose motion is described
by Eq. (20) is detrapped depends upon the three parame-
ters a, p, and A, . The three parameters are not completely
independent, however. For a vacuum Gaussian beam
with waist radius wo, and for a given rp,

2 2

2 2 ~

a rp z/zz
(21}

2wo 1+(z/zR)

Thus P has a maximum at z =zz.

A,,„,(a). Particles whose orbits are characterized by
A, ~ A,,„,become detrapped. (The y dependence of the syn-
chrotron and betatron periods, for orbits with large y-P
variations, slightly raises the boundary shown in Fig. 1.)
We have determined the curve by numerical integration of
Eq. (20} with the initial conditions 1t =dt)'j/dr=0, so the
boundary refers to detrapping from the bottom of the po-
tential well. Our trapping criterion is that g remain less
than ~ for r & 100m. Also plotted in Fig. 1 are the values
of P ~ corresponding to A. on the detrapping boundary-
so the figure may be considered a plot of the detrapping
boundary in either a, A, or a,p space.

The boundary shown in the graph is only approximate
because the location of trapped orbits on the plot is much
more complicated than a simple boundary: Some orbits
well above the curve remain trapped beyond ~=1000m.
Trapped orbits appear to lie in bands on the diagram:
The disappearance of trapping bands produces apparent
discontinuities in the diagram, but the band locations de-

pend strongly on the chosen trapping criterion. A more
careful study of the trapping bands, with a more exact
delineation of the detrapping boundary, is not relevant for
the purposes of this paper, and we do not pursue the orbit
structure further.

For an electron-beam radius rb-eo, A, =0.25 at z =zz,
and P will remain less than a /4 for most of the electrons.
Figure 1 includes the line A, =0.25; the range of a
(0.8 & a & 1.1) for which the detrapping boundary goes
below that line is the range for which detrapping may be
important.

Substitution for kp and 0, in the definition of a gives
the simple relation

(25)

0.25

oximate)

where the parameter g depends on the wiggler geometry;
it is unity for a helical wiggler and W2 for a linear
wiggler. (The difference is entirely in the expression for
the betatron wave number, as long as rrns values are used
for b and e, in the linear wiggler. ) For betatron orbits of
arbitrary eccentricity, a should be considered a function
of radius through the radial variation in e, . For a Gauss-
ian laser profile with power Pi (in W),

2 -&r4

a(r)=180ge' ~ (26)
PI

0
0.7 0.8 0.9 1.0 1.2

FIG. 1. Approximate boundary between trapped and

resonantly detrapped single-particle orbits. Orbits described by

Eq. (20) were numerically determined for a range of a—:2k'/0,
and A, —:rii/2wi. For each (a, A, ) point, p was assumed to have

the maximum value possible (p,„=a A, ) for a vacuum Gauss-
ian beam. The solid curve is p,„versus a; the dotted curve is

A,,„t versus a. For a we11-matched laser beam with m0 rp,
A, =0.25 at z =z~. Resonant detrapping can be important for
the range of a between the two intersections of the dashed line

A, =0.25 and the dotted curve A,,„„0.8(a(1.1. The apparent
discontinuity in the solid and dotted curves at a=1 is a reflec-

tion of the band structure for trapped orbits described in the

text.

With reasonable assumptions about the parameters for an
amplifier, u can be related more closely to laser power.
For example, choosing k wo ———, and a„=z/zz ——1 gives

a =0.7([Pi (GW)] (27)

on axis.
The range in a for which detrapping is important

(0.8—1.1) translates to a laser-power range of
0.6&Pi &2.3 GW for a linear wiggler, or 0.2&Pi &0.6
GW for a helical wiggler. Taken at face value, these re-
sults suggest that FEL experiments must carefully avoid
this power range or suffer great loss in trapping and
energy-extraction efficiency. Presently, there is wide in-
terest in amplifier designs which will start with initial
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1Rsef powers 1Q tlM sul3-GW —to—6% range and which
%'ould traverse this danger zone. The detr8pplng reso-
nance is thus of' practica1 interest.

