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The problem of stimulated recombination at a resonance is investigated by a time-dependent, non-

perturbative approach. The number of pairs recombined by a laser pulse is computed as a function

of the intensity, of the pulse duration, and of the initial electron-energy distribution (as well as of the

parameters which characterize the atomic resonance and its field-induced coupling to the final

bound state). The role of spontaneous emission (or other paths) from the recombined state (if it is

excited} is also discussed. Numerical results are given including an example of recombination to the

ground state in the Sr atom.

I. INTRODUCTION

The process of electron-ion (-atom) recombination has
been traditionally considered as important for plasma
physics and astrophysics. ' It can be written as

A+ (A)+e ~A (A )+hv

and the spontaneously emitted photon acts only as a third
body for carrying out the excess energy. The initial and
final states have not been indicated, since, in a plasma,
ions (atoms) can be initially in a mixed state and even if
the ions were in a pure initial state they can recombine to
a variety of excited states. Furthermore, the electrons are
usually far from being monoenergetic. In this situation
one can only apply a kinetic treatment using suitable rate
constants to compare the relative importance of recom-
bination with respect to other competing processes.

Spontaneous recombination is of crucial importance in
astrophysics. However, the measurement of the isolated
processes in a laboratory is difficult due to its small cross
section. The consequences of utilizing lasers on stimulat-
ed processes are the motivation of this work. The availa-
bility of laser sources has recently produced renewed in-
terest in photoionization experiments and in the study of
the continuum part of the atomic spectrum. In this situa-
tion it seems natural to investigate the possibility of in-
creasing the probability of the recombination process by
laser stimulation. This has been the subject of a previous
paper. Here we extend the treatment and include the
possibility of recombination via an autoionization reso-
nance, which should significantly affect and further in-
crease the probability of capture.

Vfe study here a state-to-state recombination in the

presence of a monochromatic and monomode laser field,
assuming an initial electron-energy distribution. Our
treatment is fully quantum mechanical (in the sense that
we solve the l.iouville equation of motion for the popula-
tion of the recombined state), which is completely dif-
ferent from the traditional rate approach. It should be
more adequate to describe the recombination in dilute sys-
tems, where the electron-ion (-atom) collision takes place
undisturbed by other collisions in a coherent electromag-
netic (e.m. ) field.

II. THEORY

l.et us first introduce the basic assumption of the
present treatment. From now on we refer only to
electron-ion recombination, keeping in mind that the
treatment is also valid for electron-atom attachment.

(i) The monomode laser field is assumed to be a rec-
tangular pulse of duration r.

(ii) At time t=O, when the pulse is switched on, the
electron-ion system is assumed to be described by a
density-matrix diagonal in the basis set of eigenstates for
the recombined system, i.e., for the neutral atom (in the
following this point is discussed in more detail).

(iii) We assume that stimulated recombination takes
place toward a single bound state

~
b), well separated

from other bound states. Hence, from the point of view
of the e-ion system, we must study a continuum-bound
transition. The continuum supports a resonance, which is
also supposed to be well separated from other resonances.

The Hamiltonian is written as (the notation is self-
explaining; a.u. are used)

0=a„+H...+ VI,
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H„d——a ace,

CO

2eoV

1/2

(a —a )d, .

(2)

(3)

(We have assumed that the radiation is linearly polarized
along the z axis. The component of the dipole moment is

I

d, .) Due to assumption (ii) it is convenient to introduce
directly the Hamiltonian for the atom, in place of the one
for the interacting e-ion system. This distinction is im-
material at this level but becomes important when we go
to a spectral representation of the Hamiltonian. In fact,
in the resonant approximation and neglecting continuum-
continuum transitions, one may write

H =
) b, (n + 1) ro) ( b, (n +1) ro) [Eb+ (n + 1)co]+f ] k,

neo�

) ( k, neo
) (Ei, + neo)p(k )d k

+ k, neo VL, b, n+1 co k, neo b, n+1 co p k dk+H. c. (4)

[the resulting level and coupling scheme is schematized in

Figs. 1(a) and 1(b)]. Here
~

k ) is a continuum eigenstate
of H„.

