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We obtain and discuss a closed-form expression for the time-dependent density matrix associated

grith spontaneous radiative decay from a continuum or a set of discrete states to a lower discrete

state.

I. INTRODUCTION

An interesting aspect of atoms undergoin0; 1aser-

enhanced autoionization is ihe spontaneous decay of the
continuum back to a discrete level. This process is the
analog of the spontaneous decay of a two-level atom ini-

tially prepared in the excited level, where the excited level

is replaced by a continuum of levels all of which decay
simultaneously to the lowest discrete state. As is shown

below, there is a closed expression for the time-dependent

density matrix of this system, given any dipole-strength
distribution of the continuum and its density-matrix ele-

ments at t =0. This result amounts to the calculation of
the Einstein A coefficient corresponding to a system of
one discrete level and one continuum. In the proper limit

the expression applies to an 5-level atom where all exci.t-

ed, initially populated N —1 levels decay spontaneously to
the ground state. The Einstein A coefficient is recovered
for the particular X =2 case.

The spontaneous decay of a single level which can ei-

ther ionize or photo-deexcite has been considered previ-
ously' in the framework of the A-matrix formalism. In
the terminology of the present work, this configuration
corresponds to the special case of a factorizable initial

density matrix. By comparison, the expression described

below [Eqs. (8) and (9)] applies for an arbitrary initial den-

sity matrix. Note also that the spontaneous decay of a
continuum back to a bound state enters in the more gen-

eral problem of laser-enhanced autoionization with spon. -

taneous decay (recycling), which received lately much at-

tention. ' The simplicity of the present general solution

can be appreciated when compared to the rather complex
expressions pertaining to the autoionization problem.
Another aspect of our result is its applicability to a system
af X discrete levels, all decaying back ta a common lowest

state. This configuration underlies the principle of beam-

foil spectroscopy, where the initial preparation of a group
of excited states is achieved by sending an atomic beam

through a thin foil, followed by monitoring the beats of
the time-depended. t decaying populations.

We discuss the content of the general expression for
two examples: for a nonAat continuum with a Pano
dipole-strength distribution ' and for a three-level atom,
where the population initially is in the first excited state.
For the first (continuum) example we find that the time-

dependent ground-state population Po(t) is of the form

Po(t) =a +be "', where a, b, k depend on the initial mode

of preparation of the continuum and on the dipole-

strength distribution. We also point out that in the spe-

cial case when the initial preparation of the continuum

conforms with the continuum dipole-strength distribution,
the resulting P&&(t) acquires a time dependence more com-

plicated than a simple exponent.
The three-level-atom resonance Auorescence spectrum

reveals a Fano zero. This comes about since the second
excited state draws some of the population of the first ex-

cited state at the early stages of the process, before energy
conservation is operative. At later times both leve1s decay
giving rise to total destructive interference (Pano zero) at
the energy of the second excited state. In the limit of near

degeneracy of the two excited states, the spectrum attains
a.n interesting "hole-burning" shape, the hole being the
Fano zero.

The paper is organized as follows. The central result is

derived in Sec. II. Section III is devoted to the discussion
of the general expression for some representative exam-

ples. In Sec. IIIA. we examine the density matrix in the
case of a continuum with a Pano profile and two limiting
modes of initial preparation. In Sec. III 8 we examine the
spontaneous decay of the simplest nontrivial example of a
three-level atom. A summary of the main results is the
content of Sec. IV.

II. THE TIME-DEPENDENT DENSITY MATRIX

The central result of this paper is discussed in the con-
text of a simple modei shown schernatica]ly in Fig. 1.
The model space consists of a ground state

~

0) and a
continuum

~

co ), coupled by a quantized radiation field in

the dipole and rotating-wave approximation:

Io)
FKs. 1. Schematic display of the model space, (

~

0), ( co)),
the continuum dipole-strength distribution I' {co) and spontane-
ous radiative decay of the continuum.
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H= Eo
~
0)(0

~
+fdco~C(co, co)+y~iaiai.