In a tapered uggler amphfier, hwvever, both the
wiggler taper (kp decreasing with z) and the laser gain

(Q, increasing with z) work to decrease a. Furthermore,
gain rapidly straightens the phase fronts of a diverging
laser field, decreasing p. All these effects conspire in the
same way: to encourage electrons to move through reso-
nance rapidly and safely (sec Secs. IV and V}.

Even in the absence of gain ancl taper, Rt least Qnc other
effect inhibits detrapping: a finite number of betatron
wavelengths are required for a particle to detx'ap. To esti-
IQatc rougMQ the distance rcqLllrcd for dctrappiI1g, wc can
model Eq. (20) by the simpler expression

d2$ =—g+pcosf, (2g)

whose solution is

p(r) = sinf+Ci sinf+Ci cosf .
2

A particle imtiaHy at I'est 1n thc bottom of the potential
well (Ci ——C2 ——0} will detrap when its maximum 1(=m..
This occurs in a time r(1(=m)=2m/p. When a= 1,
rp wo, and P,„—=—0.25, we find

kpz(1(=m)=4m .

However, p=p, „only for of the order of one Rayleigh
range [see Eq. (21)]. Using the definition of kp and za,
and the resonance relation (13), we find

y(k~ ur z )a„
kpzg ——

z )4m (31)
2(1+a )

for dctrapping. Choosing, as before, k mo- —, , evalua-
tion of Eq. (31) at its peak of a =1 indicates that a
mimimurn y is necessary for substantial detrapping in one
Rayleigh range:

k pzii
——4m(y/320) .

However, if one insists that the half-height hy]~2 of the
ponderoxnotive well,

e,b
&y imp(bucket} =

A:

bc approxiIHatel jj eqgaI to thc effective CJlcrgy spread duc
to random transverse betatron motion (see Ref. 6),

y(k ioo}a~
hyi&2(transverse) =— (34)

4(1+a~)

in order that a significant fraction of the particles be
trapped, then relation (31) may be rewritten as

2i/2 i) yi&i(transverse)
k pzg- a b y i'(bucket)

One sees that, for a well-«Iesigned wiggler
[hyi~z(bucket) )4@i~2(transverse)], a particle will spend
1ess than a betatron wavelength in the resonant dctrapping

fcgioii (0.8 (cx ( l. 1) witli p close to p „. To summarize
these arguments, in order purposely to cause significant
detrapping, one must choose relatively large valves of
both y and k„ws [relation (31)], low gain, and a very low
initial trapping fraction [relation (35)]. Thus it is our
opinion that designers of moderate- an«I high-gain FBI.
amplifiers should easily be able to avoid substantial de-

trapping from the betatron-synchrotron resonance, even

near the critical power of 1 GW. 'These opinions are rein-

forced by the numerical simulations described in Secs. IV
and V.

In or«Ier to avoid the restrictive assumptions required
for the analytic theory, %'e have extensively I]loclifiecl a
computer code to siIDUlate nurncricaHy the effect of
synchrotron-betatron resonance on a high-gain amplifier.
Thc code models thc interaction of an axispmmctnc laser
beam with an axisymxnctric elcctx'on beam in a helica1

wiggler. A single ponderomotive potential well is fol-
lovved ln z, as ln the codes «Icscrlbed In Ref, 4. Thc propa-
gation of radiation is «Iescribc«I by the paraxial apprmima-
tion, solved numerically with a finite-e1ement method on
a radial grid with generally -60 grid points between the
axis and r~,„&10mo. The electro@.-beam source for the
radiation fieM is modeled by particles which move in
straight-line orbits (constant r) These p.articles move in

y, f space according to Eqs, (5) and (6), but with y~pi
he1d constant. %'e have found that 256 particles at each
of approximately 30 radial points provide more than suf-
ficient accuracy for calculating the laser-field-source
terms. %7%}I"e use a predictor-corrector methOd of the type
developed by Gear to advance the field and particle equa-

tions sl IHultaneously.
The code can design its own tapered wiggler; we have

QlmseI1 to taper Q~ %1th kLi lmld constant. The self-design
is accomplished by maintaining a fictitious particle in a
fixed circular betatron orbit (at r =fd„,s„) at a constant
positive g=g, . As the particle decclerates [dy/dz(0,
cf Eq. (6).], the value of a„ is decreased to keep P con-
stant for this single partide. This procedure may not lead
to the optimum design, ' but suffices for the purposes of
th18 paper,