In principle a complete set of scattering states can be
used here. It is, however, more convenient to choose the
same set here as is used in expressing the initial condi-
tions. This has not been specified in (ii). The natural
choice is a set having an incoming-wave behavior charac-

terized by the momentum k. Hence one can make the
identification

~

k):—
~
k+ ).

The expression for the number of recombined pairs at
time t is (see Appendix A for the derivation)

N, (t)= fP „(t)p(k)dk, (5)

where

P „(t)=—
) (b, (n+1)co [ U(t)

( k, neo) ( (6)

In Eq. (5) n; (ne) is the number of ions (electrons) in the
interaction volume V and p(k) is the initial electron dis-
tribution:

Then Eq. (5) gives, in the weak-field limit, what is ex-
pected for a three-body reaction (electron-ion-photon):

Nrec(t) ni ate ph

V V V V

Equation (5) can be generalized to include spontaneous
emission from the bound state

~

b ) (if it is not the ground
state). First the probability P -(t) is computed by con-

bk
sidering that spontaneous emission contributes y,~ to the
width of

~
b) and then adding a further term to Eq. (5).

I

p k k=1.
The probability P -(t) will be calculated in the following

bk
by a nonperturbative approach. For weak intensity of the
inducing field, however, one can anticipate that

nphp ccrc oc
bk

I

This should take into account that all the population,
which decays from state

~

b ) by spontaneous emission in
the time interval 0—t, can be considered recombined ir-
reversibly (since it cannot undergo further reionization).
The required more general expression is

N, (t)= — fP „(t)p(k)dk

+ y„f,dt' fP, „(t')p(k)dk (9)

This is the basic equation. One has now to compute
P (t) and to specify p(k). For our purpose it is now

bk
useful to decompose P (t) in spherical waves. One has

bk

~k)—= ~k+)=gY, (k)~k, t,m), (10)

p(k)=baht (k)Yi (k) .

From Eqs. (6) and (10) one has

P -„(t)=g Y(~(k)Yi~(k)
l, m,
I', m'

X (b, (n+1)co
~

U(t)
~

,k'Im';nc)o

X(k, l, m;neo
~

U(t)
~
b, (n+1)co) . (12)

From now on we will stop indicating the photon states
with the bras and kets for the sake of simplicity. This
should cause no ambiguity in what follows. We insert the
above result in Eq. (9) and have

where
~
k, l, m) are simultaneous eigenstates of H„,the

angular momentum, and its projection along the z axis.
They are 5 normalized, i.e.,

(, k, l, m
~

k', I', m') =&(k k')&itk—~~ .

The electron distribution is also expanded in spherical
waves:

n;n,N„,( )= ' ' g g g F(t, l, m, l', m', I",m")+y, ~f dt'F(t', I,m, l', m', l",m")
l, m I', m' I",m"

where

(13a)
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Y(t l m l', m', l",m")= f (b
(
U(t)(k I', m')(k l m

(
U(t) (b)bt (k)Yt (k)Yt" Yt (k»)dk . (13b)

The above expression looks quite complicated but, as we will see, it simplifies considerably for the kind of experiment we
discuss. Here we imagine a scenario in which electrons and ions are produced in situ by multiphoton ionization of a neu-
tral atom. This can be achieved by a strong laser pulse shining a cell. Immediately after this ionization the other laser
source is switched on. The frequency is appropriately chosen to stimulate recombination to a specific bound state. In
this situation, which allows one to have a large concentration of electrons and ions in contrast to a beam experiment, it is

appropriate to take p(k) as spherically symmetric and Eq. (13a) becomes much simpler, due to the orthogonality of
spherical harmonics:

~, (t)="'"'g fh«)[&b]« i)~k, l, m&['dk+), f dr' fh(k)/&b)U(t')[k, l, m&f'dk
Im

(14)

