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Nonlinear coherence in three-level systems and SU(3} symmetries
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The problem of nonlinear coherence in three-level systems exposed to two monochromatic radia-
tion fields is treated using the unitary symmetries of SU(3). The Harniltonian and the initial density
operator are brought by a series of unitary transformations into a form in which the problem is re-
duced to a nutation between the two levels connected by the two-photon transition, i.e., to a time-
dependent unitary rotation within the proper SU(2) subgroup. The net effect of the two modes in
which the photons can combine in the nonlinear transition is shown to vanish gradually as the three
levels approach an equidistant pattern. This certifies that two-photon processes can occur in sys-
tems which obey SU(3) symmetry, but not in those which obey the symmetry of SU(2). Four in-
dependent constants of motion are identified for the process of two-photon nutation in three-level
systems.

I. INTRODUCTION

Nonlinear coherence induced in three-level quantum
systems by two radiation fields has been studied theoreti-
cally by a number of authors. ' They showed that it was
possible to introduce a generalized Bloch vector in analo-

gy with the two-level case. The precession of this vector
under the combined action of two radiation fields could
describe the evolution of coherence in a given three-level
system.

An alternative description has been developed for spins
I =1 in interaction with a single radiation field. The
Hamiltonian and the equilibrium density operator were
expressed in terms of fictitious spin operators and then
the coherent time evolution of the density operator was
found by solving the Liouville equation. It has been not-
ed that fictitious spin, operators represented in the eigen-
base of I, were identical to the generators of SU(3).

Recently, renewed interest has been paid to the problem
of nonlinear coherence in three-level systems ' The
new discoveries included constants of motion in the time
evolution of the coherence vector and solutions in the case
of slight two-photon off resonance. However, in all those
works it was assumed that each of the two radiation fields
could affect only one of the two transitions of the three-
level quantum system.

When one allows, as in the present paper, that each of
the two fields can affect both transitions, one obtains the
full interaction of the fields with the system. The non-
linear two-photon processes can occur under the effect of
both modes in which the photons from the two fields can
combine to form a transition. The group theoretical
methods used in the present paper provide a clear physical
insight into how the two modes compete and give the net
result. Besides a quantitative correction to the previous
results, ' the full treatment establishes a qualitatively
new result. Namely, the previous partial treatments
would give a nonvanishing two-photon coherent nutation
even in the case of an equidistant three-level system, while

the full treatment shows that the effects of the two modes
tend to mutually cancel each other as the quantum levels
become equidistant. This finding has a fundamental im-
portance since it demonstrates that nonlinear coherence
cannot be induced in quantum systems which obey the
internal symmetry of SU(2).

The operator method, used throughout the present pa-
per, enables one to find the constants of motion using the
commutation relations of the generators of SU(3). Four
independent constants of motion can be obtained for the
system treated in the present paper. Also, one can demon-
strate that the consideration of the commutation relations
can be used to rederive the three previously known con-
stants of motion" and obtain a new one.

This paper is structured in the following way. Section
II is devoted to the time evolution of the coherence in-
duced by two monochromatic radiation fields in a three-
level quantum system. In Sec. III we identify the possible
constants of motion and present a discussion of the issue.
Section IV concludes the paper.

II. TWO-PHOTON COHERENCE

The time evolution of the two-photon coherence in-
duced by two monochromatic radiation fields in a three-
level system was found by Brewer and Hahn. ' From the
set of nine coupled differential equations for the com-
ponents of the generalized Bloch coherence vector, those
authors have found the time evolution for each corn-
ponent, one by one. An alternative approach would be to
use the operator algebra in order to find the time evolu-
tion of the density operator. It then contains the solution
for all the components of the Bloch coherence vector at
ance. The latter procedure has been largely employed in
magnetic resonance problems where the spin systems obey
the symmetry of SU(2). ' The only difference for a non-
equidistant three-level system is that one should use the
algebra of SU(3).' ' Recently, the same approach has
been used for systems which have the internal symmetry
of SU(4). '7 "
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The problem to be treated in this section is depicted in
Fig. 1. The levels are denoted by 1, 2, and 3, and it is as-
sumed that the transition 1-3 is resonant for two-photon
transitions as indicated. In general, the two photons, of
frequencies co' and co", can be combined in two modes
which are denoted by I and II. In the previous papers'
only the effect of a single mode was considered.