The particles that move in straight-1ine orbiis cannot
exhibit the synchrotron-betatron resonance, of course;
they do not undelgo betatron rIlotion, To study thc 1cso-
Hance, %'e have R«IQed test particles whickl «io Undergo
betatron motion as described by Eq, (1},while being de-
celerated in thc laser field 81l1P1ificd by thc Straight-linc
particles. The physics of resonant dctrapping is complete-
ly described by the test particles; their motion in y, P
space should UnaIllbiguou81y lndlcatc thc 1ITlportancc of
detrapping in the pxesence of wiggler taper and gain,

A typical computer run follows 4096 test particles that
ax'c loaded with an cquilibriuxn Gaussian distribution in x,

v~, and Uy. Thc co«IC Qlagnostlcs examine these parti-
cles statistically. Nine other "probe" test particles are ini-
t1allzcd (scc below) witll specific beta'tfoii ofbits and loca-
tions in y, Q space: The orbits of these nine particles are
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plotted as a diagnostic to permit a careful study of detrap-

ping effects seen only statistically in the majority of the
particles.

Both sets of particles experience the off-axis effects of
an increasing a [Eq. (3)] and changing laser field. In ad-
dition, the test particles naturally have a spread in y P~ at
any given radius, just due to their betatron motion. In or-
der to achieve consistency in energy loss between the
straight-line and the test particles, an artificial spread in y
is introduced into the former. This spread represents the
"equivalent energy spread" due to random transverse
motion discussed in Ref. 6. (The other component of the
overall energy spread described in Ref. 6 is due to the fi-
nite size of the electron beam in a wiggler field that in-
creases off axis. This effect is naturally in the code. )

The code has an extensive set of diagnostic plots. The
ones relevant to resonant detrapping are as follows:

(a) the power in the laser field as a function of z;
(b) the laser power calculated from conservation of

laser —plus —test-particle power —this must approximately
agree with the calculated laser power if the run is self-
consistent (i.e., the initial spread in y is properly chosen);

(c) histograms of particle number versus final y for
both test and straight-line particles;

(d) contours of y (phase of electric field) in r and z;
(e} a plot of a versus z at several radii;
(f) the y-P orbits of the nine special test particles men-

tioned above.
These nine test particles are initialized in betatron or-

bits with a rms radius of rd„;g„. three in linear orbits,
three in elliptical, and three in circu1ar orbits. In each set
of three, lit is set to t/r„, P, +sr/4. All are started with

Vr
The particles in circular orbits do not "see" any phase-

front curvature, and so should not be affected by the
betatron-synchrotron resonance. The particles in linear
orbits should be most strongly affected. The particle at

in a circular betatron orbit should, by design,
remain at f=g„ in the self-designed taper, except for the
fact that the fictitious design particle is kept at a fixed ra-
dius, while the betatron orbit of the test particle expands
as a~ decreases.

V. SIMULATION-CODE RESULTS
We now discuss the results from a series of simulation

runs centered at two electron-beam energies: y=500 and
100. The higher energy was chosen in order that the
product kpzR would be sufficiently large to cause signifi-
cant detrapping in the absence of any gain effects [see ex-
pressions (30) and (31)]. The lower energy was chosen in
order that the ponderomotive potential well would be suf-
ficiently deep to capture a large fraction of the electrons
[see expressions (33}and (34)]. All runs had the following
parameters in common:

a~(z =0)=1
=8 cm (wiggler wavelength),

rs =wc ——0.424 cm (k tun = —,
' ),

design =0.7077 y,
$,=0.35 .