The distribution h (k) which is to be identified with the l =0, m =0 component in the expansion (11) is normalized, i.e.,

h(k)k dk=l . (15)

In choosing h (k) one should take into account the various mechanisms of broadening for the initial energy of the elec-
trons. Equation (14) gives us the total number of atoms forined by the stimulated recombination for an initial electron-
energy distribution which is spherically symmetric. Due to the angular momentum selection rules, the sum in Eq. (14)
reduces to just one or two terms. In the following, for simplicity, we consider recombination to a bound state of S type.
In this case Eq. (14) becomes

fh(k) I
&b

I
U(r)

~
k, l =l,m =o& ('dk+y„f,di fh(k)

~
&b

~

U(i)
~
k, l = l, m =0& ~'dk (16)

The next step concerns the evaluation of the transition amplitude, i.e., & b
~

U(t)
~
k, l, m &. This amounts to solving the

Schrodinger equation. An approach based on the resolvent-piojection operator has been found to be particularly con-
venient for problems involving the continuum. The resonance is handled by considering that it originates from a Pano
diagonalization of a state embedded in the continuum. We decide to work in the situation before the diagonalization.
In this way one has two bound states coupled to the continuum by the laser field VL and the Coulombic perturbation

Vc, giving rise to the autoionization. This is schematized in Fig. 1(c). The continuum is now flat and it can be easily

projected out. Finally one has to handle a 2&&2 effective Hamiltonian. The details of the derivation are given in Appen-
dix B. The final result is

J &b
J
U(t) Jk, l, m& f

= e

2
&2+ & Pg —

ieger ek+Ey. —.kt A Bek
e + e C+

(&1—&2)(e2 —&k ) (kk —&1)(ek —&2) &k+Ta

where

ra(q' l—)1'ab-
by the e.m. field. The mechanism for this distortion in-

volves all-order coupling of the resonance ta the bound
state by the e.m. field neglecting free-free transitions.

=2 2

7r
(18)

// 1(k)}
Ib gn+ g)N)

V (I()
f+ A03y yC

Ib, (A+ 1)~
4 "' lii

and q is the Pano parameter. e~ and e2 are the complex
eigenvalues of the effective Hamiltonian

Eb +co —11 b +5b —1 ttb(q +')
jeff

y.b(q+1') — iy. +5. — (19)

Here yb and 5b are the level broadening and the shift of
the recombined state due to the laser-induced coupling to
the continuum and y,b is the effective coupling between
the state

~

a & giving rise to the resonance and the bound
state

~

b & (see the Appendix).
Equation (17) describes the stimulated recombination

taking into account that both the bound state
~

b & and the
continuum near the resonance may be strongly distorted

ib)

(b) (c)

FIG. I. (a) shows the schematic levels of the atom and the
bound-continuum transition giving rise to the stimulated recom-
bination. (b) shows the level and the coupling scheme (in the
resonant approximation) in the second-quantization. formalism.
The laser-induced bound-continuum coupling is also depicted.
The bump indicates the presence of the autoionizing resonance.
In (c) the bumps have been eliminated by going back to the
states before the Fano diagonalization. One has now two bound
states coupled (the coupling function is now flat) to the continu™
um, due both to the laser and to the Coulombic interaction.
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From the expression of the effective Hamiltonian, Eq.
(19), one concludes that the distortion is negligible (and
we call this the weak-field limit) if

I
~is'

I

' y'b(e'+1)
[/2+(y y )&]i~2

((1, (20)

where

5=E)+CO+5b —5, . (21)

Equations (9) and (17) are the main results of this paper.
To get some insight into Eq. (17) let us consider the small
detuning case, i.e., 6-0. For the recombination to an S
state one has (see Appendix) y,b

——yby, . Hence the rela-
tion (20) becomes

yby. (e +1)
I yb yo —

I

This means that a significant distortion is expected only
when yb becomes close to y„i.e., to the width of the un-
perturbed resonance. yb can be written as a sum of two
terms,