The Hamiltonian of the system in interaction with two
radiation fields can be written as

H =Ho p—Eicos(co't ) p —Ezco. s(cu" t ) . (2.1)

2(a,I„'—+pII„)cos(co't)

2(azI„' +—pzI„)cos(co"t), (2.2)

where m,j——131 '(W; —Wz) and the transition matrix ele-

(1M Ejdlz (1M Ek)21 and pi. (1Lt Ei)23
=(1M Ei)32 Q, =1,2). The rotating-wave approximation
can be made by performing a time-dependent transforma-
tion with

UI ——expI i [(a)'+ c—o")tI,' + , (co' cg")t(—I,' —I, )]}—
(2.3a)

or with

UII ——exp I i [(co'+co"—)tIz' + , (co" co')t(I—z' I,—)]I . —

(2.3b)

FOr exact tWO-phatOn reSOnanCe m2$+c032 —co3I —N' +cO",
the effective Hamiltonians are

For the sake of convenience we choose to express the
Hamiltonian in frequency units. The unperturbed Hamil-
tonian is represented in its eigenbase I ~

i ) I by a diagonal
matrix with (H 0);;=II1 'W; (i = 1,2,3).

Assuming that hm =0, optical transitions can be in-
duced between levels 1 and 2, and between 2 and 3, the
Hamiltonian reads in terms of the generators of SU(3)'

H = —(cozi+co32)I, —T(0321—N32)(I, I, )—]3 12 23

HU ———7EI(I, I—, ) —aII» p—zI„
2 12 23 12 23

I

Hv = —, b, II—(I, I,—) a—zI„p—1I„
2 12 23 12 23

II

(2.4a)

(2.4b)

where the oscillating terms have been dropped, and the
detunings from the intermediate level 2 denoted as

~21 ~ (~32 ~ ) ~I (2.5a)

(2.5b)

for the two modes, respectively.
The two Hamiltonians in Eqs. (2.4) are identical in

form. Therefore, we can treat first the effect of a single
mode (either I or II) by dropping the indices on 6, a, and
P. The combined effect of both modes is treated subse-
quently.

A. Effect of a single mode

The Hamiltonian in the rotating-wave approximation
has been found to be

(2.6)

Since various terms in this Hamiltonian do not commute,
the propagator exp( iHUt—) cannot be factored. In order
to achieve factorization we first make a unitary transfor-
mation with

—igIl3R=e (2.7)

where 0 is determined by

CX—
tan( —,9)=2 +p

(2.8)

S=exp[ 2'~zig(I~ —I~ )], — (2.10)

which makes the x operators appear in the transformed
Hamiltonian in a symmetrical forin

HUII ————', 5(I,' Iz ) [ ,'(a +p—)]' —(—I„' +I„). (2.9)

Next, we transform with

where P is determined by

(a2+ p2)1/2
tanP =— (2.11)

f
—)- ——yh)

The Hamiltonian then reads

HtIIIs = —A(I& I& ) +QI&—
where

(2.12)

A =—(1+3 cosp) —,
' (a +p—)'~ sing, (2.13a)

0=—(1—cosP)+T'(a +P )'~ sing . (2.13b)

FIG. 1. Energy-level diagram of a three-level system. Two
photons of frequencies co' and a" can be combined in two
modes, denoted as I and II, in resonant two-photon transitions
between levels 1 and 3. The detunings from the intermediate
level 2, denoted with A~ and 6», are of the same sign but dif-
ferent in magnitudes.

The Hamiltonian (2.12) now consists of two coinmuting
terms, and the propagator can be factored.