A A (~)
zB(cop, z) B—(cop, t =0)= —icooB(cop,z) —igzi (cop,z)a i

+g fdco[fiQi(co)B f(co)ai„+H.c.], —F*(cop)fdco'R (co')B(co',z) .

where

(lb)
In (3) a ~"' is the unperturbed photon destruction operator
and

For convenience the ground-state energy Ep is set to zero.
The label A, =(k, ei) 'defines the radiation-field modes by
specifying the momentum and polarization, respectively,
ai is the destruction operator for a photon in mode A, ,
and the coupling induced by the radiation field in the di-
pole approximation is

Qg(co) = —igi F(co),

where gi, is the radiation-field form factor7
gi, =(2irirtc /coi„V)' (ei. nd), co=ck, V is the quantiza-
tion volume, and F(co)=

~
e

~

cod p „/iric entails the dipole
distribution dp ——(0

~
r

~

co).
The Heisenberg equations of motion pertaining to (1)

are obtained in a straightforward manner. ' After elim-
inating the radiation-field degrees of freedom in the
Markov-Born approximation, the resulting equations are
linear in the atomic operator B(co), C (co,co'), and

Pp
~
0) (0

~

. In particular, the Laplace-transformed
equation of motion for the dipole operator B(co) is

R (co) =F(co)Q(co)

gigi, —i775(co —coi )
P

p(t =0)= (
I p) &0 I )R

g fdcodco ~co)C(co', co;t=0)(~
~

where
~ P } denotes the radiation vacuum state and

C(co,co', t =0) describes the initial preparation of the con-
tinuum.

,multiply Eq. (3) from the right by
~
P) and noting that

ai
~ P) =0 gives a separable equation which is amenable

to a solution in closed form:

(4)

F(co)
2 fico

3 c
(3b)

is the coupling embodying the presence of spontaneous de-
cay. The total t =0 density matrix p(t =0) is given by
the usual product form

B(coo,z)
i P) =

Z +lCOp
B(coo, t =0)P — dco'

F (coo), R(co')B(co', t =0)
~ p)

D z z+lco
(5a)

where

F*(co)R(co)

Z +LCO
(Sb)

and the inverse Laplace transform is

B(coo,t)
~ y &

= '
. f dz e"B(cooz) IN&

2m.i

Equation (5) is the key result since it allows the complete solution of the problem. To see that note from (lb) that

(y ~

C(co, co', t)
~ y) = (y

~

B (co, t)B(co', t)
~
y)

and the unitarity relation and equation of motion for Pp(t) give (after taking the (p
~

~

~ p ) average)

di di
Po(t) = ——fdco C(co,co;t) = —f dco dco'[ F (co)R(co')+F(co)R*(co')]C(co,co';t) .

Combining Eqs. (5) and (6) and introducing the notation

C(co,co', t)=((P
i
C(co, co', t) i P) ),

where the second bracket indicates trace with regard to the initial atomic density matrix we obtain

1 (z) +z~)t
C( p,cocto)o= dzidz2e Ki(cop, cop zizi),

2 ITl

(Sc)

(Sa)

where
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1 F(cop) R "(co')C(co',cop, t =0)
Kl (coo&coo&'z|&z2) = C(cop, cop,'t =0)— fdco'

(z& —icop)(z2+ l cop ) D (z l ) 2) —le

F'(coo) R (co')C(coo, co', t =0)
dN

D(z2) z3+tco

F(cop)F"(cop) , R (co)C(co,co';t =0')R(co')+ dt's dco
D'(z, )D(Z3) (z 1 i c—o)(z2+ ico')

(8b)

Furthermore, by inserting (8) into (7) we obtain

Po(t) =-
dt

1 (Z, +Z2)~
dz)dz2(zt+z2)e K2(zt, zz),

2&l
(9a)

where

K2(zt&zz)= fdcoKt(co&co&z(&zz) . (9b)

Expressions (8) and (9) are the central results of this work. They relate, quite generally, the time-dependent density-
matrix elements to a given initial condition C(co,co;t =0) and dipole distribution function F(co). The case of N discrete
levels is obtained by replacing the co integrations by summations, or alternatively, by using 5-sharp distributions for
F(co), C(co', co;t =0), see Eq. (22) below.