Xb Vb +Vb (23)

The first one comes from the spontaneous emission and is
field independent. The second is due to the field-induced
ionization and therefore increases linearly with the inten-

-sity (for one-photon recombination). The range of validi-
ty of the weak-field limit depends on the particular sys-
tem one is studying. Much of the well-known autoioniz-
ing resonances are in the range 10 ' sec
(y, (10'" sec '. The rate constant for spontaneous
emission is usually several orders of magnitude less, i.e.,
y'i'-10 sec '. Since for the one-photon ionization one
has roughly

accounts for the resonance. For short times this gives a t
dependence. If we first integrate over a broad electron
distribution and then develop in powers of t, we obtain a
linear dependence for short times. The situation is analo-
gous to what one has for the transition between two
bound states due to polychromatic light. In both cases
one has a continuum to bound transition. In the bound
two-level system the continuum is due to the photon
modes, whereas in the present case the continuum is that
of the electron (we have only one photon mode).

III. NUMERICAL EXAMPLES

Using Eqs. (9) and (17) (the main results of this paper)
one can compute the number of recombined pairs pro-
duced by a given rectangular pulse of duration ~. Equa-
tion (14) is a special case of Eq. (9) assuming a spherical
electron distribution. Equation (17), which will be used
for the numerical examples, is a particular case of Eq.
(14), corresponding to the recombination to an S state.

Equation (17) is perfectly general and one need only
specifically consider the relation connecting the widths

yb, y, and the parameter y,b appearing in the extradiago-
nal matrix element, which depends on the symmetry of
the bound state. For the recombination to an S state one
has (see Appendix B)

11.7—

y'b'"(sec ') -I(W cm ) (24)

one can conclude that in many cases the weak-field limit
continues to be valid for intensities up to 10"Wcm . It
is to be noted that the new high-resolution devices permit
us to distinguish resonances as sharp as 10 sec '. For
such resonances a significant distortion takes place at
much lower field intensity (in the megawatt region). The
weak-field limit is easily obtained from Eq. (17). By set-
ting

E~
——Eh+CO —I,yb,

(25)
E2= —l3 a

(i.e., the unperturbed energies) one has for the probability

1.5

0.5—

-'to
l

I

—5 10

I (,b
I
U(t) Ik, l, m)

I

—2yg& yb t1+e —2e cos(Eh+co —ek)t

(+b+~ +k) +yb

A —Bek
X C+

&k+Xa
(26)

This coincides with the expression used previously apart
from the second factor on the right-hand side (rhs), which

FIG. 2. The quantity A =X, (~)V/(n;n, ) (proportional to
the number of recombined pairs produced by a pulse whose
duration is v.= 10 /y, ) is plotted against the energy of the distri-
bution for electrons (see the text). We treat the case of a reso-
nance in the Sr spectrum for which q= —5.2. The various
curves refer to different values of the ratio y'b "/y„which is
proportional to the intensity (for further details see the text).
Curve a, y~'"/y, = 10 '; curve b, yq "/y, =10; curve c,
yq'"/y, =10 ', curve d, yq'"/y, =2.
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2
Jab Ya Xb

In order to illustrate the main features of the present
theory we give now some examples, assuming that the
laser is tuned at resonance, i.e., b, =0, Eq. (21). First we
consider the recombination to the ground state, so that the
spontaneous emission is absent. We give the results for
the Sr atom, assuming that the electron energy is close to
the 'P; resonance (resonance no. 3 in Ref. 7). For that
case q= —5.2, y, =7S&(10' sec ', and the laser wave-
length must be 1970 A. Figure 2 gives the quantity
A =N„,(r) V/(n;n, ) as a function of the electron energy
assuming that the spherical electron distribution is 5-like
in energy and v=100/y, . Different curves refer to dif-
ferent intensities. The latter is not given directly but
through the widths ratio yP" /y, (which is proportional to
the intensity). Furthermore, y, (i.e., the width of the un-
perturbed resonance) is taken as the energy unit. In Fig. 3
the spherical electron-energy distribution is broad, i.e.,

r

1

h(k)k =
0, otherwise

and s ~~y, . In this case

N„,(r) V
P = (2s)

nsne

is plotted in Fig. 2, as a function of ys'"/y, in a log-log
scale.