In order to find the time evolution of the state of the
quantum system, one has to choose an initial density
operator po, transform it in the same way as has been used
for the Hamiltonian, and then evaluate
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URS iHUggt
pURs( r) e (p0) URse (2.14) HU ————', b ii(I,' —I, ')+ Qi(I„' cos8i+I,"sin8i)

The time evolution in the original frame can be obtained

by transforming pUiis(t) back by reverse transformations.
The exact solution would include the effects of both,

one-photon and two-photon processes. When the inter-
mediate level is close to resonance, the one-photon pro-
cesses predominate, while for

a—pI» P—)I»12 23 (2.22)

Following the above procedure for the first mode, we
transform with SiiRii and then back with RiiSii=Rii.
The obtained Hamiltonian is

b, »a, P (2.15) HU= ——', bn(I,' —I, )+(Qicos8i+Qiicos8ii)I„'

the intermediate level is left far off resonance and the
two-photon process predominates since it remains to be
resonant. Condition (2.15) implies that /=0 [cf. Eq.
(2.11)], and one can approximate S with the unit operator
which leaves the density operator unchanged.

As an example we may give the evolution of the system
which was initially in level 1 so that

+ ( Qisin8, +Qiisin8„)I,'

where Qn is give»y

1 &2+Pi
II 4 ~II

and 8&& is determined by

(2.23)

(2.24)

p, = , [I+(I,—I,)]+—I, (2.16)

The time evolution is given by

pU(t) = ,
' [I+(I,—' I, )]+—I,' I I+c so8[cos(Qt) —1]I

—I sin8cos8[cos(Qt )—1]—Iz' cos8 sin(Qt )

(2.17)

Pi-
tan( —,

' 8») =
&i+Pi

(2.25)

—ip"T=e (2.26)

Since the last two terms in Eq. (2.23) do not commute, the
Hamiltonian still has to be transformed with

which describes two-photon nutation between levels 1 and
3. The maximum nutation amplitude occurs for cos8=1
which requires a=P. Equation (2.17) predicts the same
behavior as the results of the previous papers. ' '

where g is determined by

AqsinOg+ Q)Isin8gg
tang=

Q)cosOy+ QyycosOyI

The Hamiltonian then reads

(2.27)

B. Effect of both modes HUr 3b, ii(Ig' I—,——)+QI„'— (2.28)

In order to evaluate the effect of both modes on the
two-photon coherence, one first finds the transformed
Hamiltonian for a single mode, say I, with the condition
(2.15)

H(gas) ———
3 bi(I» I» )+QiI„— (2.18)

where O~ is given by

1 &i+Pz
&r= ——

4
(2.19)

where 8i is determined by [cf. Eq. (2.8)]

&i —P2
tan( —,

'
8i) = (2.21)

+i+@2

Next, we transform back with Ui, and then forward with
Uqq. The combined transformation with U» UI replaces
5, in the first term of Eq. (2.20) + b,ii and leaves the
second term unchanged. In addition, one retrieves the
terms which have been dropped in the rotating-wave ap-
proximation for the first mode, so that the Hamiltonian
now reads

Approximating S&+ -I, the reverse transformations yield

HU = ——', Ai(I,' —I, )+Qi(I„' cos8i+I,' sin8i),

(2.20)

pUr(r)= 3 [I+(I, —I, )]+[I,' cos(Qt) —Iz sin(Qt)]

&&cosg+I„' sing . (2.31)

The two-photon nutation occurs with frequency Q and
amplitude cosg in formal analogy with the results for a
single mode. A novel feature in the effect of both modes
is the possibility of reduced or even zero two-photon nuta-
tion amplitude in spite of the presence of two nonvanish-
ing radiation fields. The nutation amplitude for the single
mode vanishes only when a andlor P vanish, while in the
case of both modes the nutation amplitude vanishes for

where

Q =+[(Qicos8i+ Qiicos8ii) +(Qisin8i+ Qiisin8ii) ]'~

(2.29)

The sign corresponds to that of the coefficient of I„' in
Eq. (2.23).