Finally, the spectrum of the fluorescent light S(co) is given by

S (cog) = ( ct 3 ( t = oo )a p ( t = co ) )
0

=g3 fdco'dco"F'(co')F(co") f dr~dr2e
'" " "(8 (co', r~)8(co",r2) )

2
oo —i co&(w& —r2) Z)7 )+Z272

dred r2e dz~dz2e K3(z~,z2),
2m.i C

(10a)

where

K3 (z f &z2 ) =fdco'dco"Q3 (co')Q~(co" )K~ (co'& co";z &z2 ) ~

The structure of expression (9) implies that the Pp(t)
time dependence is determined by the singularities of
Kz(z&, z2) (poles, cuts). These in turn can come either
from the zeros of D(z), which depend only on the dipole-
strength distribution F(co) [Eq. (5b)], or from the other
factors in (8) and (9), which explicitly depend on the ini-
tial preparation of the continuum, C(co,co';t =0). The
latter possibility, i.e., obtaining decay rates, which depend
on the mode of preparation of the continuum, is novel.
As an example in Sec. III indicates, this occurs only for a
judicious choice of C(co,co;t=0) conforming with the
given F(co). The structure of expression (10) indicates as
well that the widths and positions of the peaks in the light
spectrum are determined by the singularities of K3(z|,z2).

III. SPONTANEOUS DECAY OF A FANO
CONTINUUM AND A THREE-LEVEL ATOM

To demonstrate the content of expressions (9) and (10)
we consider two examples of current interest: a continu-
um with a Fano dipole distribution and a three-level atom,
initially prepared in the first excited states. We are in-
terested in the ensuing Pp(t) and the resonance fluores-
cence spectrum, respectively.

A. The spontaneous decay of a Fano continuum

(lob)

o
F(co)=

'&&c47T')&) co —co)+t1 )

1 0.

1+Eg co —co~+ l 0

In (11) y& is the autoionization width, q is the parame-
ter controlling the asymmetry of Fano's profile (q =oo
corresponds to a Lorentzian), o is a cutoff parameter tak-
en to infinity after the calculation, and the Qp parameter
plays the role of a Rabi frequency when q»1.

The second input into expression (9) is the initial densi-
ty matrix C(co,co';t =0). In general C(co,co';t =0) will
have both diagonal and off-diagonal elements depending
on the particular physical process used to prepare the con-
tinuum. For definiteness consider the following two lim-
its. When the continuum is prepared "coherently, " e.g.,
by populating an autoionizing state

~
1), the correspond-

ing density matrix has the form

C(co,co', t =0)=A (co)A*(co')

with the normalization

(12a)

I

jn atoms. » The assumed dipole distribution results
from admixing a bound state at energy co~ with the con-
tinuum of scattering states and can be written in the
form6

The Fano dipole-strength distribution has been em-
ployed in recent models for laser-enhanced autoionization f dco

i
A (co)

i
= 1 . (12b)
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The normalization (12b) is consistent with the dimen-
sionality [C (co, to'; t)]= [co] as evident from the unitari-
ty relation (7). For the particular mode of preparation by
a radiative transition to level

~

1) it is suggestive to write
for

o
F(a)) =&N(q) &(co),

2
and

VSy=yi+ Re(lu, i),
p

pl ———(1+~'q)/(1 —iq), p, = 7$

Yl(l+q )

(17b)

where N(q) is dimensionless, inserted to satisfy (12b).
The "maximum coherence" limit (12a) corresponds to

the previously studied case of one initially populated lev-
el that can ionize or photo-deexcite. The difference in ap-
proaches is that in Ref. 1 the electron and photon decays
are solved simultaneously. In the present formulation we
first solve for the electron decay, which produces the per-
turbed dipole distribution of the continuum (Fano profile)
and then superimpose the photoemission. This sequence
simplifies the final expression considerably. Another
difference is that below we evaluate Po(t). In Ref. 1 the
complementary populations are considered.