Looking at Fig. 2 one sees that at the weak intensity the
recombination takes place only when the total energy is
conserved, i.e., one has essentially a 5-like peak at the elec-
tron energy for which there is resonance with the energy
of the bound state plus the photon (curve a). By increas-
ing the intensity one observes first a power broadening
(curve b) and then also the dynamical Stark splitting
(curves c—e). It is worthwhile to notice that for weak in-
tensity (curve a) or for sufficiently high intensity (curve
d) one has very sharp peaks in the number of recombined
pairs for a suitably chosen electron energy (at the center
of the resonance for curve a and near the left peak in
curve d). As already pointed out, the above curves are
calculated for a 5 distribution of the electron energy,
which is rather unrealistic. Even if one has nearly mono-
chromatic electrons, in practice one has to multiply by a
distribution with a small but finite width and integrate. If

gp2

qpO

10

FIG. 3. The quantity P =X, (v.) V/(n;n, ) (proportional to the number of recombined pairs produced by a pulse whose duration is
x=104/y, ) is plotted against the ratio yP"

~
y„in a log-log scale. The different curves refer to different values of the width of state

~

b ) due to spontaneous emission, i.e., y'~. The other parameters are the same as for Fig. 2. Curve a, y'i'=0; curve b, y'~=10 3y„
curve c, y' =10 y, .
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this is done the peaks are smoothed out more or less de-
pending on the relative width of the peak with respect to
the electron distribution. The very sharp peak for the
weak field (e.g. , curve a), for example, tends to disappear
more easily if the effect of a realistic electron distribution
is taken into account. Another interesting point to notice
is the nonmonotonic behavior of the left peak heights as a
function of intensity.

In Fig. 3 the electron distribution is broad. The various
parameters are the same as in Fig. 2 but we study here
also the effect of the spontaneous emission, i.e., of the
second term in the rhs of Eq. (9). Curve a refers to the
case y' =0. Each point in this curve corresponds to the
area under a curve like those in Fig. 2. This is the only
curve in the figure which refers to a specific atomic case,
i.e., the case of the recombination from the previously
mentioned autoionization resonance in the Sr atom, to the
ground state. Here the complicated features of Fig. 2 are
completely lost and the log-log plot exhibits the expected
behavior. In fact, the number of recombined pairs in-
creases first linearly with the intensity and then is saturat-
ed. The other curves b —d are built assuming an increas-
ing value of y'~ to make evident the important role of
spontaneous emission in augmenting the recombination
yield.

IV. CONCLUSION

We have treated the problem of stimulated electron-ion
(-atom) recombination near an autoionizing resonance by
considering that the interaction of the laser light with the
e-ion system takes place coherently and for a finite time.
Since the light matter interaction is handled in a nonper-
turbative way, we were able to include in our treatment
the field-induced distortion of the continuum near the res-
onance. ' We also investigated the role of the spontane-
ous emission (or, by analogy, other relaxation processes)
from the recombined state in increasing the recombination
yield. The influence of the width of the electron-energy
distribution has been also stressed.

As a concluding remark, we note that the number of
recombined pairs which has been the subject of our calcu-
lations can obviously be identified with the number of
photons produced. Our results can then be utilized to in-
vestigate the possibility of obtaining photon gain from
such recombination processes along the lines suggested in
a previous paper.

p,"=gP-
~
k)(k (, (A 1)

v v V v

v
(A2)

where n; and n, are the number of ions and electrons,
respectively, in the volume V. The first two factors in
(A2) give, respectively, the probability that an ion or an
electron is in a volume v. The third factor is the number
of ways the volume v can be chosen. The point is that
since, as we will see, the probability of recombination is
proportional to 1/v, the arbitrary volume v disappears in
the expression for the actual number of recombined pairs.