In transforming the initial density operator we note that
poU

—
po and that the form of T is identical to that of R

with 8 replaced by g. Hence, for the initial density opera-
tor taken in the form of Eq. (2.16), one obtains

(po)Ur ——,
' [I+(I,' I, )]—+I,' cosg+—1„' sing . (2.30)

Finally, the time evolution of the density operator is given
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&iP2 ~2Pi
Qicos8i+ Qiicos8ii= +

I II
=0 . (2.32)

Noting that a ipz
——azpi p—i—zJL23EiE2, the condition

(2.32) reduces to

~r= —~rr (2.33)

This condition, however, means that the intermediate level

2 is exactly halfway between levels 1 and 3, i.e., that we
deal with equidistant levels. This result is not a surprise
since three equidistant levels correspond to a system with
angular momentum J=1 in a dc magnetic field and the
three state vectors transform now according to the unitary
symmetries of SU(2). No two-photon coherence should be
induced in such a system

In order to explain the gradual merging of the conse-
quences of SU(2) and SU(3) symmetries we refer to Fig. 2.
The two 6's are of opposite sign, but not equal in magni-
tude as in Eq. (2.33). The nutation amplitude is given by

Izi&23&i&2

2/II
/

1 1

~r ~rr
(2.34)

When one of the b, 's is much smaller than the other, the
effect of one of the modes dominates over that of the oth-
er, hence, the latter can be neglected as has been done in
the previous works. ' ' ' However, as the 4's become
comparable in their absolute values, the amplitude of the
two-photon nutation is reduced according to Eq. (2.34).
A more physical insight can be gained by inspection of
the nutation frequencies for single modes in Eqs. (2.19)
and (2.24). The two frequencies become opposite in sign,
hence, one can say that the radiation fields taken in the
two modes tend to rotate the density operator simultane-
ously in two opposite senses. The amplitudes of the
single-mOde rOtatiOns are given by cOSOI and cos8», SO

that the rate for the combined rotation becomes

Incidentally, the present results have some bearing on
the stationary solutions for the two-photon absorption.
Namely, the imaginary part of the third-order nonlinear
susceptibility vanishes in the case of two-photon reso-
nance in a syste~ with three equidistant levels when the
intermediate level is inbetween the ground and the final
level. The present findings explain why the net transi-
tion probability for two-photon absorption vanishes in
this case.

For nonequidistant three-level systems the maximum
nutation amplitude is obtained for

QrsinOI+ QrrsinOII ——0, Q.36)

1 1 l0=TP I~23EIE2 +
II

(2.38)

which corresponds to the coefficient of I„' in Eq. (2.23).

i.e., when the coefficient of I,' in Eq. (2.23) vanishes and
/=0 [Eq. (2.27)]. The condition (2.36) can be written as

uzi Pz —~2 Pi—2 2 2 2

=0. (2.37)
I »

This relation is satisfied in the trivial case for ai ——Pz and

az ——Pi, which implies piz ——p23 and E, =Ez The .condi-
tion (2.37) then holds for any b, i and 6ii.

For
~

b, i ~
&&

~
4ii

~

the relation Q.37) is satisfied to a
good approximation with ai ——Pz. In this case the dom-

inant contribution to the two-photon nutation comes from
the first mode. In order to achieve the maximum nuta-

tion amplitude one has to adjust the field strengths ac-
cordlilg to (El /E2) =(@23/pi2).

When the b, 's are not much different from each other,
one has to use Eq. (2.37) in order to adjust the field
strengths for maximum nutation amplitude. When nuta-

tion amplitude is maximum, the nutation frequency is

given by

X=QICOSOr+ QIrcosOII . (2.35)
III. CONSTANTS OF MOTION

For exactly equidistant levels condition (2.33) holds and
the rate for the net rotation X vanishes according to Eq.
(2.32).

FIG. 2. Energy-level diagram of a system with three almost
equidistant levels. The detunings from the intermediate level 2
are slightly different in magnitude and of opposite signs for the
two modes in which the photons can combine in the nonlinear

transition.