The other extreme is that of maximum incoherence,
when the atomic density matrix has only diagonal ele-
ments. This limit is modeled for an atom with a dense,

yet discrete spectrum (quasicontinuum) by writing
(i

~ P ~ j) =p;;5,J. In the limit of a true continuum

C(, ~;t =0)=p(, (to+'))&( —') (14)

and p(co) is dimensionless. A possible method of prepar-
ing an atom with a density matrix of the type (14) is by
pumping the continuum (from the ground state or any
other state) with a weak white-noise laser, i.e.,

( V(to, t)V (co', t)) =2VD(co, co')5(t t')—

D =2( —YiRe(}Lti)

+ReI (I 1+tP2)[ i(3 /lM3)™(P'l)l+YJ )/P3 ~

(17c)

Note that the q dependence is quite involved. However,
in the limit q —+ ao the expression simplifies considerably:

( )
Ys

(1
—2(yi+y, )t

71+VS

The decay constant 2(yi+Y, ) is plausible and refiects the
existence of the scattering channel "y&,"besides the decay
channel "y, ." For y~~0 we recover the two-level result.
The prefactor is a plausible branching ratio: For y, =0
no decay channel exists and Po(t)=0 as it should, while
when Yi

——0 (or Y, »Yi), the two-level result is recovered.
The other limit of completely incoherent preparation of

the continuum is discussed for two models of p(co), Eq.
(14), namely when p(to) follows the dipole distribution,
Eq. (15a},and when it is much wider than the dipole dis-
tribution, i.e., Eq. (15b) with Y~ &&Yi.

In this context the double integrals in (9) collapse to
single integrals; however, the expressions are quite in-
volved and only the q~oo case is presented. For the
model (15a) the kernel to be inserted in (9) is

and V(to, t) is the dipole-transition amplitude. A special
case in this class is when

i
F(co)

i

'= p(~0),
Qp

(15a}
4 N (q)n.y i

where the prefactors are extracted to make p(co) dimen-
sionless. In particular, the q = Oo limit (which for simpli-
city is the only one to be considered below) is a Lorentzi-
an:

2

p (to) =N
(co —~l) +Y&

Xi(zi,zz)=—

w~ere

2r, (zi+Z2)

d (zl )d'(zz)
2

'V1'VS

d(zi)d*(z2)

(2Y,+zl+z, )'
X 2 ~ 2(z 1 +Y 1

—E c01 ) ( 2+zY 1 + l c01 )

1
K2(zi, zz) =-

[Pi�

(zl,z2)+3'2(zl, z2)],
2 (zl+zz)

(19)

Pp(t) = (1—e r'),
2r

where

(17a)

Having specified F(co), C(co,co', t =0) it is a matter of
straightforward algebra to evaluate (9). Consider first the
"coherent" case, Eqs. (12) and (13), for which all integrals
become separable. Neglecting the divergent principal part
in R (co), Eq. (3b), the spontaneous decay width Y, is de-
fined by

o2
Q(~i) .$4

This definition gives for the two-level atom A=2Y„
where A is the Einstein coefficient. The result for Po(t) is

d (z) =2+Yl+ Yg
—l col

'. (20)

The interesting feature of (19) is the appearance of double
poles, which gives rise to terms of form t~e "', p ) 1, im-
plying deviation from the purely exponentials encountered
so far. This is an example for the situation mentioned in
the Introduction, when some of the singularities of
Xz(zi,z2), or equivalently the decay rate of Po(t), depend
on the mode of preparing the continuum. The origin of
the double-pole terms in (19) can be traced back to in-
tegrals of the type f den

~
F(co)

~
/[(zl ico)(zq+i—co)]

occurring in (9) when (15a) is inserted. This kind of
coalescence is the result of an exact matching of
C(to, co';t =0) with the underlying dipole-strength distri-
bution. Note also that in the y~~O limit we recover the
all-familiar two-level atom result Po(t)=1 —e ' as it
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should. For yi&0 the double poles in (19) give rise to
nonstandard line shapes when inserted in Eq. (10).

For a model of "flat" p(co), namely, Eq. (15b) with

y~ &&yi, the coalescence of poles in expression (9) particu-
lar to (15a) does not occur. The resulting expression is

'2

(21)
Vs

Po(&)=pi
Pl+ Ps

B. Spontaneous decay of a three-level
(or N-level) atom

where pi ——p (co i) is the average constant population of the
continuum.