A. High-energy results

0. 9

0.8

0. 7

0. 6

0.5

0. 4

0.3

radius (cm)

0. 0

0. 17
0, 30

0. 1

0. 0
100

Z (m)

200

FIG. 2. Plot of the resonance parameter a versus z at three
radii for a high-energy computer run (y=500, a =1, A, =8
cm, A.,=0.32 pm, mo ——r~ ——0.424 crn, rd~;~„——0.30 cm, and

g, =0.35} with infinitesimal electron-beam current. The z
length of 221 m corresponds to 1.25 Rayleigh ranges.

The choice of y =500 and the above parameters results
in the laser wavelength A,, =0.32 pm and kpzR-6. 25m.
In our first run, the electron-beam current was made van-

ishingly small in order to isolate resonance detrapping
from any laser-gain effects over the propagation distance
of 1.25zR. The laser-beam focus was 0.5zR upstream of
the wiggler. The laser intensity of 0.6 GW yielded a =0.9
(see Fig. 2), when P=P,„at one Rayleigh range down-
stream of the laser focus, and an e, such that
byi~z(bucket)/brt~2(transverse)=0. 15. The phase space
trajectories of the nine speria1 probe particles plotted in
Fig. 3 show that five out of the six in elliptical and linear
betatron 'orbits detrapped. The trajectories show an ap-
proximately linear increase of the P turning-point values
with decreasing y, symptomatic of what is expected from
the resonance instability [see Eqs. (20) and (29)]. The
sixth probe particle (upper right-hand corner of Fig. 3}
initially shows large growth in its Q excursions, but then
apparently gets out of phase with the resonant driving
term, and the excursions decrease rapidly during the last
third of the run. We have seen similar effects in our nu-
merical integrations of Eq. (20), probably due to the P
dependence of the synchrotron frequency.

The spread in y used for the straight-line particles in all
of these runs was the effective energy spread due to beta-
tron motion, Eq. (34). The difference between the final
trapping fractions for the straight-line and test particles is
therefore a fairly good indication of the importance of
resonant detrapping. Even in this first run, the difference
is small (=5%%uo for the straight-line particles versus =4%
for the test particles; cf. Table I). We conclude that al-
though detrapping is unquestionably occurring here, its
net effect is not large.

We increased the current in our second high-energy run
to 1.0 kA. This led to a laser gain of =50%, as measured
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FIG. 3. Phase-space trajectories for the nine special test particles in the diverging laser field of Fig. 2. The abscissa is the particle s
phase l( modulo 2n Detrapp. ing is indicated by large excursions in |I with little change in y. The particles in the top row have linear
betatron orbits, those in the middle, elliptical, and those in the bottom, circular. The three columns correspond to g(z =0)=g/r, —m/4,

g„, and f, +m. /4. All but one of the particles in elliptical and linear orbits are resonantly detrapped by the phase-front curvature.

by the energy loss of both the straight-line and the test
particles (see Fig. 4). None of the special probe particles
detrapped as shown in Fig. 5, and comparison of the final
cumulative histograms for the two sets of particles shows
similar trapping fractions of 6 lo for each (see Table I).

In our last high-energy run, the current was again negli-
gible (i.e., no laser gain), but the laser power was increased
fourfold to 2.4 GW to increase the bucket height and de-
crease a by a factor of W2. The plot of the nine probe-
particle trajectories in Fig. 6 now shows that none were
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TABLE I. Trapping fractions.
Laser

- Particl
Power from Tes t

e Energy Conservation

Igg (kA) I'I (GW) Test

Percentage trapped
Straight

line

500
500
500
100
100
100'

2.5 ~ 10-'
1.0
2.5 g 10-'
2.5 &&

10-'
1.0
2.5

0.6
0.6
2.4
0.6
0.6
0.4

5
6
7

22
23
22

4
6
7

25
26
23

'For this 1ast run, the vacuum laser waist was 1.0z& rather than
0.5z~ upstream of the wiggler entrance.