The constants of motion of a quantum system in in-
teraction with the electromagnetic fields can be grouped
in two classes. In the first class one could include the
constants of motion which do not depend on the particu-
lar form of the Hamiltonian, i.e., do not depend on the
driving forces. Such a constant is the trace of the density
operator p, which, being equal to unity, reflects the total
probability of finding the system in all the eigenstates. If
the system is in a pure state, there are no further indepen-
dent constants of motion in this class. However, when the
system is in a mixed state, one has p &p and there are ad-
ditional constants of motion. For a two-level system there
is one additional constant of motion given by Trp . It de-
fines the polarization of the mixed state. For a three-
level system the polarization is determined by two in-

dependent parameters so that one may expect two corre-
sponding constantsof motion. Elgin, and Hioe and Eber-
ly' have recently found that these are Trp and Trp .
The state of polarization of the system cannot be changed
whatever the strength, timing, or number of the li.ght
pulses. In particular, one cannot drive the system from a
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statistical mixture into a pure state. '

The second class consists of the constants of motion
which depend on the particular form of the Hamiltonian.
%ithin the framework of the mathematical treatment
adopted in the present paper, these constants of motion
can be found using the commutation relations of the gen-
erators of SU(3).

The final transformed Hamiltonian, whether for a sin-

gle mode [Eq. (2.12)] or for both modes [Eq. (2.28)], al-

ways has the form

above results to those of Hioe and Eberly. " To that end
we have to transform the Hamiltonian of Eq. (2.6) in a
different way than in Sec. II A. The unitary operator

—rgI~ 13

L=e (3.8)

tang = ——
lX

(3.9)

transforms I' and I„ into each other. Choosing g ac-
cording to

H» a(r, ——I, )+—bI„ (3 1) one can make the coefficient of I„ in the transformed
Hamiltonian to vanish. The result is

where the index K denotes the total unitary operator used
for the transformation. Since the operators (I, I, ) a—nd
I„' mutually commute, they commute also with the Ham-
iltonian (3.1), and the conserved quantities are

Q1=((I, I, ))» ———(K (I, I, )K), — (3.2)

Q, =(r„") =(rc'I„"rc) . (3.3)

H = ——,b(r, —I )—(a +P )'/I„/

(I13 I32) ~12 (~2+p2)1/2I12 (3.10)

Following the above outlined procedures, one can identify
a linear constant of motion

The equivalence of the two forms on the right-hand side
of Eqs. (3.2) and (3.3) comes from the identity

C1 ——((I, I, ))t.———(Lt(I,' —I, )L )

and two nonlinear ones

(3.11)

Tr(p»Ig ) =Tr(pK I&JE),

where the transformed density operator is

p~ ——ICpK

(3A)

(3.5)

Thus, the constants of motion can be expressed in terms
of the matrix elements of either the transformed density
operator p~ or the original density operator p.

The operators such as (I,' I, ) and (—Iz ) also com-
mute with the Hamiltonian. However, they can be ex-
pressed as linear combinations of the unit operator I and
the operator (I,' I, ) and theref—ore do not provide for
new independent constants of motion. Note that the unit
operator commutes with the Hamiltonian of any form so
that the constant of motion (I ) =Trp pertains to the first
class discussed above.

Besides the constants of motion Q1 and Q2, which are
linear in the density matrix elements, one can also find
some nonlinear ones. Noting that the propagator
exp( —iH»t) transforms the generators Iz and I,' into
each other, one finds that the part of the density operator

p~ expressed in terms of I„' and 1,' evolves in time
separately from the rest. Since the coefficients of Iz in
the expansion of p» are given by 2(I&~)», the correspond-
ing constant of motion can be written as

Q3
——(Iy' )»+(I,' )» ——(K Iy' K) +(Ktr,' K) . (3.6)

Similarly, since the propagator exp( —iH»t) transforms
the generators I„, I„, Iz, and I„3 into each other,
the corresponding part of the density operator also evo)ves
as a separate unit. Hence the second nonlinear constant of
motion

Q, =&r„")' + (r„")'+ &I,")' + (I„")'
= (K'I "rc)'+ (K'I"K)'+ (rc'r "rc)'+ &rc'r"K) '

(3.7)

For the sake of completeness it is necessary to relate the

c,= &I„").'+ &I,"),'+ (r.").'
(Ltr12L )2+ (L tr12L )2+ (Ltr12L )2

C3 ——(I„")L+ (I„")t+ (I")L,+ (I")z
=(Ltr L) +(Ltr L) +(Ltr L)2+(Ltr'L)

(3.12)

where g is determined by

(3.14)

tang=
( 2+p2)1/2

One obtains

(3.15)