It can be easily checked that in the limit y&
—+0, i.e.,

when the Fano profile becomes infinitely narrow, the
correct two-level-atom expression is recovered. In the
other limit, y, ~0, no decay to the ground state is possi-
ble, hence Po(t) =0. By comparing (18) and (21) we note
that while the decay rates in this example do not depend
on the mode of preparation, the prefactors determining
the absolute ualues of Po(t} do. This reflects the effects of
interferences due to the initial coherences in both modes
of preparation.

l2&

S(cu)

(c)

FIG. 2. Schematic display of the three-level atom and the re-
sulting resonance fluorescence spectrUI. (a) shows the energy
levels and the one-photon transitions indicated by wavy lines.
(b) depicts the equivalent Fano problem, see text. (c) and {d)
show the spectrum in. the limits of well-separated and almost de-
generate lines, respectively. Note the Pano zero at co =co2.

The central expressions (8)—(10) include the case of a
N-level atom as a special limit when the dipole-strength
distribution is comprised of a series of infinitely narrow
spikes at the energies of the levels

N —}
F(a))= lim

r1~0 j=l
1V —1

i
F(co)

' I/2
Qo yo

J 7T

. 2

0
5(co—co~ )

.j

Qj —COJ + l P~

T

IV —1 y)
A (ro) = lim g ~CJ.

y, -O,-

lV —1
Yp

2

p(co)= lirn g C~
rl, o J i (co —coj) +y&

j.

CO —CO ~ + l g~J

(22)

with the normalization go, 'CJ =1. To demonstrate the

type of results in this limit, consider the simplest nontrivi-
al case of a three-level atom, prepared initially in the first
excited states [Fig. 2(a)]. The only couplings allowed are
between ( )

1 &, ) 0&) and (
~
2&,

~
0&) pairs of states, and we

examine the spectrum of the resonance fluorescence.
The underlying "physics" of this simple problem can be

understood from two angles. Note that the photon emit-
ted as state

~
1& starts to decay can be reabsorbed and,

thereby, promotes the atom to state
~
2&, and vice versa.

These virtual transitions occur at the very initial stages of
the decay, i.e., for t4~ &&1, when energy conservation is
not possible. Therefore, at later times, the spectrum of
the emitted light is composed of contributions from the
decay of both

~

1& and ~2&. This, in turn, must lead to
an interference pattern of the Fano type characterized by
a Fano zero (where the decays of

~
1& and

~
2& exactly

cancel each other) and skewed line shapes. The same con-
clusion is reached from yet another point of view.

2

p(co)= lim Xp

r, -o (~ cubi) +y~—
give for well-separated lines

(23)

(24)
(&~)

where y, (j)=(00/2)&Q(co~) is the natural linewidth of
level

~
j& and hcLi=ro2 —coi. To simplify the analysis as-

sume hereafter that y, (1)=y, (2)=y, . Then (24) implies
that initially the population Pz(t) rises as t, reflecting the
two-photon process [Fig. 2(a)], which depletes the popula-
tion in state

~

1&. This rise continues over a duration

The relevant states for the present configuration are
I&& =

I 1&A 10&ii 12&= I2&A l0&ii
=

~
0&z

~

co &ic, where the subscripts A and R refer to the
atom and radiation field, respectively. Only one-photon
states are involved in the rotating-wave approximation.
Note also that the sole couplings are between

~
1& and

co&,
~

2& and
~

co& [Fig. 2(b)]. This is precisely the Fano
problem of embedding two bound states into one continu-
um ' with q =0, where q is the Fana asymmetry parame-
ter. Hence the spectrum is expected to have a (Fano) zero
at co=c02 (the energy of the upper state) and two skewed
peaks. The same configuration has been previously con-
sidered also in the context of multiphoton iomzation and
laser-enhanced autoionization. '

According to the discussion above, the calculation of
the spectrum can be worked out in two ways: either by
applying the general expressions (8) and (10), or by solving
the equivalent Pano problem. Consider first the general
expression (8), which yields P2(t), the time-dependent
population of level

~

2&. Straightforward manipulations
using (8}and (22) with Ci ——1, C2 ——0, and
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with the secular equation

P(z) = [z+icoi+y, (1)][z+ico2+ys(2)) y, (—1)y,(2),
(25b)

and

C[(conj —co2} +ysrl ]S( )=, , ', . (26)
[(coi —coi)'+y, (1)'][(coi.—coz) +y, (2)']

In (26) il = 1 Q( co i)
—/Q( co&) = 1 coi/—co2 Aco/-—coi, I 1

icoJ.——y, (j) are the two roots of the secular equation
(25b}, and C is an uninteresting normalization constant.