In order to derive an expression for the recombination
probability, we take as the initial density matrix the fol-
lowing tensorial product of the atomic density matrix and
the photon density matrix (in pure number state):

p(0)=p,"8
~

neo)(neo
~

and p,"is given in Eq. (Al).
Then the recombination probability is

P„,(t) = (b, (n +1)co
~
p(t)

~

b, (n + 1)co ) .

The density matrix at a time t is given by

p(t)=U(t)p(0)& (t),
where

(A3)

(A4)

where P is the normalized distribution.
k

We write (Al) as a sum since the process takes place in
a finite volume, say v. The volume v cannot be identified
with the interaction volume V. In fact, we are interested
in a situation where many electrons and ions are simul-
taneously present in V and one cannot assign reasonably
one electron to one ion (or vice versa) in V. We suppose
that when the laser is s~itched on, there is a certain num-
ber of electron-ion pairs sufficiently close together, both
being contained in the arbitrarily small volume v, as we
assume in writing Eq. (Al). The latter is taken much
smaller than the interaction volume V, so that the proba-
bility that it contains other e-ions pairs is essentially zero.

We now compute the probability of recombination for
an e-ion pair in the volume v and then multiply by the
number of pairs Xz which are simultaneously in a similar
situation. One has
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APPENDIX A

Let us derive an expression for the number of recom-
bined pairs at time t. We consider that our system con-
sists of a certain number of electron-ion pairs and each
pair does not interact with the others. The initial state for
a given pair is written as a diagonal density matrix in the
basis set of the recombined system, i.e„ofthe neutral
atom (in a box):

Let us remember now that the states
~

k ) are normalized
in the volume v. It is useful for our purpose to make this
dependence explicit:

fk)~, fk).
v

(A7)

In the limit U~oo the state
~
k) becomes now the 5-

Utilizing the Hamiltonian given in the expression (4),
Eq. (A4) becomes

P„,(t)=g i (b, (n+1)co
i
U(t)

i k, neo) i P-„. (A6)
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normalized [i.e., & k
~

k') =5(k —k ')] continuum states
(this is true for plane waves and consequently for all con-
tinuum functions since the former form a complete set).
From Eq. (A6) one has

P„,(t) =—g i &b, (n+1)ai
i
U(t)

i
k, nt0) i P-„.

k

(AS)

Attention has to be paid to the correct normalization of
P(k), in Eq. (A9). One has

The continuum limit is now obtained in the usual way

[g „-~U/(2m).fdk]:

P„,(t)= f [ &b, ( n+1)co~ U(t)
) k, neo) ) P(k)dk .

(2m. )

Ho ——dlRgH,

6(z)=(z —H}-',
g(z) ={z—Ho)

we can write

From the identity

6=g +GVg

we lmI11edlately obtain

Im 1 Em
Gbk Gbb E E ~5k

k

X
i
k, l, m; n~o)e ' 'dE .

(84)

(85)

(87)

(BS)

(89)

and in the continuum limit this becomes

fP(k)dk=l .
(2n )'

(Al 1)

61',k = &b, (n+1}co
~

6
~
k, l, m;nai),

G~ b= & b, ( n+ 1)co
i
6

i
b, (n + 1)c0),

(810)

P(k)=p{k) (A12) V'„=&b,(n+l)a) ~H (k, l, m ;nto) . . (811)

Rnd P ( k } ls IIOIIllallzcd, l.c.,

p k k=1 .

Equation (A9) can then be rewritten as

(A13)

P, «)= ' f i
&b—,(n+1)~~ U(t) (k,n~& ('p(k)dk.

Let us first derive an expression for Gss and then for
Vi,k. For this purpose we find it convenient to go back to
the states before the Fano diagonalization [Ref. 5; see also
»g. 1(c)]. Now th~~~ are two bound states coupled to the
continuum by two distinct perturbations, the interaction
with the laser VL, and an intra-atomic (for example,
Coulombic) interaction Vc.