(I 13 I32) (g2+ 2+p2)1/2I12
3

(3.16)

which is formally similar to the Hamiltonian in Eq. (3.1).
The second linear constant of motion is

C =(I„' ) =(LtPtI„PL) . (3.17)

This constant of motion has not been found by Hioe and
Eberly. "

(3.13)

The constants of motion C2, C3, and C1 are equivalent to
the ones in Ref. 11, Eqs. (19a), (19b), and (19c), respective-
ly. Note that the orthogonal transformation in Eqs.
(9)—(11) of Ref. 11, which was found due to a remarkable
intuition of Hioe and Eberly, is equivalent to an overall
unitary transformation of all the generators of SU(3) by
the inverse of (3.8).

Besides C~, there should be still one linear constant of
motion in analogy with the existence of Q1 and Q2 above.
It can easily be found if the Hamiltonian in Eq. (3.10) is
transformed further by the unitary operator
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IV. DISCUSSION AND CONCLUSIONS

In the present paper we have shown that the classical
problem of two-photon coherence in a three-level system
can be solved using the transformation properties of
SU(3). The Hamiltonian and the initial density operator
have been expressed as linear combinations of the genera-
tors whose transformation properties within SU(3) could
then be used to perform a series of unitary transforma-
tions which brought the Hamiltonian into a form where
the three-level problem was reduced to a two-level one.
The two-photon nutation appeared as a time-dependent
unitary rotation within the corresponding SU(2) subgroup.

The two photons, which take part in the nonlinear tran-
sition, can be combined in two modes with unequal reso-
nance offsets from the intermediate level. Taking into ac-
count only one of the modes, one finds that both the am-
plitude and the frequency of two-photon nutation depend
on the field strengths and the detuning from the inter-
mediate level. The nutation amplitude becomes max-
imum when Rabi frequencies for the one-photon nuta-
tions are made equal (a =P). In that case, the two-photon
nutation frequency is proportional to the square of the
one-photon Rabi frequency and inversely proportional to
the resonance detuning from the intermediate level. Since
the detuning can be given either positive or negative
values, the corresponding rotation within SU(2) subgroup
occurs in one of the two opposite senses. This revelation
has been a clue to the understanding of the absence of
two-photon nutation, and, correspondingly, two-photon
steady-state absorption, in systems with three equidistant
levels. In this case the fields in the two modes tend to
perform rotations at equal rates but in opposite senses so
that the net rotation vanishes. In terms of unitary sym-
metries one can say that nonlinear two-photon processes
can occur in three-level systems which obey SU(3) sym-
metry, but not in those which obey the symmetry of

SU(2).
We have shown that the constants of motion, which de-

pend on the particular form of the Hamiltonian, can be
obtained using the commutation relations of the genera-
tors of SU(3). Four constants of motion have been identi-
fied, two of them linear and two nonlinear in the density
matrix elements. The obtained constants of motion are
not unique since any function of them is also a conserved
quantity. However, we have always found four indepen-
dent constants of motion for the system treated in the
present paper.

We have also shown that the Hamiltonian can be
transformed in two different ways, which lead to two dif-
ferent sets of four constants of motion. The two sets
present different, but equally valid pictures for the con-
served quantities in the time evolution of the system. The
first three constants of the set I C; I have been identified as
the ones found previously by Hioe and Eberly, "while the
fourth is a new one.

Finally, one should discuss the extension of the present
findings to the case when the field amplitudes and fre-
quencies are time-dependent parameters, i.e., when the
fields are not monochromatic. Hioe and Eberly" have
correctly noted that their orthogonal transformation holds
not only for monochromatic fields, but also in the case
when the two amplitudes have the same time dependence
so that one may write a(t)=aQo(t) and P(t)=bQ&(t).
The same holds for the treatment adopted in the present
paper. This can readily be seen by inspection of Eq. (3.9)
which gives constant g under the above-stated conditions
for a(t) and P(t) Hence .the unitary operator (3.8)
remains time independent. However, for a general time
dependence of the field parameters, one would have to
look for the Fourier components and reduce the problem
to the interaction of the quantum system with a multitude
of monochromatic fields.
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