Provided (y, /coi) «1, which is a very good approxi-
mation in all cases of interest, expression (26) indeed
shows a Fano zero at co=coz as expected from the discus-
sion above. The actual form of the spectrum is analyzed
in two limits of well-separated lines and almost degen-
erate lines. The secular equation [(25b)] then gives

2 2
XS XS

CO~ =CO]+, N2=C02-
Aco Aco

(27a)

y, (1)=y,(2)=y, «» «1
Aco

and

coi =co2= 2 (coi+co2),
(27b)

y, (1)=, y, (2)=2y, —y, (1) for »1 .(hco) VS
S 8

~ S S S kN

The spectra in these two limits are quite different. In
the well-separated lines limit, y, /bco «1 [Fig. 2(c)], there
are two peaks with a large disparity in heights:

4
h)

h2
(28)

S(co2) 'Ys

The spectrum in the almost-degenerate-lines limit [Fig.
2(d)], on the other hand, exhibits a "hole-burning" shape
provided y„hco are about the same magnitude. In the

b,theo-m, followed by a decaying-oscillating behavior at
all later times. The oscillations, of frequency hco, reflect
the beats between the decay of

~
2) and

~
1). The fre-

quency measurement of such beats is at the basis of
beam-foil spectroscopy. To compute the spectrum of the
resonance fluorescence we use (14) and (23) in conjunction
with (10). The result is

- 2

Qp

2 ]
Eq(zi, zz)= [(zi tco—2)(z2+tco2)

P (zi)P(z2)

+(zi+zz)y, (2)i)+y,'(2)g')
(25a)

hco =0 limit, the Fano zero is canceled out in (26) and the
spectrum is one Lorentzian of width 2y, .

The second method of calculating the spectrum, i.e., by
solving the equivalent Fano problem involving two bound
states and one continuum, is worked out elsewhere and
will not be repeated. It gives the same result (26) and sec-
ular equation (25b) using the identification S(co)
= (co

i p(t = oo ) i
co }.

IV. CONCLUSIONS

We derived a general expression [Eqs. (8) and (9}) for
the time-dependent density matrix describing the spon-
taneous decay of a continuum and the ensuing resonance
fluorescence spectrum [Eq. (10)]. The input to these ex-
pressions is the initial (atomic) density matrix and the
dipole-strength distribution of the continuum. In the
proper limit, the expressions apply to an N-level atom
where all excited states can decay only to the ground state.
The present expression generalizes the results of an earlier
study' to an arbitrary initial density matrix and dipole
strength. It also underscores the basic simplicity of the
spontaneous-decay problem of any number of levels or
continuum to a common lower level.

The expressions have been applied to two cases of in-
terest, namely to a continuum with a Fano-type dipole
distribution and to a three-level atom, initially prepared in
the first excited state. In the latter case we examined both
the spectrum of the fluorescent light and Pz(t), the time-
dependent population of the second excited state. The
emerging picture is that at short times th~&&1, where
hco =co2 —co, is the energy separation of the two levels, the
second excited-state population increases. At later- times
the populations of both excited states 'decay and beat
against each other giving rise to a Fano zero at co2 and
two skewed peaks. The occurrence of a Fano zero in the
context of spontaneous decay is interesting. Underlying
it, as usual, ' ' ' is an interference of two pathways for a
transition between a given pair of initial and final states.
The continuum Po(t) involves pure exponentials with time
constants combining the effects of spontaneous decay and
width of the dipole-strength distribution. In the limit
when there are no initial coherences and the initial popu-
lation is proportional to the squared Fano dipole distribu-
tion, we note more complicated forms of Po(t). This is an
example for a situation when the decay rate of the system
depends on the mode of preparation.
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