0 I I I ~ I I I I I I I I I I I I I I ~ I ~ I I I I I I I I I I I I I I ~ ~ ~ I I ~ I I I I I I I I I s ~ ~ s I
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FIG. 4. Laser gain as m.easured by straight-line and test-
particle energy loss for a high energy-run with the same param-
eters as in Fig. 2 except the electron-beam current is 1.0 kA.
The similarity of the two energy-loss curves suggests that little
resonant detrapping occurred in this instance.
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FIG. 5. Probe-particle trajectories for the run of Fig. 4. As cornpa. red with the no-gain run of Fig. 3, all of the probe particles
remain trapped due to the laser gain reducing a.

detrapped and that essentially no growth in the P turning
points occurred. The trapping fraction for both sets of
particles was again very similar. %'e conclude that little
detrapping occurred in this run. These results imply that
it is relatively easy at high energy to defeat the resonance
instability by either increasing the initial laser intensity or
obtaining sufficient energy extraction from the electron
beam to cross the resonance region quickly.

B. Low-energy results

The low-energy computer runs had. y =100, resulting in
A,, =8 pm, k~zz -1.25m, and b, y&&2(bucket)/ hy, &2(trans-
verse) =0.8.

The first run was one of no gain with a laser power of
0.6 G%' and a vacuum waist 0.5z~ in front of the wiggler
entrance. The probe particles show no detrapping over
the propagation distance of 2zR (Fig. 7), although their g
amplitude increased somewhat. The trapping fraction in
both the test and straight-line particles was close to 25%
(Table I), indicating that little or no detrapping took
place. , The second low-energy run was identical to the
first, except now the beam current was 1.0 kA. Again, no
detrapping was seen and the gain caused a to remain
below 0.7 at rd„;g„over most of the amplifier length.

In the last low-energy run, we decreased the initial laser
power to 0.4 G%, increased the current to 2.5 kA, and put
the laser focus one Rayleigh range upstream of the
wiggler. These changes caused the value of a to remain in
the resonant region for most of the propagation distance
(Fig. 8). Nonetheless, none of the probe test particles de-
trapped and the final laser power (2.2 GW) from the
straight-line particles is in good agreement with that (2.4
GW) extracted from the test particles. A glance at the r-z
contours of the laser-field phase q in Fig. 9 explains the
lack of detrapping. The strong laser gain led to a rapid
straightening of the phase contours, effectively decreasing
the magnitude of P by over a factor of 2, and preventing
significant growth in the f turning points of the test par-
ticles.

In theory, a system with extremely high gain on axis
can have a large, negative phase-front curvature which
might persist for many Rayleigh ranges. However, for
reasonable electron-beam currents ( (20 kA), we were un-
able to keep both negative phase curvature and a in the
resonant region [i.e., P~(r (rb )-1 GW], even with an ini-
tially converging laser beam. %'e believe it unlikely, then,
that the resonant detrapping instability can play an im-
portant role in FEL's for electron-beam energies in the
50-MeV region.
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FIG. 6. Same as Fig. 3, except the laser power has been increased to 2.4 GW from 0.6 GW, thus reducing a by a factor of V 2. No
resonant detrapping is evident.

VI. DETRAPPING IN THE PRESENCE
OF AN EXTERNAL FOCUSING FIELD

In the preceding sections we have considered betatron
motion driven by the variation of a with r; betatron
motion due to additional focusing was explicitly neglected
when the d(a +y pj )/dz term in Eq. (12) was dropped.
In the presence of external focusing, kp is no longer given
by Eq. (2), and a~+y p~ is not constant on an electron's
trajectory.