Let us introduce two projection operators

(A14) P= [b, ( +n1)~&&b, ( +n1)m[+ ( ,an~&&,an~(, (812)

The number of recombined pairs is obtained by multiply-
ing Eq. (A14) by Nq which is given in Eq. (A2):

.1V, (t)= f ( &b, (n+1)co
(
U(t)

~
k, nai) ) p(k)dk .

rCC y

Qt
—=g

~

k, l,m;neo)&k, l, m;n~
~

.
k

(813)

APPENDIX 8

We have the following expression for the P-projected
resolvent:

PGP =(z —H'")-',

Vfe compute here the probability amplitude

&b, (n+1)a)
i
U(t) ik, l, m;na))=Ut, k(t),

whcl'c

U ~
—iHt (82)

H'~~= PIIP+PRP

and the level shift operator is

and H 18 thc HSID11tolaxl 1n thc I'csonant approxiIBation,
Eq. (4) [scc also Flg. . 1(b)]. Wc llsc R resolvent-projection
operator approach to solve the Schrodinger equation. 9

After defining

The required matrix element Gbs, Eq. (89), is now calcu-
lated by fi.rst constructing 8' and then inverting the ma-
trix (zI H' }. The effectiv—e Hamiltonian is (choosing
E, +n~+5, as zero of the energy)

—'Yab(9 + I }
ff —y, l, (q+I )
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tr—'b'"+&b =g( I7'—b +&b )

l, m

dk,
ktm & I

'

I, m E —ek
(819)

where (for simplicity we do not indicate the photon in-

dices in the bras and kets)
From Eqs. (815) and (818) one has now

E—H22
eff

Gbb(E) =
crt crt eII z .

(E —H i i )(E —H22 ) —(H I2 )
(825)

The integral (87) is easily evaluated by the residue
theorem. The poles of Gbb(E) are the complex eigen-
values of H', i.e., the roots e& and e2 of the secular equa-
tion. One gets

(E —HII )(E —Hz2) —(HI2)z=0. (826)
+g g( im+ atm)

l, m

y
1(a

I
Vc lk, ~, m

(E —~k)

I Y b+~ab y( I yah+~ah)
l, m

(820)

Equation (825) is then rewritten as

E—H22
Gbb(E) =

(E —et)(E —~~)
(827)

&1+&'Ya —ie, ~

e
(~1 ~2)(~I ~k )

From Eqs. (87), (89), and (818), performing the Fourier
transform, we obtain

(a
l V, Ik, l, m)(k, l, m

l
V lb)

dk,
I, m (E —ek)

2+t Va —ie2t
e

(61 E2)(e2 Ek )

5,b+(a
l

vL lb)
(821)

(822)

E'k. + l pa I'e

+ ~bk .
(ek sl)(~k e2)

(828)

2 =Vab Xa Vb . (824)

It is to be noted that the various shifts and widths depend
now only weakly on the energy E and this dependence is
disregarded in the following [we take E=Eh+(n + l)t0].

From Eqs. (819)—(821) one obtains a relation among

Im )2 Im Im (823)

If we consider a linearly polarized radiation and assume
that Vc is spherically symmetric, then m remains that of
the initial state and therefore the sum over m in Eqs.
(819)—(821) disappears. If the initial state is of the S
type the resonance must be of the P type and only the
l =1 continuum contributes. In this case Eq. (823) be-
coIDes

The remaining problem is to give the explicit depen-
dence of Vbk on k. This problem has been solved by
Fano:5

' 1/23 —Bpk
Vbk ——e'& C+

6'k +Pd

where

A =—ya(q —1)y,b,
I 2 2

&=—r.be'=2 2

ion

C=

and P is an arbitrary phase factor which does not enter in
the calculations, since only

l Vbk l
appears in the relevant

formulas.
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