External focusing is likely to be used with a linear
wiggler. The vector potential for a linear wiggler,

d x
d-' = —kx,

2 2= —(k p
—kq)y,

(38)

(a~+y'P,'& = a~(0)+y'k p

for the betatron motion of a particle in the combined qua-
drupolar and wiggler magnetic fields. The sum a~+y pj
is then no longer constant when averaged over a wiggle
period:

kw3'
A =v 2A~x 1+ cos(k~z),

2

results in betatron focusing in the y direction with

kp b~/y, ——

(36)

(37)

yk~ypcos2[(kp ——k~)'~2z+y ]

+y~k xpcos (k~z+y„), (39)

but no focusing in the x direction. In order to constrain
electron-beam expansion in x, external focusing such as
that due to quadrupole magnets will be necessary. Denot-
ing kq as the focusing wave number in the x direction, we
have

where xp and y~ are the maximum amplitudes of motion
in the transverse directions, and y~ and yz are initial
betatron-orbit phases. In addition to a possible
curvature-driven resonance term in Eq. (14), there are now
the terms
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FKy. 9. r-z contour, plot of the laser-field phase y (in rad)
corresponding to the computer run of Fig. 8. The initial laser
beam had a vacuum waist one Rayleigh range in front of the
wiggler entrance at z =0. The rapid laser gain in the first 4 m
of propagation straightened the phase contours and significantly
reduced the resonant driving term P, thus preventing serious de-
trapping.
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2= —&'»nP+ + '
k (k —k )' 2

Xsin[2(k& —k )'~zz+p ]

straightening from rapid gain will have no effect on this
detrapping mechanism, so that external focusing is poten-
tially much more dangerous than phase-front curvature.

VII. CONCLUSIONS

kq sin(2kqz+q)„) .

F«kq «kp, Eq. (20) becomes

2 2 2
—A, cos(ar)

dr 4kp
, = —e '

sing kitztt— sin(ar), (41)

with a:—2ktt/II, . Negligible detrapping will occur if.
a &0.5 and the product

kq
kpzg 2 &1 .

4kp
(42)

For this case of weak external focusing, however, the
electron-beam shape will be highly elliptical if the initial
emittance is the same in the x and y planes.

Another choice for external focusing would be to pick
k~ =0.5k'. The betatron oscillation periods in the x and

y planes are then equal; thus, an initially circular electron
beam will remain so when transported through the
wiggler. Resonance now occurs when 0,=v 2k', and the
relevant power levels for rapid detrapping are reduced by
a factor of 4 from that found in Sec. III for curvature-
driven detrapping. However, the magnitude of the driv-
ing term,

kpztt (2ktt/Q, )/2V 2

for a circular orbit, can be much larger than the max-
imum possible, P,„=a /4, in the curved-wave-front case
[cf. Eq. '(22)]. Even at high laser intensities with
~2ktt/0, &0.5 (i.e., far from the betatron-synchrotron
resonance), detrapping may occur for large kite. This is
because the a~+y pj variations along a betatron orbit
cause yr [cf. Eq. (13)] to change too rapidly with z for the
electron to follow in its synchrotron orbit.

The precise effect of external focusing depends on the
details of the focusing, but strong external focusing in
some cases can drive synchrotron-betatron detrapping
more rapidly than can phase-front curvature. Phase-front

In this paper we have analyzed and simulated the
resonant detrapping instability caused by the coupling be-
tween the synchrotron and betatron motions of electrons
in a FEL amplifier. We have confirmed that
Rosenbluth's analysis applies in the laboratory frame and
have investigated numerically the regions in parameter
space where detrapping might be important. For reason-
able choices of a and k too, the resonant region corre-
sponds to a laser power of 0.2—0.6 GW for helical
wigglers and 0.6—2.3 GW for linear wigglers (see Sec. III).
However, because of the z dependence of the resonant
driving term p, there is no electron-beam energy for
which the critical laser energy is simultaneously sufficient
to trap initially a reasonable percentage of the electrons,
and for which detrapping will subsequently play an im-

portant role.
Runs with our two-dimensional simulation code con-

firm these conclusions, and also show that gain rapidly
straightens the laser-field phase fronts and makes the elec-
trons pass through the resonance region quickly. Taken
together, all of these effects make it unlikely that FEL-
amplifier experiments need encounter difficulty due to
this detrapping resonance.

An initial analysis of the detrapping effects of external
focusing suggests they may be large if such focusing is
strong (ke/k~-1) and k~zz -1. This detrapping will af-
fect electrons in both highly elliptical and circular beta-
tron orbits.
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